第25章 随机事件与概率知识点总结
2024九年级数学上册“第二十五章 概率初步”必背知识点

2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。
必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。
2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。
取值范围:概率的取值范围是0≤p≤1。
特别地,P(必然事件)=1,P(不可能事件)=0。
二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。
2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。
树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。
三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。
即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。
四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。
2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。
如果概率相等,则游戏公平;否则,游戏不公平。
五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。
示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。
解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。
因此,抽到红桃的概率为P=13/54。
2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。
【人教版】初中数学九年级知识点总结:25概率 简洁易懂

预习九年级知识点: 25概率一、知识框架二、重点、难点:在具体情境中了解概率意义、对频率与概率关系的初步理解。
四、知识点、概念总结1.随机事件: 在随机试验中, 可能出现也可能不出现, 而在大量重复试验中具有某种规律性的事件, 简称事件。
随机事件通常用大写英文字母A.B.C等表示。
2.特殊的事件必然事件记作Ω, 必然发生。
不可能事件记作Φ, 不可能发生。
3.概率:表示一个事件发生的可能性大小的数,叫做该事件的概率。
人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。
5.列举法:从逻辑上进行分析并将其本质内容全面地一一地罗列出来的手段,再针对列出的项目一一提出改进的方法。
列举法一种方式为树状图, 如下: P136列举法另一种方式为图表, 如下:第2个1 2 3 4 5 6AC D EH I H I H IBC D EH I H I H I甲乙丙(具体图表意义请参照初中数学九年级上册人教版课本P135页)4.频率与概率的区别与联系从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近, 说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.5.频率估计概率:历史上有许多著名数学家也做过掷硬币的试验.历史上数学家做掷币试验的数据统计表说明:只要试验的次数n足够大, 频率就可以作为概率的估算值!。
九年级数学人教版(上册)第25章小结与复习

乙转盘
第一回 第二回
1
2
3
1
2
3
4
2
3
4
5
3
4
5
6
共有9种等可能结果,其中中奖的有4种;
∴P(乙)=
4; 9
(2)如果只考虑中奖因素,你将会选择去哪个超市
购物?说明理由.
选甲超市.理由如下:
∵P(甲)>P(乙), ∴选甲超市.
侵权必究
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究
课堂小结
必然事件
事 件 不可能事件
从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是( A )
A. 2
B. 3
C. 8
D. 1 3
5
5
25
25
4. 一个袋中装有2个黑球3个白球,这些球除颜色外,大小、形状、质地完全相
同,在看不到球的情况下,随机的从这个袋子中摸出一个球不放回,再随机的
从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是( A )
随机事件 与概率
概
率
初
步 列举法求
概
率
用频率估 计概率
侵权必究
概率
随机事件
定义
刻画随机事件发生可能 性大小的数值
计算 公式
P(A) m (m为试验总结果数, n
n为事件A包含的结果种数)
直接列举法 列表法
画树状图法
适合于两个试验因素或分两步进行 适合于三个试验因素或分三步进行
频率与概 率的关系
在大量重复试验中,频率具有 稳定性时才可以用来估计概率
那么重转一次,直到指针指向 4 3
某一份为止).
12
随机事件与概率知识点

随机事件与概率知识点随机事件和概率是概率论中的基本概念,它们揭示了不确定性现象背后的规律性。
本文将介绍随机事件的定义及性质,以及概率的概念、性质和计算方法。
一、随机事件的定义随机事件是指在一定条件下,具有不确定性的事件。
简单来说,就是不知道会发生什么的事件。
一个事件发生与否,可以用0或1表示,其中0代表事件不发生,1代表事件发生。
这种不确定性使得我们需要运用概率论的知识来描述和研究。
对于一个随机试验,其样本空间为Ω,由所有可能出现的结果组成。
样本空间中的每一个元素称为一个样本点,记作ω。
而样本空间中的子集,称为事件。
简单来说,事件就是样本空间的一个子集,用来描述某些结果的集合。
二、随机事件的性质1. 必然事件和不可能事件:必然事件是指在所有可能的结果中,一定会发生的事件。
记作Ω,其对应的概率为1。
例如,在一次掷骰子的实验中,必然事件就是出现的点数在1至6之间。
不可能事件是指在所有可能的结果中,一定不会发生的事件。
记作∅,其对应的概率为0。
例如,在一次掷骰子的实验中,不可能事件就是出现的点数为7。
2. 事件的互斥与对立:互斥事件是指两个事件不能同时发生的情况。
例如,掷骰子出现的点数为奇数和出现的点数为偶数就是互斥事件,因为在一次实验中,掷出奇数的点数和掷出偶数的点数不可能同时发生。
对立事件是指两个事件必定有一个发生,但不能同时发生的情况。
例如,掷骰子出现的点数为奇数和出现的点数为偶数就是对立事件。
三、概率的概念与性质概率是描述随机事件发生可能性大小的数值,通常用P(A)表示。
概率的取值范围在0到1之间,其中0代表不可能事件,1代表必然事件。
1. 古典概型:古典概型是指所有样本点出现的概率相等的情况。
例如,在一次掷骰子的实验中,每个点数出现的概率都是1/6。
2. 几何概型:几何概型是指样本空间是一个有限的几何图形的情况。
例如,在一个正方形平面内随机选择一个点,那么点落在正方形的某个子区域中的概率就可以通过计算子区域面积与正方形面积的比值得到。
随机事件与概率知识点总结

随机事件与概率知识点总结概率是我们日常生活中经常用到的概念,它与随机事件密切相关。
在这篇文章中,我们将总结一些关于随机事件与概率的重要知识点。
一、随机事件的定义与表示方式随机事件是指在相同的随机试验中可能发生的某个结果或某些结果的集合。
我们可以用事件的名称或符号来表示随机事件。
例如,事件A表示“掷一枚硬币正面朝上”,事件B表示“掷一枚硬币反面朝上”。
二、随机事件的分类随机事件可以分为互斥事件和非互斥事件。
1. 互斥事件互斥事件指的是两个事件不能同时发生。
例如,事件A表示“掷一枚硬币正面朝上”,事件B表示“掷一枚硬币反面朝上”。
在同一次试验中,事件A和事件B是互斥事件,因为硬币不能同时正反面朝上。
2. 非互斥事件非互斥事件指的是两个事件可以同时发生。
例如,事件C表示“掷一颗六面骰子,点数为偶数”,事件D表示“掷一颗六面骰子,点数为3”。
在同一次试验中,事件C和事件D是非互斥事件,因为骰子可能同时满足偶数和点数为3这两个条件。
三、概率的定义与性质概率是一个表示事件发生可能性的数值,通常用0到1之间的实数表示。
概率的性质包括:1. 非负性任何事件的概率都不小于0,即P(A)≥0。
2. 规范性样本空间Ω中的事件A的概率为1,即P(Ω)=1。
3. 可列可加性如果事件A1、A2、A3...两两互斥,那么这些事件的概率之和等于它们的并集的概率,即P(A1∪A2∪A3...)=P(A1)+P(A2)+P(A3)+...。
四、概率的计算方法计算概率的方法有频率法、古典概型法和几何概型法。
1. 频率法频率法是通过实验来估计事件发生的概率。
当我们进行大量试验时,事件发生的频率趋近于事件发生的概率。
例如,我们翻一枚硬币100次,正面朝上的次数为60次,那么事件“掷一枚硬币正面朝上”的概率可以估计为60/100=0.6。
2. 古典概型法古典概型法适用于样本空间有限、各个结果概率相等的情况。
例如,掷一枚骰子,点数为1、2、3、4、5、6的概率都相等,即P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1/6。
数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

B)
A.布袋中有2个红球和5个其他颜色的球
B.如果摸球次数很多,那么平均每摸7次,就有2次
摸中红球
C.摸7次,就有2次摸中红球
D.摸7次,就有5次摸不中红球
2.下列事件中是必然事件的是( D ) A.从一个装有蓝、白两色球的缸里摸出一个球,摸 出的球是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上
第二十五章 概率初步
小结与复习
复习目标
1.梳理本章的知识要点,回顾与复习本章知识. 2.巩固并能熟练运用列举法、列表法和树状图法求 概率.(重、难点) 3.能应用频率估计概率解决生活中的实际问题.
要点梳理
一、事件的分类及其概念
事件
不可能事件:必然不会发生的事件
随机事件:在一定条件下可能发生也可能不发生 的事件
考点二 概率的计算 例2 (1)一个口袋中装有3个红球,2个绿球,1 个黄球,每个球除颜色外其他都相同,搅匀后
1
随机地从中摸出一个球是绿球的概率是___3___.
(2)三张分别画有平行四边形、等边三角形、圆的 卡片,它们的背面都相同,现将它们背面朝上,
从中任取一张,卡片上所画图形恰好是中心对称 2
(2) 如果只考虑中奖因素,你将会选择去哪个超市购 物?说明理由.
(2) 选甲超市.理由如下: ∵P(甲)>P(乙), ∴选甲超市.
成活 数
47
235 369 662 1335 3203 6335 8073 12628
成活 频率
0.94
0.87 0.923 0.883 0.89 0.915 0.905 0.897 0.902
由此可以估计该种幼树移植成活的概率约为( C ) (结果保留小数点后两位)
随机事件及其概率(知识点总结)

随机事件及其概率一、随机事件1、必然事件在一定条件下,必然会发生的事件叫作必然事件.2、不可能事件在一定条件下,一定不会发生的事件叫作不可能事件.3、随机事件在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件.4、确定事件必然事件和不可能事件统称为相对于随机事件的确定事件.5、试验为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验.【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象.(3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件.二、基本事件空间1、基本事件在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件.2、基本事件空间所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件.【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏.三、频率与概率1、频数与频率在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n =为事件A 出现的频率.对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率()n f A 稳定在某个常数上,则把这个常数称为事件A 的概率,简称为A 的概率,记作()P A .3、频率与概率的关系(1)频率虽然在一定程度上可以反映事件发生的可能性的大小,但频率并不是一个完全确定的数. 随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上刻画事件发生的可能性的大小,但人们从大量的重复试验中发现:随着试验次数的无限增加,事件发生的频率会稳定在某一固定的值上,即在无限次重复试验下,频率具有某种稳定性.(2)概率是一个常数,它是频率的科学抽象. 当试验次数无限多时,所得到的频率就会近似地等于概率. 另外,概率大,并不表示事件一定会发生,只能说明事件发生的可能性大,但在一次试验中却不一定会发生.四、事件的关系与运算1、包含关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,则我们称 事件B 包含事件A (或称事件A 包含于事件B ),记作B A ⊇(或A B ⊆).2、相等关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,并且如果事件B 发生时,事件A 一定发生,即若B A ⊇且A B ⊇,则我们称事件A 与事件B 相等,记作A B =.3、并事件如果某事件发生当且仅当事件A 或事件B 发生,则我们称该事件为事件A 与事件B 的并事件(或和事件),记作A B ⋃(或A B +).如果某事件发生当且仅当事件A发生且事件B也发生,则我们称该事件为事件A 与事件B的交事件(或积事件),记作A B⋅).⋂(或A B5、互斥事件如果事件A与事件B的交事件A B⋂=∅),则我们称事⋂为不可能事件(即A B件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中都不会同时发生.6、对立事件如果事件A与事件B的交事件A B⋂=∅),而事件A与⋂为不可能事件(即A B事件B的并事件A B⋃=Ω),则我们称事件A与事件B互⋃为必然事件(即A B为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.【注】事件的关系与运算可以类比集合的关系与运算. 例如,事件A包含事件B 类比集合A包含集合B;事件A与事件B相等类比集合A与集合B相等;事件A 与事件B的并事件类比集合A与集合B的并集;事件A与事件B的交事件类比集合A与集合B的交集……五、互斥事件与对立事件互斥事件与对立事件是今后考察的重点,因此关于互斥事件与对立事件,我们很有必要再作进一步的说明.1、互斥事件与对立事件的关系互斥事件与对立事件都反映的是两个事件之间的关系. 互斥事件是不可能同时发生的两个事件,而对立事件除了要求这两个事件不同时发生以外,还要求这两个事件必须有一个发生. 因此,对立事件一定是互斥事件,而互斥事件不一定是对立事件. 例如,掷一枚骰子,事件:“出现的点数是1”与事件:“出现的点数是偶数”是互斥事件,但不是对立事件;而事件:“出现的点数是奇数”与事件:“出现的点数是偶数”既是互斥事件,也是对立事件.2、互斥事件的概率加法公式(1)两个互斥事件的概率之和如果事件A 与事件B 互斥,那么()()()P A B P A P B ⋃=+;(2)有限多个互斥事件的概率之和一般地,如果事件1A ,2A ,…,n A 两两互斥,那么事件“12n A A A ⋃⋃⋃L 发生”(指事件1A ,2A ,…,n A 中至少有一个发生)的概率等于这n 个事件分别发生的概率之和,即1212()()()()n n P A A A P A P A P A ⋃⋃⋃=+++L L .【注】上述这两个公式叫作互斥事件的概率加法公式. 在运用互斥事件的概率加法公式时,一定要首先确定各事件是否彼此互斥(如果这个条件不满足,则公式不适用),然后求出各事件分别发生的概率,再求和.3、对立事件的概率加法公式对于对立的两个事件A 与B 而言,由于在一次试验中,事件A 与事件B 不会同时发生,因此事件A 与事件B 互斥,并且A B ⋃=Ω,即事件A 或事件B 必有一个发生,所以对立事件A 与B 的并事件A B ⋃发生的概率等于事件A 发生的概率与事件B 发生的概率之和,且和为1,即()()()()1P P A B P A P B Ω=⋃=+=,或()1()P A P B =-.【注】上述这个公式为我们求事件A 的概率()P A 提供了一种方法,当我们直接求()P A 有困难时,可以转化为先求其对立事件B 的概率()P B ,再运用公式()1()P A P B =-即可求出所要求的事件A 的概率()P A .4、求复杂事件的概率的方法求复杂事件的概率通常有两种方法:一种是将所求事件转化为彼此互斥的事件的和,然后再运用互斥事件的概率加法公式进行求解;另一种是先求其对立事件的概率,然后再运用对立事件的概率加法公式进行求解. 如果采用方法一,一定要准确地将所求事件拆分成若干个两两互斥的事件,不能有重复和遗漏;如果采用方法二,一定要找准所求事件的对立事件,并准确求出对立事件的概率.六、概率的基本性质1、任何事件的概率都在01:之间,即对于任一事件A ,都有0()1P A ≤≤.2、必然事件的概率为1,不可能事件的概率为0.3、若事件A 与事件B 互斥,则()()()P A B P A P B ⋃=+.4、两个对立事件的概率之和为1,即若事件A 与事件B 对立,则()()1P A P B +=.。
人教版初中数学九年级上册教学课件 第二十五章 概率初步 随机事件与概率 随机事件

• R·九年级上册
新课导入
情景:5名同学参加演讲比赛,现要确定选手的比赛出场顺 序,为了体现比赛的公平性,决定采取临时抽签的方式决 定出场先后顺序. 签筒中有5张形状、大小相同的纸签,上 面分别标有出场的数字1,2,3,4,5.小军首先抽签,他 在看不到纸签上的数字的情况下从签筒中随机(任意)地抽取 一张纸签.
摸到黑球的可能性大些,摸到球的可能 性大小与袋子中该种球的多少有关.
•
能否通过改变袋子中某种颜色的球的数量,
使“摸出黑球”和“摸出白球”的可能性大小相
同?
试一试!
• 一般地,随机事件发生的可能性是有大 小的,不同的随机事件发生的可能性的大小 有可能相同.
你能举一些反映随机事件发生的可能性大小 的例子吗?
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
2. 桌上倒扣着背面图案相同的5张扑克牌,其中3张黑桃、
2张红桃.从中随机抽取1张.
【教材P129练习 第2题】
(1)能够事先确定抽取的扑克牌的花色吗? 不能
(2)你认为抽到哪种花色的可能性大? 抽到黑桃的可能性大.
(3)能否通过改变某种花色的扑克牌的數量,使“抽到
黑桃”和“抽到红桃”的可能性大小相同?
件.例如:抛掷一枚质地均匀的骰子,骰子停止后朝上的
点数为9是不可能事件;抛掷一枚质地均匀的骰子,骰子
停止后朝上的点数都小于7是必然事件.
课堂小结
必然事件 在一定的条件下,必然会发生的事件. 不可能事件 在一定的条件下,必然不会发生的事件.
随机事件 在一定的条件下,可能发生也可能不发生的事件.
一般地,随机事件发生的可能性是有大小的.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第25章 随机事件与概率
25.1.1 随机事件
知识点一 必然事件、不可能事件、随机事件
在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件;在一定条件下,可能发生也可能不会发生的事件称为随机事件。
必然事件和不可能事件是否会发生,是可以事先确定的,所以它
们统称为确定性事件。
知识点二 事件发生的可能性的大小
必然事件的可能性最大,不可能事件的可能性最小,随机事件发生的可能性有大有小。
不同的随机事件发生的可能性的大小有可能不同。
25.1.2 概率
知识点 概率
一般地,对于一个随机事件A ,我们把刻画其发生可能性大小的
数值,称为随机事件A 发生的概率,记作P (A )。
一般地,如果在一次试验中,有n 种可能的结果,并且它们发生
的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概
率P (A )=n m 。
由m 和n 的含义可知0≤m ≤n ,因此0≤n
m ≤1,因此 0≤P (A )≤1.
当A 为必然事件时,P (A )=1;当A 为不可能事件时,P (A )=0.
25.2 用列举法求概率
知识点一 用列举法求概率
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概
m。
率P(A)=
n
知识点二用列表发求概率
当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常用列表法。
列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法。
知识点三用树形图求概率
当一次试验要涉及3个或更多的因素时,列方形表就不方便了,为不重不漏地列出所有可能的结果,通常采用树形图。
树形图是反映事件发生的各种情况出现的次数和方式,并求出概率的方法。
(1)树形图法同样适用于各种情况出现的总次数不是很大时求概率的方法。
(2)在用列表法和树形图法求随机事件的概率时,应注意各种情况出现的可能性务必相同。
25.3 用频率估计概率
知识点
在随机事件中,一个随机事件发生与否事先无法预测,表面上看似无规律可循,但当我们做大量重复试验时,这个事件发生的频率呈现出稳定性,因此做了大量试验后,可以用一个事件发生的频率作为这个事件的概率的估计值。
m稳定于某一般地,在大量重复试验中,如果事件A发生的频率
n
一个常数P,那么事件A发生的频率P(A)=p 。
中考回顾
1.(2017新疆中考)下列事件中,是必然事件的是(B)
A.购买一张彩票,中奖
B.通常温度降到0 ℃以下,纯净的水结冰
C.明天一定是晴天
D.经过有交通信号灯的路口,遇到红灯
2.(2017四川自贡中考)下列成语描述的事件为随机事件的是(B)
A.水涨船高
B.守株待兔
C.水中捞月
D.缘木求鱼
3.(2017浙江绍兴中考)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是(B)
A. B. C. D.
4.(2017湖南岳阳中考)从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( C )
A. B. C. D.
5.(2017四川凉山州中考)指出下列事件中是随机事件的个数(C)
①投掷一枚硬币正面朝上;②明天太阳从东方升起;③五边形的内角和是560°;④购买一张彩票中奖.
A.0
B.1
C.2
D.3
6.(2017海南中考)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( D )
A. B. C. D.
7.(2017湖北宜昌中考)九(1)班在参加学校4×100 m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率
为(D)
A.1
B.
C.
D.
8.(2017内蒙古赤峰中考)小明向如图所示的正方形ABCD区
域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交
点.如果小明投掷飞镖一次,那么飞镖落在阴影部分的概率为( B )
A. B. C. D.
模拟预测
1.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语
6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为(C)
A. B. C. D.
2.从n个苹果和3个雪梨中,任选1个,若选中苹果的概率是,则n的值是( B )
A.6
B.3
C.2
D.1
3.如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时发光的概率为( B )
A. B.
C. D.
解析:观察题图可知,共有3种等可能的情况——闭合开关K1K2、闭合开关K1K3、闭合开关K2K3,其中当闭合开关K1K3时,能让两盏灯泡同时发光,所以所求的概率为,故选B.
4.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知
AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟
将随机落在这块绿化带上,则小鸟落在花圃上的概率为(B)
A. B. C. D.
5.一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数.将骰子抛掷两次,掷第一次,将朝上一面的点数记为x,掷第二次,将朝上一面的点数记为y,则点(x,y)落在直线y=-x+5上的概率为(C)
A. B. C. D.
解析:由树状图或列表可得,正方体骰子抛掷两次正面朝上的情况共有36种,而满足y=-x+5的情况有(1,4),(2,3),(3,2),(4,1)共4种,所以概率P=,故选C.
6.有三张大小、形状完全相同的卡片,卡片上分别写有数字1,2,3,从这三张卡片中随机先后不放回地抽取两张,用抽出的卡片上的数字组成两位数(先抽取的数作为十位上的数,后抽取的数作为个位上的数),这个两位数是偶数的概率是
解析:同时抽取两张,如果是1和2,可组成12和21;如果是1和3,可组成13和31;如果是2和3,可组成23和32.共6种结果,其中是偶数的有12,32两种,所以这个两位数是偶数的概率为.
7.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.
8.从-2,-1,0,1,2这5个数中,随机抽取一个数记为a,则使关于x的不等式组
有解,且使关于y的一元一次方程+1=的解为负数的概率为.
9.有3张背面相同的纸牌A,B,C,其正面分别画有三个不同的几何图形(如图).将这3张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.
(1)求出两次摸牌的所有等可能结果(用树状图或列表法求解,纸牌可用A,B,C表示);
(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
画树状图得:
∴一共有9种情况:(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C).
(2)B与C是中心对称图形,
∴摸出两张牌面图形都是中心对称图形的纸牌有4种;
∴摸出两张牌面图形都是中心对称图形的纸牌的概率是。