CNT增强环氧树脂
碳纤维增强环氧树脂预浸料及其复合材料的制备与性能研究

碳纤维增强环氧树脂预浸料及其复合材料的制备与性能研究碳纤维增强环氧树脂预浸料是碳纤维增强环氧树脂复合材料的中间产物,其性能的好坏直接影响复合材料的性能好坏,因此,在预浸料生产过程中,对树脂基体配方、预浸料的加工工艺的研究至关重要。
本文以固、液环氧树脂的复配体系为树脂基体,选择了液体环氧树脂E-51、固体环氧树脂CYD-011和固化剂4,4’-二氨基二苯基砜(DDS,[(NH2)]C6H4]2SO2)作为树脂基体组分,研究了碳纤维增强环氧树脂预浸料的制备及其复合材料的性能。
根据热熔膜法制备预浸料的要求,通过对树脂基体配方研究得知,当E-51环氧树脂:CYD-011环氧树脂:DDS=50:50:22.58时能得到具有一定强度和韧性,可弯曲而不断裂的树脂胶膜。
并经过对碳纤维增强环氧树脂复合材料的制备工艺研究,含胶量为40%较为合适,固化制度为140℃/2h+160℃/2h+180℃/2h、压力为0.4~0.6MPa、加压点为140℃/1h时复合材料力学性能为最优,复合材料的0°弯曲强度为1478MPa,层间剪切强度为82MPa。
在文中,还采用等温DSC法研究了环氧树脂与4,4’-二氨基二苯基砜体系的固化反应过程,研究发现固化反应中出现“转折点”,当固化度小于50%时属于Kamal自催化模型;当固化度大于50%时属于n级固化模型,即固化反应由Kamal 自催化反应向n级反应转变。
转变后,反应活化能有所下降。
碳纳米管-连续碳纤维增强环氧树脂复合材料的力学性能研究

碳纳米管/连续碳纤维增强环氧树脂复合材料的力学性能研究赵东林乔仁海沈曾民(北京化工大学可控化学反应科学与技术基础教育部重点实验室,碳纤维及复合材料研究所北京 100029)摘要:用竖式炉流动法,以二茂铁为催化剂,硫为助催化剂,苯为碳源制备了碳纳米管。
用T300连续碳纤维和多壁碳纳米管为增强体,环氧树脂为基体,制备了单向碳纤维与碳纳米管增强的树脂基复合材料,并研究了复合材料的力学性能,碳纤维的体积分数为60%。
基体中碳纳米管含量为0时,复合材料的断裂强度为1430Mpa,模量为118GPa;基体中碳纳米管含量为1wt%时,复合材料的断裂强度为1450MPa,模量为166GPa;基体中碳纳米管含量为3wt%时,复合材料的断裂强度为1780MPa,模量为164GPa;基体中碳纳米管含量为5wt%时,复合材料的断裂强度为1120MPa,模量为126GPa。
基体中碳纳米管含量为3wt%时,复合材料的力学性能最好。
关键词:碳纳米管,连续碳纤维,复合材料1 引言自1991年Iijima发现碳纳米管以来[1],碳纳米管引起人们的广泛关注,成为化学、物理和材料等科学领域的研究热点。
制备碳纳米管的方法主要有石墨电弧法(又称直流电弧法)、催化裂解法、激光蒸发石墨棒法、热解聚合物法、火焰法、离子(电子束)辐射法、电解法、模型碳化等[2-9],其中以Fe、Co、Ni等金属为催化剂,催化裂解碳氢化合物制备碳纳米管的方法,使碳纳米管的工业化生产成为可能。
碳纳米管多种多样的形状和结构,使其具有许多潜在的应用价值,如用于材料的增强、一维量子导线、半导体材料、催化剂载体、分子吸收剂、隧道扫描和原子力显微镜的探头等。
碳纳米管具有管径小、长径比大的特点,直径在几十纳米以内,管的轴向长度为微米至厘米量级,是目前最细的纤维材料,这种独特的结构使碳纳米管具有优异的力学性能和独特的电学性能。
实验表明,单根多层碳纳米管杨氏模量平均为1.8 TPa,弯曲强度达14.2GPa[10]。
碳纳米管及碳纤维增强环氧树脂复合材料研究进展_邱军

收稿:2011-04-25;修回:2011-07-18;基金项目:国家高技术研究发展计划(863计划)项目(2009A A03Z528);作者简介:邱军,男,工学博士,教授,博士研究生导师,研究方向为高性能聚合物基复合材料;E -mail :qiujun @tong ji .edu .cn .碳纳米管及碳纤维增强环氧树脂复合材料研究进展邱 军,陈典兵(同济大学材料科学与工程学院,先进土木工程材料教育部重点实验室,上海 201804) 摘要:碳纳米管与碳纤维具有优异的力学、电学等性能,广泛用做复合材料增强体,但目前碳纳米管/碳纤维/环氧树脂复合材料的研究具有一定的局限性,只考虑了两相材料间的作用,即仅对单一相进行处理而忽略了另一相的改性。
本文从碳纳米管/碳纤维协同增强环氧树脂基体复合材料的思路入手,结合自己的研究成果,综述了国内外相关研究进展。
从研究结果可以看出,将三相材料之间完全有效地联系起来,发挥三者间的协同效应,复合材料的性能可以发生质的飞跃。
关键词:碳纳米管;碳纤维;环氧树脂;三相复合材料引言日本科学家Iijim a [1]在1991年首次发现碳纳米管(CN Ts )。
碳纳米管具有着优异的力学、电性能和热性能,抗拉强度达到200GPa ,弹性模量可达1TPa ,并且具有低密度、高长径比等结构特点,因此成为聚合物复合材料的理想增强材料。
碳纤维(CF )具有十分优异的力学性能,同时耐高温、耐腐蚀、耐摩擦、抗疲劳、低热膨胀系数、导电导性、电磁屏蔽性优良等。
碳纤维复合材料同样具有其它复合材料无法比拟的优良性能,广泛应用于航空航天、汽车、电子电气等领域[2]。
环氧树脂(EP )是一种高性能复合材料基体,具有优良的机械性能、绝缘性能、耐腐蚀性能、黏接性能和低收缩性能。
当前以环氧树脂为基体的高性能复合材料应用广泛,碳纳米管/环氧树脂复合材料和碳纤维/环氧树脂复合材料凸显了优异的力学和综合性能,那么如何再进一步提高这两类复合材料的性能呢?本文在简要综述碳纳米管和碳纤维对环氧树脂复合材料性能改善的前提下,进一步综述了碳纳米管/碳纤维/环氧树脂三相复合材料的研究进展,并对其可能的发展进行了预测。
二氧化硅纳米颗粒对碳纤维与环氧树脂基体粘合强度的增强

第22卷第324期2007年8月实 验 力 学J OU RNAL OF EXPERIM EN TAL M ECHANICSVol.22No.324Aug.2007文章编号:100124888(2007)03&0420359208二氧化硅纳米颗粒对碳纤维与环氧树脂基体粘合强度的增强3蒋震宇1,张 晖2,刘 生2,张 忠2(1.Institute for Composite Materials,University of Kaiserslautern,Erwin2Schroedinger Str.58,67663Kaiserslautern,Germany;2.国家纳米中心,北京100080,中国)摘要:纤维与基体的粘合强度是决定纤维增强高分子复合材料性能的关键因素。
本文采用横向纤维束拉伸实验的方法研究了碳纤维与经过纳米颗粒改性的环氧树脂基体间的粘合强度。
平均直径为25纳米的二氧化硅纳米颗粒用特殊的溶胶-凝胶法引入环氧基体(由Hanse ChemieA G提供),可以达到很高的含量,同时保持较为理想的分散状态。
实验结果表明,二氧化硅纳米颗粒对于碳纤维与改性环氧基体的粘合强度有显著的增强效应。
当纳米颗粒含量为14vol.%时,横向纤维束拉伸的断裂强度相比纯环氧基体提高了104%。
通过对横向纤维束拉伸样品断裂面的扫描电镜观察,以及二氧化硅纳米颗粒改性环氧树脂基体材料的力学性质的测量,可以发现横向纤维束拉伸的断裂强度与改性环氧基体本身的断裂韧性之间存在良好的相关性。
由此可推测纳米颗粒对环氧树脂基体材料的增韧是碳纤维与基体间界面增强的一个重要原因。
关键词:高分子复合材料;碳纤维;粘合强度;纳米颗粒;断裂韧性中图分类号:TQ323;TB383 文献标识码:A0 引言碳纤维增强高分子复合材料结合了碳纤维密度小(1.70~1.80g/cm3)、强度高(1200~7000 M Pa)、模量高(200~400GPa)和高分子材料的易于加工、可回收利用以及良好的耐腐蚀性等优点,作为结构材料在航空、航天、汽车、建筑和体育运动器材等高性能产品中得到广泛的应用。
碳纤维增强环氧树脂的制备及性能

碳纤维增强环氧树脂的制备及性能2)把握环氧值的测定办法。
3)把握碳纤维增加环氧树脂的制备办法及性能测试办法。
4)把握环氧树脂固化时固化剂用量的计算。
2.试验原理环氧树脂是分子中含有环氧基团的树脂的总称。
在环氧树脂中,环氧基普通在分子链的末端,分子主链上还含有醚键、仲经基等。
醚键和仲经基为极性基团,可与多种表面之间形成较强的互相作用,而环氧基则可与介质表面的活性基,特殊是无机材料或金属材料表面的活性基起反应形成化学键,产生强力的豁结,因此环氧树脂具有独特的戮附力,配制的胶粘剂对多种材料具有良好的粘接性能,而且耐腐蚀、耐溶剂、抗冲性能和电性能良好,广泛应用于金属防腐蚀涂料、建造工程中的防水堵漏材料、灌缝材料、胶粘剂、复合材料等工业领域。
工业上考虑到原料来源和产品价格等因素,最广泛应用的是由环氧氯丙烷和双酚A 缩聚而成的双酚A型环氧树脂。
其反应机理普通认为是逐步聚合反应,是在碱(氢氧化钠)存在下不断举行开环和闭环的反应,总反应方程式如下:反应方程式中,n-般在0-12之间,分子量相当于340-3800,n=0时为淡黄色黏滞液体,n≥2时则为固体。
n值的大小由原料配比(环氧氯丙烷和双酚A的摩尔比)、温度条件、氢氧化钠的浓度和加料次序来控制。
为使产物分子链两端都带环氧基,必需用法过量的环氧氯丙烷。
树脂中环氧基的含量是反应控制和树脂应用的重要参考指标,按照环氧基的含量可计算产物分子量,环氧基含量也是计算固化剂用量的依据。
环氧基含量可用环氧值或环氧基的百分含量来描述。
环氧基的百分含量是指每l00g树脂中所含环氧基的质量。
而环氧值是指每100g环氧树脂中所含环氧基的物质的量。
环氧值采纳滴定的办法来获得。
环氧树脂的分子量越高,环氧值就越低。
分子量小于1500的环氧树脂,其环氧值可用盐酸一丙酮法测定,高分子量的可用盐酸一毗陡法测定。
环氧栩旨用法时必需加人固化剂,并在一定条件下举行固化反应,生成立体网状结构的产物,才会显现出各种优良的性能,成为具有真正用法价值的环氧材料。
增强环氧树脂与碳纤维界面结合的助剂

增强环氧树脂与碳纤维界面结合的助剂
增强环氧树脂与碳纤维界面结合的助剂包括以下几种:
1. 偶联剂:偶联剂能够在环氧树脂和碳纤维之间形成化学键,提高两者的界面结合强度。
常用的偶联剂有硅烷类、酚醛类和环氧类等。
2. 表面处理剂:表面处理剂能够改善碳纤维表面的亲水性,使其与环氧树脂更好地相容。
常用的表面处理剂有硝化酚、溴化物和氧化剂等。
3. 助流剂:助流剂能够在环氧树脂和碳纤维的交界面上形成润滑膜,减小应力集中,提高界面结合强度。
常用的助流剂有硼酸酯、硅酮等。
4. 粘接剂:粘接剂能够填充环氧树脂和碳纤维之间的微观缺陷,提高它们的接触面积和力学性能。
常用的粘接剂有聚酰胺树脂、聚酯树脂和环氧树脂等。
5. 化学增容剂:化学增容剂能够在碳纤维表面形成微观结构,提高环氧树脂的湿润性和生长性,增强它们的结合力。
常用的化学增容剂有氰酸酯、碳酸酯和异氰酸酯等。
需要根据具体的应用需求选择适合的增强界面结合的助剂,同时要考虑其对环境和健康的影响。
碳纳米管增强环氧树脂涂层的制备及其微波特性

P51.7
多样的形状和结构,使其具有许多潜在的7jj刑价值,如用t-材料的增强、 维鼙-子导 线、、仁导体材料、催化剂载体、分了吸收剂、隧道扫描和原严力显微镜的探头等。碳 纳米管只有符径小、K径比大的特点,良径为儿I‘纳米以内,管的轴向长度为微米至 厚米量级,足日1讶最细的纤维材料,这种独特的结构使碳纳米管具有优异的力学性能 和独特的电学性能,实验表Ⅲj,甲根多层碳纳米管杨氏模量·{J.均为1 8TPa,弯曲强度 达14 2 GPa,由J碳纳米管是具有中空结构的 维利料,利用碳纳米管的毛细现象可 以将荩牝几象填入碳纳米镑内部,制成具有特殊性能的维量子线…”1。总之,碳纳米 管的制备和应用tZ经进行了怍常多的研究J.作,nI Cj+天碳纳米管增强环氧树脂涂层的 制牾及其微波特性的研究却|卜常少。
3结果和讨论
图1为制备的碳纳米管透射电镜照片,碳纳水管的外径为30~80纳米,内径10。50 纳米,氏度50—10009m。图2为碳纳米管增强环氧树脂涂层的扫描电镜照片,町以看 …,碳纳米管均匀分别于环氧树脂涂料中。
微波与凝聚态物质之间的作用可以用复介电常数£s(£*=£7一i£”,£’为复介电常数的 实部,£,,为虚部)和复电导率o。柬描述,复电导率的实部6’((I))与复介电常数虚部£”f(1)) 之问的关系为o’(0))=0)£,,r∞),∞为电磁波的角频率m’5I。
ctbn增韧环氧树脂的原理

ctbn增韧环氧树脂的原理增韧环氧树脂是一种常用的增强复合材料,它可以增加材料的韧性和抗冲击性能。
本文将介绍增韧环氧树脂的原理及其应用。
一、增韧环氧树脂的原理增韧环氧树脂是通过向环氧树脂中添加增韧剂来改善其性能的。
增韧剂通常是一种高分子化合物,它具有良好的韧性和延展性。
当增韧剂与环氧树脂混合时,可以形成一种均匀分散的体系。
增韧剂的存在可以有效阻止裂纹的扩展,从而提高材料的韧性。
增韧剂的主要作用是吸收和分散应力,阻止裂纹的扩展。
当材料受到外部冲击或载荷时,裂纹容易在材料中形成并扩展。
而增韧剂的存在可以吸收应力并分散到整个材料中,从而阻止裂纹的扩展。
这种分散应力的能力取决于增韧剂的性能,如韧性、弹性和粘性。
增韧环氧树脂的另一个重要特点是其与纤维增强材料的结合能力。
纤维增强材料通常用于提高材料的强度和刚度。
当纤维增强材料与增韧环氧树脂结合时,可以形成一种复合材料,具有优异的力学性能和韧性。
二、增韧环氧树脂的应用增韧环氧树脂在航空航天、汽车和船舶等领域得到广泛应用。
其主要应用包括:1. 航空航天领域:增韧环氧树脂可以用于制造飞机的结构件,如机翼、尾翼和机身。
这些结构件需要具有良好的强度和刚度,同时还需要能够抵抗外部冲击和振动。
增韧环氧树脂可以满足这些要求,并提高飞机的飞行安全性。
2. 汽车领域:增韧环氧树脂可以用于汽车的车身和底盘部件。
这些部件需要具有良好的抗冲击性和韧性,以保护车辆及乘员的安全。
增韧环氧树脂可以提高车身的刚性,并降低车辆发生事故时的碰撞力。
3. 船舶领域:增韧环氧树脂可以用于制造船体结构,如船体板和船体框架。
船舶在大海中面临着波浪和风浪的冲击,需要具有良好的抗冲击性和韧性。
增韧环氧树脂可以提高船体的强度和耐用性,降低船舶发生事故时的损坏程度。
总结:增韧环氧树脂通过添加增韧剂来改善其性能,提高材料的韧性和抗冲击性能。
增韧剂的存在可以吸收和分散应力,阻止裂纹的扩展。
增韧环氧树脂在航空航天、汽车和船舶等领域得到广泛应用,可以提高结构件的强度和刚度,同时提高整体的安全性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Study on tribological properties of multi -walled carbonnanotubes/epoxy resin nanocompositesB.Dong,Z.Yang,Y.Huang and H.-L.Li*College of Chemistry and Chemical Engineering,Lanzhou University,Lanzhou 730000,PR ChinaReceived 16September 2005;accepted 19September 2005Multi-walled carbon nanotubes/epoxy resin (MWNTs/EP)nanocomposites with different MWNTs contents have been prepared successfully.The influence of MWNTs on the friction and wear behaviors of the nanocomposites was investigated by a friction and wear tester under dry-sliding contact conditions.The relative humidity of the air was about 50±10%.Contrast to pure EP,MWNTs/EP nanocomposites showed not only higher wear resistance but also smaller friction coefficient.MWNTs could dramatically reduce the friction and improve the wear resistance behaviors of the nanocomposites.The mechanisms of the significant improvements on the tribological properties of the MWNTs/EP nanocomposites were also discussed.KEY WORDS:epoxy resin,multi-walled carbon nanotubes,nanocomposites,tribological properties1.IntroductionEpoxy resin is well established as thermosetting matrices of advanced composites,displaying a series of interesting characteristics,which can be adjusted within broad boundaries [1–5].They are used as highgrade synthetic resins,for example,in the electronics,aero-nautics,and astronautics industries.Now EP is widely used in architecture,automotive,air and railway trans-port systems for tribological applications.However,the most difficulty in the tribological applications is rela-tively poorer wear resistance for EP.Along with the extensive applications of EP for tribological purposes,the understanding the tribology of EP is becoming increasingly important.There have been several studies on the mechanical properties of CNTs/EP nanocom-posites [6–8].In terms of mechanical properties,CNTs are quite stiffand exceptionally strong,meaning that they have a high Young’s modulus and high tensile strength.Measured Young’s moduli of MWNTs are as high as 1.8TPa and bending strengths as high as 14.2GPa [9,10].These articles have stated that the mechanical behaviors of CNTs/EP were significantly increased by the incorporation of CNTs.Due to the effects of the reinforcement,CNTs can be used to fab-ricate the nanocomposites with excellent tribological properties.The tribological behaviors of many CNTs-based nanocomposites [11–17]have been investigated.It was found that CNTs-based nanocomposites exhibited lower friction coefficient and wear rate compared withthe pure substrates matrix,which resulted in the improvements on reduced friction and wear resistance.Because MWNTs have superior mechanical proper-ties and a high aspect ratio,they are potential excellent reinforcing agent.So MWNTs/EP nanocomposites would be expected to significantly improve the tribo-logical properties of EP-based nanocomposites.How-ever,few reports have been available on the tribological behaviors of MWNTs/EP nanocomposites.Considering the above factors,MWNTs/EP nano-composites with excellent tribological properties have been proposed and studied.To the best of our knowl-edge,this paper firstly deals with the tribological behavior of MWNTs/EP nanocomposites.In this paper,MWNTs/EP nanocomposites were prepared success-fully.The influence of MWNTs reinforcing on the tri-bological properties of the nanocomposites were investigated.The improved friction and wear mecha-nisms of the nanocomposites in dry sliding against a plain carbon steel counterpart were also discussed.2.ExperimentalThe MWNTs used in this work were synthesized by a catalytic chemical vapor deposition (CVD)method [18].After subsequent purification treatment,the as-synthe-sized MWNTs were characterized by a transmission electron microscope (TEM,JEM-1200EX,Japan).EP and MWNTs were thoroughly mixed in acetone by ultrasonic and mechanical stirring.After the acetone had evaporated,30Â7Â6mm block specimens were prepared by compression molding at a pressure of*To whom correspondence should be addressed.E-mail:lihl@1023-8883/05/1200–0251/0Ó2005Springer Science +Business Media,Inc.Tribology Letters,Vol.20,Nos.3–4,December 2005(Ó2005)251DOI:10.1007/s11249-005-8637-850MPa.Then the specimens were sintered at403K, held for3h,and cooled to ambient temperature.The weight content of MWNTs in the nanocomposites ranged from0to4.0wt.%.Finally the resultant speci-mens were prepared for friction and wear tests.The structure of MWNTs/EP nanocomposites was charac-terized byfield emission scanning electron microscopy (FE-SEM JSM-6335F-NT).The microhardness measurements of specimens were performed using a microhardness indenter(VDMH-5 Version2.01,China).A load of10gf with a loading time of5s was used.Each specimen was measuredfive times,respectively.The average result of measurements was taken as the reported hardness value in this paper.The friction and wear tests for evaluation of the tri-bological properties of MWNTs/EP nanocomposites were conducted on an M-2000model friction and wear tester under dry-sliding contact conditions.The plain carbon steel ring(hardness of HRC48–50)in a diameter of40mm was used as the counterpart.Sliding was performed at sliding velocity of0.431m/s,normal load of50N,and test duration of1h.The ambient tem-perature was roughly25°C and the relative humidity was about50±10%.Before each test,the surfaces of the block specimen and the counterpart ring were abraded with No.900water-abrasive paper.Then the steel ring and the block specimen were cleaned with acetone.The resultant surface roughness of both the specimen and the stainless steel ring ranged from0.2to0.52l m.The friction coefficient of each specimen was calculated by taking into account the normal load applied and the friction force measured.The friction coefficient was re-corded under steady-state conditions by a personal computer,which controlled the friction and wear tester. At the end of each test,the width of the wear scar on the block specimen was measured with a digital optical microscope with an accuracy of0.01mm,and then the wear rate(x)of the block specimen was calculated.The average result of the three replicate tests was reported in this paper.The deviation of the data of the replicate friction and wear test was10%.3.Results and discussionFigure1shows TEM image of MWNTs.After being purified well,MWNTs are central hollow tubes and have large aspect ratio.The outer diameters of most MWNTs range from10to20nm,and their lengths are several micrometers.Figure2shows FE-SEM image of fractured surface of the MWNTs/EP nanocomposites.The image showed that MWNTs dispersed well in the EP matrix and con-tacted with EP closely.Figure3gives the microhardness of the MWNTs/EP nanocomposites as a function of MWNTs content.The microhardness of the nanocomposites increases sharply when the MWNTs content is below1.5wt.%.The mi-crohardness values decrease slightly when the MWNTs content is above 1.5wt.%.It is attributed to the conglomeration of MWNTs in thenanocomposites Figure1.Typical TEM image ofMWNTs.Figure2.Typical FE-SEM image ofMWNTs/EP.Figure3.Variation of the microhardness of MWNTs/EP nanocom-posites with MWNTs content.252 B.Dong et al./Multi-walled carbon nanotubes/epoxy resin nanocompositesmatrix.It is thus inferred that the incorporation of MWNTs as a reinforcing agent helps to increase the load-carrying capacity and mechanical properties of EP.Figure4shows the friction coefficient of MWNTs/EP nanocomposites as a function of MWNTs content for steady-state sliding against the stainless steel ring under dry-sliding contact conditions.It is apparent that the friction coefficient of MWNTs/EP nanocomposites de-creases with increasing MWNTs content.The friction coefficient values of nanocomposites sharply decrease when MWNTs content is below1.5wt.%.As the con-tent of MWNTs in nanocomposites is higher,the fric-tion coefficient becomes lower and keeps a relatively stable value.Figure5indicates the effects of MWNTs content on wear rate of MWNTs/EP nanocomposites.It can be clearly seen that the incorporation of MWNTs signifi-cantly decreases the wear rate of EP.The wear rate of MWNTs/EP nanocomposites decreases sharply from 2.7Â10)5to6.0Â10)6mm3N)1m)1with the concen-tration of MWNTs from0to1.5wt.%.It is found that 1.5wt.%MWNTs/EP nanocomposites exhibit the smallest wear rate.When the content of MWNTs in the nanocomposites exceeds 1.5wt.%,the wear rate of MWNTs/EP nanocomposites increases slightly with increasing MWNTs content.Similar results were also observed on the microhardness of the nanocomposites.The morphologies of the worn surfaces of the nano-composites blocks were observed using scanning elec-tron microscope(SEM,JSM-5600LV).The SEM images of the worn surfaces of EP and1.5wt.%MWNTs/EP nanocomposites are shown infigure6(a)and(b), respectively.The worn surface of pure EP shows signs of adhesion and abrasive wear(figure6(a)).The corre-sponding surface is very rough,displaying plucked and ploughed marks indicative of adhesive wear and ploughing.This phenomenon corresponds to the rela-tively poorer wear resistance of the pure EP in sliding against the steel.It can be seen that more obvious ploughed furrows appear on the worn surface of the EP block specimen.By contrast,the scuffing and adhesion on the worn surface of1.5wt.%MWNTs/EP nano-composites is considerably reduced(figure6(b)).The relatively smooth,uniform,and compact worn surfaceis Figure4.The friction coefficients of MWNTs/EP nanocomposites asa function of MWNTscontent.Figure5.Effects of MWNTs content on wear rate of MWNTs/EPnanocomposites.Figure6.SEM images of the typical worn surfaces of EP(a)andMWNTs/EP nanocomposites(b).B.Dong et al./Multi-walled carbon nanotubes/epoxy resin nanocomposites253in good agreement with the considerably increased wear resistance of the MWNTs/EP nanocomposites.There-fore,it can be deduced that the incorporation of MWNTs contributes to restrain the scuffing and adhe-sion of the EP matrix in sliding against the steel counter face.As a result,the MWNTs/EP nanocomposites show much better wear resistance than the pure EP.According to some reports[14–17],the prominent friction and wear mechanisms of MWNTs/EP nano-composites in dry sliding against a plain carbon steel counterpart may be attributed to the following two factors:firstly,the incorporation of MWNTs in EP helps to considerably increase the mechanical properties of the nanocomposites,hence the MWNTs/EP nano-composites show much better wear resistance than pure EP.Secondly,during the course of friction and wear, MWNTs dispersed uniformly in the MWNTs/EP nanocomposites may be released from the nanocom-posites and transferred to the interface between the nanocomposites and the steel counter face.Thus MWNTs may serve as spacers preventing the close touch between the steel counter face and the nanocom-posites block,which slows the wear rate and reduces the friction coefficient.What’s more,the self-lubricate properties of MWNTs also result in reduction of the wear rate and the friction coefficient.In order to make the mechanism of the tribological performance of MWNTs/EP nanocomposites more clear,further work will be done in our future study.4.ConclusionHerein MWNTs/EP nanocomposites with different contents of MWNTs were prepared successfully.The friction and wear behaviors were investigated using a friction and wear tester under dry-sliding contact condi-tions.The relative humidity of the air was about 50±10%.It was found that MWNTs significantly in-creased the wear resistance of the nanocomposites and decreased their friction coefficient.It could be seen that MWNTs/EP nanocomposites with1.5wt.%MWNTs exhibited both the smallest wear rate and the lower fric-tion coefficient.The significant improvements on the tri-bological properties of MWNTs/EP nanocomposites were attributed to the excellent mechanical properties and unmatched topological tubular structure of MWNTs. During the course of wear and friction,MWNTs which were dispersed uniformly in the nanocomposites could serve as medium,preventing the close touch of the two surfaces between the applied loading and the nanocom-posites.In conclusion,the significant improvements of tribological mechanisms of the MWNTs/EP nano-composites are attributed to the strengthening and self-lubricating functions of MWNTs. AcknowledgmentsThis work was supported by the National Natural Science Foundation of China(NNSFC,No.60471014). References[1]J.Sandler,M.S.P.Shaffer,T.Prasse,W.Bauhofer,K.Schutleand A.H.Windle,Polymer40(1999)5967.[2]L.S.Schadler,S.C.Giannaris and P.M.Ajayan,Appl.Phys.Lett.73(1998)3842.[3]C.A.Cooper,R.J.Young and M.Halsall,Composite Part A32(2000)401.[4]B.A.Rosenberg,Adv.Polym.Sci.75(1986)113.[5]D.Puglia,L.Valentini and J.M.Kenny,J.Appl.Polym.Sci.88(2003)452.[6]X.J.Xu,M.M.Thwe,C.Shearwood and K.Liao,Appl.Phys.Lett.81(2002)2833.[7]Y.Breton,G.De sarmot,J.P.Salvetat,S.Delpeux,C.Sinturel,F.Be guin and S.Bonnamy,Carbon42(2004)1027.[8]A.Allaoui,S.Bai,H.M.Cheng and J.B.Bai,Comp.Sci.Technol.62(2002)1993.[9]E.W.Wong and P.E.Sheehan,Science277(1997)1971.[10]M.M.J.Treacy,T.W.Ebbesen and J.M.Gibson,Nature381(1996)678.[11]J.P.Tu,Y.Z.Yang,L.Y.Wang,X.C.Ma and X.B.Zhang,Tri-bol.Lett.10(2001)225.[12]D.S.Lim,J.W.An and H.J.Lee,Wear252(2002)512.[13]Z.Yang,H.Xu,M.K.Li,Y.L.Shi,Y.Huang and H.L.Li,ThinSolid Films466(2004)86.[14]W.X.Chen,J.P.Tu,L.Y.Wang,H.Y.Gan,Z.D.Xu andX.B.Zhang,Carbon41(2003)215.[15]H.Cai,F.Y.Yuan and Q.J.Xue,Mater.Sci.Eng.A364(2004)94.[16]W.X.Chen,F.Li,G.Han,J.B.Xia,L.Y.Wang,J.P.Tu andZ.D.Xu,Tribol.Lett.15(2003)275.[17]W.X.Chen,J.P.Tu,Z.D.Xu,W.L.Chen,X.B.Zhang andD.H.Cheng,Mater.Lett.57(2003)1256.[18]M.Lu,Z.Wang,H.L.Li,X.Y.Guo and u,Carbon42(2004)1846.254 B.Dong et al./Multi-walled carbon nanotubes/epoxy resin nanocomposites。