浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第三章概率论习题_奇数
概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]
![概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]](https://img.taocdn.com/s3/m/2be46d428e9951e79b8927ce.png)
概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案概率论与数理统计第三章课后习题答案习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:(2)随机变量(X ,Y )的分布函数;(3)P {0≤X <1,0≤Y <2}.【解】(1)由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===??得 A =12(2)由定义,有(,)(,)d d yx F x y f u v u v -∞-∞=??(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--??-->>?==?? 其他(3){01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e)0.9499.x y P X Y x y -+--=<≤<≤==--≈?5.设随机变量(X ,Y )的概率密度为f (x ,y )=<<<<--.,0,42,20),6(其他y x y x k(1)确定常数k ;(2)求P {X <1,Y <3};(3)求P {X <1.5};(4)求P {X +Y ≤4}. 【解】(1)由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==??故18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=??130213(6)d d 88k x y y x =--=?? (3)11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y<<=如图 1.542127d (6)d .832x x y y =--=?(4)24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y+≤+≤=如图b 240212d (6)d .83xx x y y -=--=??题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2)P {Y ≤X }.题6图【解】(1)因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ?<而55e ,0,()0,.y Y y f y -?>=?其他所以(,),()()XY f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --<<>?==??且其他.5()(,)d d 25e d d y y xDP Y X f x y x y x y-≤≤=如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xy x x y x-==-+≈7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度. 【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+?>>?==?其他.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )=4.8(2),01,0,0,.y x x y x -≤≤≤≤??求边缘概率密度.【解】()(,)d X fx f x y y+∞-∞=?x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ??--≤≤?=??其他()(,)d Y f y f x y x+∞-∞=?12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ?-?-+≤≤?=??其他题8图题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=<<-.,0,0,其他e y x y求边缘概率密度.【解】()(,)d Xf x f x y y +∞-∞=?e d e ,0,=0,.0,y x x y x +∞--??>?=??其他()(,)d Y f y f x y x+∞-∞=?0e d e ,0,=0,.0,yy x x y y --??>?=??其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=≤≤.,0,1,22其他y x y cx(1)试确定常数c ;(2)求边缘概率密度. 【解】(1) (,)d d (,)d d Df x y x y f x y xy+∞+∞-∞-∞如图2112-14=d d 1.21xx cx y y c ==??得214c =.(2)()(,)d X f x f x y y+∞-∞=?212422121(1),11,d 840,0,.x x x x x y y ??--≤≤??==其他()(,)d Y f y f x y x+∞-∞=?522217d ,01,420,0,.y y x y x y y -??≤≤??==其他11.设随机变量(X ,Y )的概率密度为f (x ,y )=?<<<.,0,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d Xf x f x y y +∞-∞=?1d 2,01,0,.x x y x x -?=<111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞=+-<<??其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ?<其他, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y<<?-?==-<<?+其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1)求X 与Y 的联合概率分布;(2) X 与Y 是否相互独立?【解】(1) X 与Y 的联合分布律如下表1 3511C 10=3522C 10= 3533C 10= 610 2 0 3511C 10=3522C 10= 310 30 02511C 10=110{}i P Y y =110310(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===?=≠===g 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03 (1)求关于X 和关于Y 的边缘分布;(2) X 与Y 是否相互独立?【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i } 0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38(2) 因{2}{0.4}0.20.8P X P Y ===?g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.XYX Y14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率. 【解】(1)因1,01,()0,Xx fx <21e ,1,()20,yY y f y -?>?==其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -?<<>?=g 独立其他题14图(2) 方程220aXa Y ++=有实根的条件是 2(2)40X Y ?=-≥故X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=??21/2001d e d 212[(1)(0)]0.1445.x yx yπ-==-Φ-Φ=??15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}ZXF z P Z z P z Y =≤=≤(1) 当z ≤0时,()0ZF z =(2)当0<="" p="">)(如图a) 3366102222101010()d d d d yz Z zxy zF z x y y x x y x y +∞≥==??33610231010=d 2z zy yzy +∞-=题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y xx y x y +∞≥==??336231010101=d 12y yzy z +∞-=-即11,1,2(),01,20,.Z z z zf z z ?-≥=<<??其他故21,1,21(),01,20,.Z z z f z z ?≥=<<??其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率. 【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<="" p="">44144180160[1{180}]120[1(1)](0.158)0.00063.P X ?-=-<=-Φ=-Φ==17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,…. 证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是{}{,},ik P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .0{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki k i n i k i n k ii kk n ki k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-= ? ?-= ???-??= ???∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn,Y =μ1′+μ2′+…+μn ′,X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.19.设随机变量(X ,Y )的分布律为(1) 求P {X =2|Y =2},P {Y =3|X =0};(2)求V =max (X ,Y )的分布律;(3)求U =min (X ,Y )的分布律;(4)求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑{3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑(2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤= 10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑0,1,2,3,4,5i =所以V 的分布律为(3){}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k i k i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是 (4)类似上述过程,有26 3 9 4 9 2 520.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1)求P {Y >0|Y >X };(2)设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R+≤?=其他(1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=> 0(,)d (,)d y y xy xf x y f x y σσ>>>=π2π/405π42π/401d d π1d d πRR r r R r r R θθ=??3/83;1/24==(2){0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=??21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===?(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x≤≤<≤?=其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x=≤≤?=其他所以1(2).4Xf=22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和Y 的边缘分布律中的部分数值.试将其余。
浙大版概率论与数理统计答案---第三章

浙⼤版概率论与数理统计答案---第三章第三章多维随机变量及其概率分布注意:这是第⼀稿(存在⼀些错误)1、解互换球后,红球的总数是不变的,即有6X Y +=,X 的可能取值有:2,3,4,Y 的取值为:2,3,4。
则(,)X Y 的联合分布律为:(2,2)(2,3)(3,2)(3,4)(4,3)(4,4)0P X Y P X Y P X Y P X Y P X Y P X Y ==================236(2,4)(4,2)5525P X Y P X Y ======?=223313(3,3)555525P X Y ===+=由于6X Y +=,计算X 的边际分布律为:6(2)(2,4)25P X P X Y ===== 13(3)(3,3)25P X P X Y ===== 6(4)(4,2)25P X P X Y =====2解:0.51a b ++= ()1 {}{}{}00,00,10.4P X P X Y P X Y a ====+===+ {}{}{}10,11,0p X Y P X Y P X Y a b +====+===+因事件{}0X =与事件{}1X Y +=相互独⽴,则 {}{}{}0,101P X X Y P X P X Y =+===?+=,即()()0.4a a a b =++ ()2由()1,()2解得0.40.1a b =??=?。
3、解利⽤分布律的性质,由题意,得 0.10.10.10.11a b c ++++++= (0,2)(0,1)0.1{0|2)0.5(2)(1)0.1P Y X P Y X a P Y X P X P X a b≤<≤=+≤<====<=++{1}0.5P Y b c ==+=计算可得:0.2a c ==0.3b = 于是X 的边际分布律为:(1)0.10.6P X a b ==++=(2)0.10.10.20.4P X c c ==++=+= Y 的边际分布律为4解:(1)由已知{}{}0,01,20.1p X Y p X Y ======,则 {}{}{}0,221,20.30.10.2p X Y p Y p X Y ====-===-=, {}{}{}{}0,100,00,20.1p X Y p X p X Y p X Y ====-==-===, {}{}{}1,000,00.1p X Y p Y p X Y ====-===,{}{}{}{}1,111,01,20.4p X Y p X p X Y p X Y ====-==-===。
浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第二章概率论习题_奇数

第二章 随机变量及其概率分布注意: 这是第一稿(存在一些错误) 第二章概率论习题__奇数.doc1解:X 取值可能为2,3,4,5,6,则X 的概率分布律为: ()371235p X ===; ()378335p X ===; ()379435p X ===; ()378535p X ===; ()37167p X ===。
3解:(1)没有中大奖的概率是()71110np -=-;(2)每一期没有中大奖的概率是()107110p -=-, n 期没有中大奖的概率是()1072110nn p p -==-。
5解:X 取值可能为0,1,2,3;Y 取值可能为0,1,2,3()()()()1230111p x p p p ==---,()()()()()()()1232133121111111p x p p p p p p p p p ==--+--+--, ()()()()1231323212111p x p p p p p p p p p ==-+-+-, ()1233p x p p p ==。
Y 取每一值的概率分布为:()10p y p ==, ()()1211p y p p ==-,()()()123211p y p p p ==--, ()()()()1233111p y p p p ==---。
7解:(1)()()()345324555510.10.110.10.110.10.991α=-+-+-=,()()233445555510.210.20.210.20.20.942β=--+-+=。
(2)诊断正确的概率为0.70.30.977p αβ=+=。
(3)此人被诊断为有病的概率为()0.70.310.711p αβ=+-=。
9解:(1)由题意知,候车人数X k =的概率为()!ke p X k k λλ-==,则()0p X e λ-==,从而单位时间内至少有一人候车的概率为1p e λ-=-,所以 4.511ee λ---=-解得 4.5λ=则() 4.54.5!ke p X k k -==。
概率论与数理统计教程(答案及课件)chapter3

,
则有
1 PZ x 2
e
x
du x
故
于是
Z
X
~ N 0 , 1 .
X ~ N , 2
X x FX x P X x P x
根据定理1,只要将标准正态分布的分布函数制 成表,就可以解决一般正态分布的概率计算问题.
2
设 X~ N ( , 2 ) ,
X 的分布函数是
2σ 2
F x
x 1 e 2πσ
( t μ )2
dt , x
正态分布由它的两个参数μ和σ唯一确定, 当μ和
σ不同时,是不同的正态分布。 下面我们介绍一种最重要的正态分布
标准正态分布
3
标准正态分布
7 (3)求P 1 X 2
解
kx , x f ( x ) 2 , 2 0,
0 x3 3 x4 其它
(1) 由
0
1 f ( x )dx 1得k 6
3
4
x
F x
x
f t dt , x
x2 x1
f ( x )dx
利用概率密度可确 定随机点落在某个 范围内的概率
4
若 f (x) 在点 x 处连续 , 则有
F ( x ) f ( x ).
5. 对连续型 r.v X , 有
P (a X b) P (a X b) P (a X b) P (a X b)
F(x) = P(X x) x<0 时,{ X x } = , 故 F(x) =0 0 x < 1 时, 1 F(x) = P{X x} = P(X=0) = 3
概率论与数理统计浙大四版习题答案第三章资料

第三章 多维随机变量及其分布1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。
考虑两种试验:(1)放回抽样,(2)不放回抽样。
我们定义随机变量X ,Y 如下:⎪⎩⎪⎨⎧=ο若第一次取出的是次品若第一次取出的是正品,1,,0X ⎪⎩⎪⎨⎧=ο若第二次取出的是次品若第二次取出的是正品,1,,0Y 试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。
解:(1)放回抽样情况由于每次取物是独立的。
由独立性定义知。
P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=362512101210=⋅ P (X=0, Y=1 )=3651221210=⋅ P (X=1, Y=0 )=3651210122=⋅ P (X=1, Y=1 )=361122122=⋅ 或写成(2)不放回抽样的情况P {X=0, Y=0 }=66451191210=⋅ P {X=0, Y=1 }=66101121210=⋅P {X=1, Y=0 }=66101110122=⋅ P {X=1, Y=1 }=661111122=⋅ 或写成3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示Y 的联合分布律。
解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C CP {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=05.[三] 设随机变量(X ,Y )概率密度为⎪⎩⎪⎨⎧<<<<--=其它,042,20),6(),(y x y x k y x f(1)确定常数k 。
概率论与数理统计浙大四版习题答案第三章

第三章 多维随机变量及其分布1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。
考虑两种试验:(1)放回抽样,(2)不放回抽样。
我们定义随机变量X ,Y 如下:⎪⎩⎪⎨⎧= 若第一次取出的是次品若第一次取出的是正品,1,,0X ⎪⎩⎪⎨⎧=若第二次取出的是次品若第二次取出的是正品,1,,0Y试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。
解:(1)放回抽样情况由于每次取物是独立的。
由独立性定义知。
P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=362512101210=⋅ P (X=0, Y=1 )=3651221210=⋅ P (X=1, Y=0 )=3651210122=⋅ P (X=1, Y=1 )=361122122=⋅ 或写成(2)不放回抽样的情况P {X=0, Y=0 }=66451191210=⋅ P {X=0, Y=1 }=66101121210=⋅P {X=1, Y=0 }=66101110122=⋅ P {X=1, Y=1 }=661111122=⋅ 或写成3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示Y 的联合分布律。
解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C CP {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=05.[三] 设随机变量(X ,Y )概率密度为⎪⎩⎪⎨⎧<<<<--=其它,042,20),6(),(y x y x k y x f(1)确定常数k 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章多维随机变量及其概率分布
注意:这是第一稿(存在一些错误)
第三章概率论习题__奇数.doc
1、解互换球后,红球的总数是不变的,即有6X Y +=,X 的可能取值有:2,3,4,Y
的取值为:2,3,4。
则(,)X Y 的联合分布律为:
(2,2)(2,3)(3,2)(3,4)(4,3)(4,4)0
PX Y PX Y PX Y PX Y PX Y PX Y ==================236(2,4)(4,2)5525
P X Y P X Y ======⋅=223313(3,3)555525
P X Y ===⋅+⋅=由于6X Y +=,计算X 的边际分布律为:
6(2)(2,4)25
P X P X Y =====13(3)(3,3)25
P X P X Y =====6(4)(4,2)25
P X P X Y =====3、解利用分布律的性质,由题意,得
0.10.10.10.11
a b c ++++++=(0,2)(0,1)0.1{0|2)0.5(2)(1)0.1P Y X P Y X a P Y X P X P X a b
≤<≤=+≤<====<=++{1}0.5
P Y b c ==+=计算可得:0.2a c ==0.3
b =于是X 的边际分布律为:
(1)0.10.6
P X a b ==++=(2)0.10.10.20.4
P X c c ==++=+=Y 的边际分布律为
(1)0.10.3P Y a =-=+=,(0)0.2
P Y ==(1)0.5
P Y b c ==+=5、解(1)每次抛硬币是正面的概率为0.5,且每次抛硬币是相互独立的。
由题意知,X 的
可能取值有:3,2,1,0,Y 的取值为:3,1。
则(,)X Y 的联合分布律为:
(3,1)(2,3)(1,3)(0,1)0
P X Y P X Y P X Y P X Y ============311(3,3)28P X Y ⎛⎫==== ⎪⎝⎭,223113(2,1)228
P X Y C ⎛⎫===⋅= ⎪⎝⎭213113(1,1)228P X Y C ⎛⎫===⋅= ⎪⎝⎭,311(0,3)28
P X Y ⎛⎫==== ⎪⎝⎭X 的边际分布律为:
311(0)28
P X ⎛⎫=== ⎪⎝⎭,213113(1)228P X C ⎛⎫==⋅= ⎪⎝⎭223113(2)228P X C ⎛⎫==⋅= ⎪⎝⎭,3
11(3)28
P X ⎛⎫=== ⎪⎝⎭Y 的边际分布律为:1
(3)(0,3)(3,3)4
P Y P X Y P X Y ====+===
3(1)(1,1)(2,1)4P Y P X Y P X Y ====+===(2)在{1}Y =的条件下X 的条件分布律为:
(0|1)0P X Y ===,(1,1)1(1|1)(1)2
P X Y P X Y P Y =======(2,1)1(2|1)(1)2
P X Y P X Y P Y =======,(3|1)0P X Y ===7、解(1)已知()!
m
e P X m m λλ-==,0,1,2,3m =L 。
由题意知,每次因超速引起的事故是相互独立的,当0,1,2,3m =L 时,
(|)(0.1)(0.9)n n m n m P Y n X m C -===,0,1,2,n m =L 。
于是(,)X Y 的联合分布律为:
(,)()(|)(0.1)(0.9)!
m n n m n m e P X m Y n P X m P Y n X m C m λλ--====⋅===,(0,1,2,n m =L ;0,1,2,3m =L )
(2)Y 的边际分布律为:
0.100(0.1)()(,)(0.1)(0.9)!!m n n n m n m m m e e P Y n P X m Y n C m n λλλλ--+∞+∞
-========∑∑,(0,1,2,)
n =L 即~(0.1)Y πλ。
(该题与41页例3.1.4相似)
9、解(1)由边际分布函数的定义,知
0,0()lim (,)0.3,011,1X y x F x F x y x x →+∞<⎧⎪==≤<⎨⎪≥⎩
0,0()lim (,)0.4,011,1Y x y F y F x y y y →+∞<⎧⎪==≤<⎨⎪≥⎩
(2)从X 和Y 的分布函数,可以判断出X 和Y 都服从两点分布,则
X 的边际分布律为: X 0 1
P 0.3 0.7
Y 的边际分布律为
Y 0 1
P 0.4 0.6
(3)易判断出(0,0)0.1P X Y ===,所以(,)X Y 的联合分布律为:
(0,0)0.1
P X Y ===(0,1)(0)(0,0)0.2
P X Y P X P X Y ====-===(1,0)(0)(0,0)0.3
P X Y P Y P X Y ====-===(1,1)(1)(0,1)0.4P X Y P Y P X Y ====-===。
11、解由(,)X Y 的联合分布律可知,在{1}X =的条件下,Y 的条件分布律为:
此文只供参考,写作请独立思考,不要人云亦云,本文并不针对某个人(单位),祝您工作愉快!一是主要精力要放在自身专业能力的提升上,二是业余时间坚持写作总结,这是一个长期的积累过程,剩下的,不用过于浮躁,交给时间就好了。
每个人都有自己的爱,不能强迫自己去做。
每个人都有自己的意志,不能被强迫。
每个人都有自己的命运,而不是自己的结。
放松你的思想,满足于现状。
不要控制你的情绪。
去吧,依靠你的梦想。
成功取决于奋斗。
成长取决于经验。
幸福取决于开放。
幸福取决于满足。
很容易被人看不起。
如果你看起来有点肤浅,你可以放心。
往下看,你会很高兴的。
敞开心扉,敞开心扉。
只有看透了,我们才能成熟。
这很容易理解。
为了成功,你需要给生活足够的速度。
这是胜利者的态度,也是胜利者的态度。
为了实现这个伟大的目标,我们必须能够忍受别人的嘲笑和独自工作的孤独。
有了信念和追求,人就能忍受一切艰难困苦,适应一切环境。
美属于自信,平静属于准备,奇迹属于坚持。
真正的努力,是“不积跬步,无以至千里;不积小流,无以成江海”的积累;是“贵有恒,何必三更眠五更起;最无益,只怕一日曝十日寒”的自律;是“千淘万漉虽辛苦,吹尽黄沙始到金”的执着。