浙大概率论与数理统计浙大版
概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]
![概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]](https://img.taocdn.com/s3/m/2be46d428e9951e79b8927ce.png)
概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
概率论与数理统计(浙大版)第一章课件

如何来研究随机现象? 随机现象是通过随机试验来研究的. 问题 什么是随机试验?
8
一、随机试验
在概率论中,把具有以下三个特征的试验称为随机
试验。 (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能事先明确试 验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果会出现。
4
实例2 用同一门炮向同 一目标发射同一种炮弹多 发 , 观察弹落点的情况.
结果: 弹落点会各不相同.
实例3 抛掷一枚骰子,观 结果有可能为: 1, 2, 3, 4, 5 或 6.
察出现的点数.
5
实例4 从一批含有正品
和次品的产品中任意抽取 一个产品. 实例5 过马路交叉口时,
其结果可能为:
正品 、次品.
则 C A B AB 格”,B=“直径合格”.
30
推广 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件;
k 1
n
称 Ak 为可列个事件 A1 , A2 , 的和事件.
k 1
n
称 Ak 为 n 个 事 件 A1 , A2 , , An 的 积 事 件 ;
事件 A 发生 事件B 发生
实例 A=“长度不合格” 必然导致 B=“产品不合格” 所以 A B
27
2.事件的相等
若两个事件 A 和B 相互包 含,则称这两个事件相等, 记为 A .B
A B A =B
A B且B A
A B
A 和 B 同时发生或者同时不发生
28
3.事件的和(并)
理学概率论与数理统计浙江大学第四版盛骤概率论部分

例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
9
§2 样本空间·随机事件
(一)样本空间
定义:随机试验E的所有结果构成的集合称为E的 样本空间,记为S={e},
例:
➢ ➢
称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
概率论与数理统计是研究随机现象 数量规律的一门学科。
1
第一章 概率论的基本概念
• 1.1 随机试验 • 1.2 样本空间 • 1.3 概率和频率 • 1.4 等可能概型(古典概型) • 1.5 条件概率 • 1.6 独立性
第二章 随机变量及其分布
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
第十二章 平稳随机过程
• 12.1 平稳随机过程的概念 • 12.2 各态历经性 • 12.3 相关函数的性质 • 12.4 平稳过程的功率谱密度
5
概率论
第一章概率论的基本概念
6
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
7
§1 随机试验
确定性现象
解:假设接待站的接待时间没有规定,而各来访者在一周 的任一天中去接待站是等可能的,那么,12次接待来 访者都是在周二、周四的概率为 212/712 =0.000 000 3.
人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。
概率论与数理统计浙大版

四种理想受控电源的模型
电 I1=0
I2
压
控+
制 电 压
U1 -
+
+
_ U1
U2 -
源
(a)VCVS
电 压
I1=0
控+
制 电
U1
流-
源
I2
+ gU1 U2
-
(c) VCCS
电 I1
流
控+
制 电
U1=0 -
压
源
I2
+
+
_
U2
I1 -
(b)CCVS
电 I1
流
控+
制 电 流
U1=0
-
源
I2
+
I1 U2
1. 2 基尔霍夫定律
I1
a
I2
US1
R1 1 I3
R2 3 R3 2
US2
b 支路:电路中的每一个分支。
一条支路流过一个电流,称为支路电流。 节点:三条或三条以上支路的联接点。
回路:由支路组成的闭合路径。 网孔:内部不含支路的回路。
例1: d
a
I1
I2
IG
G
c
R4 I3 b I4 I
+ US–
R1
R2
对节点 a:I1+I2 = I3
US1
I3 R3
US2
或 I1+I2–I3= 0
b
实质: 电流连续性的体现。
基尔霍夫电流定律(KCL)反映了电路中任一
节点处各支路电流间相互制约的关系。
2.推广
电流定律可以推广应用于包围部分电路的任一 假设的闭合面。
(浙大第四版)概率论与数理统计知识点总结(word文档物超所值)

②多个事件的独立性
设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。
1°
B1 , B2 ,…, Bn 两两互不相容,
P(Bi) >0, i 1,2,…, n ,
n
U A Bi
2°
i1 , P( A) 0 ,(已经知道结果 求原因
则
P(Bi / A)
P(Bi )P( A / Bi )
n
,i=1,2,…n。
P(Bj )P(A/ Bj )
j 1
1
概率论与数理统计 公式(全)
X
| x1, x2,L , xk,L
P( X xk) p1, p2,L , pk,L 。
显然分布律应满足下列条件:
pk 1
(1) pk 0 , k 1,2,L , (2) k1
。
设 F (x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意实 数 x ,有
x
(5)八 大分布
对于离散型随机变量, F (x) pk ; xk x
x
对于连续型随机变量, F (x) f (x)dx 。
0-1 分布 P(X=1)=p, P(X=0)=q
1
概率论与数理统计 公式(全)
知识点总结
二项分布
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生的次数是随机变量,设为 X ,则 X 可能取值为
(浙大第四版)概率论与数理统计知识点总结.

1
概率论与数理统计 公式(全) 知识点总结
当 A=Ω 时,P( B )=1- P(B)
P ( AB) 为事件 A 发生条 P ( A) P ( AB) ( 12 ) 条 件下,事件 B 发生的条件概率,记为 P( B / A) 。 件概率 P ( A) 条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 P(Ω /B)=1 P( B /A)=1-P(B/A) 乘法公式: P( AB) P( A) P( B / A) ( 13 ) 乘 更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有 P( A1 A2 … An ) P( A1) P( A2 | A1) P( A3 | A1 A2) …… P( An | A1 A2 … 法公式 An 1) 。
A、B 中至少有一个发生的事件:A B,或者 A+B。
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为
A-B, 也可表示为 A-AB 或者 A B , 它表示 A 发生而 B 不发生的事件。
1
概率论与数理统计 公式(全) 知识点总结
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同
p
k
;
f ( x)dx
。
P(X=1)=p, P(X=0)=q
1
概率论与数理统计 公式(全) 知识点总结
二项分布
在 n 重贝努里试验中, 设事件 A 发生的概率为 p 。 事件 A 发生的次数是随机变量,设为 X ,则 X 可能取值为
0,1,2,, n 。
k k nk P( X k ) Pn(k ) Cn p q
F ( ) lim F ( x) 0 ,
浙大概率论与数理统计课件概率论

*
§5 条件概率
例:有一批产品,其合格率为90%,合格品中有95%为 优质品,从中任取一件, 记A={取到一件合格品}, B={取到一件优质品}。 则 P(A)=90% 而P(B)=85.5% 记:P(B|A)=95% P(A)=0.90 是将整批产品记作1时A的测度 P(B|A)=0.95 是将合格品记作1时B的测度 由P(B|A)的意义,其实可将P(A)记为P(A|S),而这里的S常常省略而已,P(A)也可视为条件概率 分析:
S
A
B
*
事件的运算
S
B
A
S
A
B
S
B
A
A与B的和事件,记为
A与B的积事件,记为
当AB=Φ时,称事件A与B不相容的,或互斥的。
*
“和”、“交”关系式
S
A
B
S
例:设A={ 甲来听课 },B={ 乙来听课 } ,则:
{甲、乙至少有一人来}
{甲、乙都来}
{甲、乙都不来}
{甲、乙至少有一人不来}
B
A
S
若记P(B|A)=x,则应有P(A):P(AB)=1:x 解得:
一、条件概率 定义: 由上面讨论知,P(B|A)应具有概率的所有性质。 例如:
二、乘法公式 当下面的条件概率都有意义时:
*
例:某厂生产的产品能直接出厂的概率为70%,余下 的30%的产品要调试后再定,已知调试后有80% 的产品可以出厂,20%的产品要报废。求该厂产 品的报废率。
概率论与数理统计课后答案(浙江大学版)

P(
A
B),
P(
A
B),
P(
___
AB),
P[(
A
B)(
___
AB)]
。
解: P(A B) P(A) P(B) P(AB) 0.625,
P(AB) P[(S A)B] P(B) P(AB) 0.375 ,
___
P(AB) 1 P(AB) 0.875 ,
___
P[(A B)(AB)] P[(A B)(S AB)] P(A B) P[(A B)(AB)] 0.625 P(AB) 0.5
每一销售点是等可能的,每一销售点得到的提货单不限,求其中某一
2
概率论与数理统计及其应用习题解答
特定的销售点得到 k(k n) 张提货单的概率。
解:根据题意, n(n M ) 张提货单分发给 M 个销售点的总的可能分法
有 M n 种,某一特定的销售点得到 k(k n) 张提货单的可能分法有
C
k n
6 7 5 4 840 0.0408。
11 12 13 12 20592
9,一只盒子装有 2 只白球,2 只红球,在盒中取球两次,每次任取 一只,做不放回抽样,已知得到的两只球中至少有一只是红球,求另
一只也是红球的概率。
解:设“得到的两只球中至少有一只是红球”记为事件 A ,“另一只
也是红球”记为事件 B 。则事件 A 的概率为
P(N1
|
M)
P( N1 )P(M P(M )
|
N1 )
0.6 0.01 0.025
0.24
,
P( N 2
|
M)
P(N2 )P(M P(M )
|
N2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在上一章中,我们把随机事件看作样本空间 的子集;这一章里我们将引入随机变量的概念, 用随机变量的取值来描述随机事件。
一、随机变量 引例:
E1: 将一枚硬币连掷两次,观察正反面出现的情况。
令X=“正面出现的次数”,则X是一个随着试 验结果不同而取值不同的量,其对应关系如下:
基本结果(eBiblioteka 正面出现的次数X(e)2.离散型随机变量的分布律
要掌握一个离散型随机变量的分布律,必须 且只需知道以下两点:
(1) X所有可能的取值: X x1, x2 , , xk , (2)X取每个值时的概率: P( X xk ) pk , k 1,2,3,
P( X xk ) pk k 1,2,3, (1)
称 (1) 式为离散型随机变量X的分布律. 注:离散型随机变量X的分布律可用公式法和表格 法描述。
对一个随机变量X,若给出了以上两条,我们 就说给出了随机变量X的概率分布(也称分布律)。
这一章我们的中心任务是学习离散型随机变量 与连续型随机变量的概率分布.
§2 离散型随机变量及其分布
一、离散型随机变量的定义及其分布律
1.离散型随机变量的定义 如果随机变量X所有可能的取值是有限个或无 穷可列个,则称X为离散型随机变量。
2、随机变量的说明 (1)随机变量的表示:常用字母X,Y,Z,….表示; (2)引入随机变量的目的: 用随机变量的取值范围表示随机事件,利用高等数 学的工具研究随机现象。
例如:上例中,事件“正面出现两次”可表示为:“X=2” ;
事件“正面至少出现一次”可表示为:“X≥1”; “0<X≤2”表示事件“正面至少出现一次”。
ylim([0 0.6]) text(x(1),pk(1), num2str(pk(1)),'FontSize',21); xlim([0,2.3]) text(x(2),pk(2), num2str(pk(2)),'FontSize',21);
text(x(1),pk(1), num2str(pk(1)),'FontSize',21); text(x(3),pk(3), num2str(pk(3)),'FontSize',21);
令X
1, 0,
正面 反面
一般地,对每一个随机试验,我们都可以引入 一个变量X,使得试验的每一个样本点都有一个X 的取值X(e)与之对应,这样就得到随机变量的概念.
1、随机变量的定义:
设E是一个随机试验,其样本空间为S={e},在E 上引入一个变量X,如果对S中每一个样本点e,都 有一个X的取值X(e)与之对应,我们就称X为定义 在随机试验E的一个随机变量.
有特点,学习时注意它们各自的特点及描述方式 的不同。
例1(用随机变量的取值表示随机事件)一报童 卖报,每份报0.50元, 其成本为0.30元。 报馆每天给 报童1000份报纸,并规定卖不出的报纸不得退回。
令X=“报童每天卖出的报纸份数” 试将“报童赔钱”这一事件用X的取值表 示出来。
解:分析
{报童赔钱}
(3)随机变量的特点: 具有随机性:在一次试验之前不知道它取哪一个 值,但事先知道它全部可能的取值。
随机变量的取值具有一定的概率:
例如:上例中P(X=2)=1/4; P(X≥1)=3/4;
P(0<X ≤2)=3/4;
(4)随机变量的类型: 离散型与连续型随机变量。 这两种类型的随机变量因其取值方式的不同各
{卖出报纸的钱不够成本}
当 0.50 X<1000× 0.3时,报童赔钱.
故{报童赔钱} {X 600}
3、随机变量的概率分布 对于一个随机试验,我们关心下列两件事情: (1)试验会发生一些什么事件? (2)每个事件发生的概率是多大?
引入随机变量后, 上述说法相应变为下列表述方式: (1)随机变量X可能取哪些值? (2)随机变量X取某个值的概率是多大?
text(x(2),pk(2), num2str(pk(2)),'FontSize',21);
text(x(3),pk(3), num2str(pk(3)),'FontSize',21); figure('color','w')
figure('color','w')
stem(x,pk,'r.','MarkerSize',31)
X0 1 2
pk 1/4 2/4 1/4
图形表示
程序
x=[0, 1, 2];
pk=[1/4,2/4,1/4];
figure('color','w')
figure('color','w')
bar(x,pk,0.1,'r')
plot(x,pk,'r.','MarkerSize',31) ylim([0 0.6]) xlim([0,2.3])
plot(x,pk,'r.','MarkerSize',31) hold on plot(x,pk,'r-.') ylim([0 0.6]) hold off
ylim([0 0.6]) xlim([0,2.3]) text(x(1),pk(1), num2str(pk(1)),'FontSize',21); text(x(2),pk(2), num2str(pk(2)),'FontSize',21); text(x(3),pk(3), num2str(pk(3)),'FontSize',21);
e1=(正,正)
2
e2=(正,反)
1
e3=(反,正)
1
e4=(反,反)
0
由上可知,对每一个样本点e,都有一个X的取值X(e)
与之对应。我们把X称为定义在这个试验上的随机变量。
E2:掷一枚骰子,观察出现的点数. 令X=“正面出现的点数”
E3:某产品的使用寿命X,X>=0.
E4:掷一枚质地均匀的硬币,观察正反面出现的 情况.
xlim([0,2.3])
text(x(1),pk(1), num2str(pk(1)),'FontSize',21);
1)公式法: P( X xk ) pk k 1,2,3,
2) 表格法:
X x1 x2 L pk p1 p2 L
例1:将一枚硬币连掷两次,求“正面出现的次 数X ”的分布律。
解:在此试验中,所有可能的结果有: e1=(正,正);e2=(正,反); e3=(反,正) ;e4=(反,反)。
于是,正面出现的次数X ”的分布律: