实验11电热法测固体的线胀系数

合集下载

固体线胀系数的测定

固体线胀系数的测定

【实验结果】
L 测量值 U L (m m) D 测量值 U D (m m) l 测量值 U l (m m)
l 计算值 U ( 0C 1 )
l

【实验报告的要求】
1.实验名称 2.实验仪器 3.实验目的 4.实验原理及所采用的实验方法 5.实验内容 6.原始数据 7.数据处理
【实验内容与步骤】
1.用钢卷尺测量(一次)待测铜管的原长L后, 将其放入线胀系数测定仪的加热金属圆筒中;
2.调节光杠杆的前后足尖的长度l,将光ห้องสมุดไป่ตู้杆的 后足尖置于待测铜管的上端,二前足尖置于固定 台上的沟槽中,镜面竖直放置。
3.在光杠杆前1~1.2m处放置望远镜及标尺架, 调节望远镜及标尺架处于水平且与平面镜等高。

【预习抽查问题与思考题】
1. 实验中各长度量用不同的仪器来测定,是怎样 考虑的?为什么? 2. 本实验中固体的线胀系数测量误差的传递公式 是什么?主要测量误差有哪些?请估算各测量量 的不确定度。 3. 材料线胀系数跟材料的哪些性质有关? 4. 本实验的测量公式要求满足哪些实验条件?实 验中应如何保证? 5. 安装、调整仪器时应注意什么? 6. 安调节光杠杆的步骤是什么?怎样判断望远镜 已处于调好状态?其调节步骤如何? 7. 如何判断样品温度是否稳定?若样品温度不稳 定,会对结果产生怎样的影响?
大学物理实验
固体线胀系数的测定
吉林建筑工程学院城建学院
【实验简介】
热胀冷缩
应用 原因 工程结构的设计 机械和仪器的制造 材料的加工 物体内部分子热运动加剧或减弱
各种材料的热胀冷缩的强弱是不同的,为了定 量区分它们,人们找到了表征这种热胀冷缩特 性的物理量—线胀系数和体胀系数。

实验11电热法测固体的线胀系数

实验11电热法测固体的线胀系数

实验11 电热法测固体的线胀系数当固体温度升高时,由于分子的热运动加剧,固体分子间平均距离增大,结果使固体体积发生膨胀;反之当温度降低时,固体体积就会收缩 ,这就是“热胀冷缩”现象。

任何固体都具有“热胀冷缩”特性,材料的热胀系数就是表示物质的“热胀冷缩”特性的,是物质的基本属性之一。

在建筑设计、工程施工及机械加工制造等工程技术中,常常需要知道材料的热胀系数,以便在设计或施工中留有余地或充分利用固体的热膨胀性质。

【实验目的】1.学习测定金属杆的线膨胀系数的方法;2.进一步熟悉用光杠杆测定微小伸长量的原理和方法。

【预习检测题】1.本实验的直接测量量有哪几个?分别用什么仪器,用什么方法测量?间接测量量是什 么?与直接测量量的关系如何?2.光杠杆利用了什么原理?有什么优点?3.如何才能在望远镜中迅速找到标尺的像?【实验原理】1.固体的线膨胀系数固体受热引起的长度增加,称为线膨胀,长度变化的大小取决于温度的改变,材料的种类和材料的原长度。

设在温度为t 0℃时金属杆的长度为L 0,当温度升至t ℃时其长度为L ,则金属杆的伸长量ΔL 正比于原长度和温差。

即:ΔL=L -L 0=αL 0(t -t 0)=αL 0Δt (5.3.1)式中α称为固体的线膨胀系数。

不同的物质线胀系数不同,同一质料的线胀系数因温度不同稍有些改变。

对于大多数固体在不太大的温度范围内可以把它看作常数,故常用平均线胀系数为:tL L ∆∆=α (5.3.2) 由⑵式可以看出物体线胀系数α的物理意义是:在数值上等于当温度每升高1℃时,金属杆每单位原长度的伸长量。

实验过程中,只要侧出ΔL 、L 0和相应的Δt 值,就可以求得线胀系数α的值。

由于固体的长度变化量ΔL 很小,不易直接测量,在实验时可采用光杠杆法测量金属杆的伸长量ΔL 。

2.光杠杆测量法由光杠杆测量原理(见杨氏弹性模量实验光杠杆原理图)知:n DbL ∆⋅=∆2 (5.3.3) 式中b 为光杠杆前足与后足连线的垂直距离,D 为小平镜到直尺距离,Δn=n t -n 0为温度t 、t 0时对应的标尺读数之差。

实验11 电热法测固体的线胀系数

实验11 电热法测固体的线胀系数

实验11 电热法测固体的线胀系数当固体温度升高时,由于分子的热运动加剧,固体分子间平均距离增大,结果使固体体积发生膨胀;反之当温度降低时,固体体积就会收缩 ,这就是“热胀冷缩”现象。

任何固体都具有“热胀冷缩”特性,材料的热胀系数就是表示物质的“热胀冷缩”特性的,是物质的基本属性之一。

在建筑设计、工程施工及机械加工制造等工程技术中,常常需要知道材料的热胀系数,以便在设计或施工中留有余地或充分利用固体的热膨胀性质。

【实验目的】1.学习测定金属杆的线膨胀系数的方法;2.进一步熟悉用光杠杆测定微小伸长量的原理和方法。

【预习检测题】1.本实验的直接测量量有哪几个?分别用什么仪器,用什么方法测量?间接测量量是什 么?与直接测量量的关系如何?2.光杠杆利用了什么原理?有什么优点?3.如何才能在望远镜中迅速找到标尺的像?【实验原理】1.固体的线膨胀系数固体受热引起的长度增加,称为线膨胀,长度变化的大小取决于温度的改变,材料的种类和材料的原长度。

设在温度为t 0℃时金属杆的长度为L 0,当温度升至t ℃时其长度为L ,则金属杆的伸长量ΔL 正比于原长度和温差。

即:ΔL=L -L 0=αL 0(t -t 0)=αL 0Δt (5.3.1)式中α称为固体的线膨胀系数。

不同的物质线胀系数不同,同一质料的线胀系数因温度不同稍有些改变。

对于大多数固体在不太大的温度范围内可以把它看作常数,故常用平均线胀系数为:tL L ∆∆=α (5.3.2) 由⑵式可以看出物体线胀系数α的物理意义是:在数值上等于当温度每升高1℃时,金属杆每单位原长度的伸长量。

实验过程中,只要侧出ΔL 、L 0和相应的Δt 值,就可以求得线胀系数α的值。

由于固体的长度变化量ΔL 很小,不易直接测量,在实验时可采用光杠杆法测量金属杆的伸长量ΔL 。

2.光杠杆测量法由光杠杆测量原理(见杨氏弹性模量实验光杠杆原理图)知:n DbL ∆⋅=∆2 (5.3.3) 式中b 为光杠杆前足与后足连线的垂直距离,D 为小平镜到直尺距离,Δn=n t -n 0为温度t 、t 0时对应的标尺读数之差。

线膨胀系数的测定--实验报告

线膨胀系数的测定--实验报告
温度升高使原子的热运动加剧从而使固体发生膨胀,设L0为物体在初始温度θ0下的长度,则在某个温度θ1时物体的长度为
当温度变化不大时α是一个常数,即
当温度变化较大时,α与Δθ有关可用与Δθ的多项式来描述:
其中a,b,c为常数。
在实际测量中,由于Δθ相对比较小,一般地,忽略二次方及以上的小量.只要测得材料在温度θ1至θ2之间的伸长量 ,就可以得到在该温度段的平均线膨胀系数 :
线膨胀系数的测定实验报告固体线膨胀系数的测定金属线膨胀系数的测定粘滞系数测定实验报告导热系数测定实验报告传热系数测定实验报告沿程阻力系数测定实验局部阻力系数测定实验传热系数测定实验对流传热系数测定实验
沈阳城市学院
物理实验报告
实验题目
线膨胀系数的测定
姓名
学号
专业班级
实验室号
实验成绩
指导教师
实验时间
2015年4月14日
实栓使大圆盘的指针对准0刻度线,小圆盘指针在0.2刻度线。
2、接通温控仪,升温到75度,并记录20、25、30、35。。。到75度时的数据,设定达到最大值时开始降温,将主仪器的盖子打开散热,并记录75、70。。。到20度时的数据。
3、舍去前后波动的数据,取30-60度温度时的数据,并做图
被测铜棒:直径Φ8mm,长l=400mm铜的线膨胀系数理论值:1.70×10-5(℃)-1
请认真填写
数据处理、误差分析和实验结论
取30℃—60℃做图
斜率k=0.00786
所以:铜的线热膨胀系数 C-1
百分误差: E=8.65%
实验思考与建议
低导热体的作用是什么?与被测物接触的一端为什么是尖的?
低导热体是为了隔绝热量,防止温度升的太高把表盘烧坏,尖端是因为接触面积小,不容易导热。

线膨胀系数测定实验

线膨胀系数测定实验
0.19
膨胀系数 14.06×10-6
0.23
13.93×10-6
0.29
14.87×10-6
0.36
15.48×10-6
0.47
16.49×10-6
0.77
21.84×10-6
原金属棒 长度
750㎜
室温 25℃
750㎜
25℃
750㎜
25℃
750㎜
25℃
750㎜
25℃
750㎜
25℃
铝棒
线膨胀温 度
43℃
温度差 18℃
47℃
22℃
51℃
26℃
56℃
31℃
63℃
38℃
72℃
47℃
金属伸长 量
020
膨胀系数 14.81×10-6
0.25
15.15×10-6
0.35
17.91×10-6
0.43
18.49×10-6
0.59
20.70×10-6
1.04
29.50×10-6
物质
不锈钢 铜

膨胀系数 12.51×10-6 16.66×10-6 19.43×10-6
线膨胀系数测定实验
目录
• 1.实验动机 • 2.实验说明 • 3.生活应用
• 4.数据源
实验动机
利用测微表 测金属受热的伸长量 并算出线膨胀系数
实验说明
实验目的:测量各金属棒在温度升高后, 所产生热胀冷缩的变化。
实验原理 :金属棒温度慢慢的上升是藉 由蒸气的沸点逐渐升高已转达到整 支金属棒,然后以膨胀测为表仪器 来观察极小膨胀的长度变化。
原金属棒长 室温 度
750㎜
25℃

固体线膨胀系数测定实验报告

固体线膨胀系数测定实验报告

数据处理:
1、数据表格: 温度与视场中标尺刻度数据
i tm / ℃ nm / ㎝
i tn / ℃ nn / ㎝ ni4 ni
/℃-1
1
40
0.25
5
60
2
45
0.60
6
65
3
50
0.90
7
70
4
55
1.30
8
75
( D 1 L 100 4.2 100 210cm ;
2
2
1.55
1.30 2.49×10-5
(1) 由于测 L, D , b 是采用常规的 长度测量,具体操作十分简单,这几个待测量带来的误差
主要仪器本身的 系统误差以及测量偶然误差,可以通过多次测量求平均值来尽量减小误差;
(2)温度计读数 t1 , t2 的误差主要是系统误差,可以进行系统误差修正;
(3)通过望远镜标尺读数 n2 , n1 引入偶然误差。
49.55
1 (60
40)
1.54
10 5C 1
(1)平均值 1 2 3 4 2.49 2.21 2.211.54 105 2.11105C 1
4
4
(2)绝对值
1 4
1
2
3
4
1 2.49 2.11 2.21 2.11 2.21 2.11 1.54 2.11 105 4
测微放大原理(参阅实验八),有
n2 n1 b
(4)
2D
D 为光杠杆镜平面的距离; b 为光杠杆的丁足尖到镜面连线的 垂直距离。
(2)利用改进型的干涉仪的等倾环纹的移动来测量 ,原理参阅实验十二。动镜的改变量
与“冒”出或“缩”进环纹数 N 满足

固体线热膨胀系数的测定实验报告

固体线热膨胀系数的测定实验报告

固体线热膨胀系数的测定【实验目的】材料的线膨胀指的是材料受热后一维长度的伸长。

当温度升高时,一般固体由于其原子或分子的热运动加剧,粒子间的平均距离发生变化,温度越高,其平均距离越大,这就是固体的热膨胀。

热膨胀是物质的基本热学性质之一。

物体的热膨胀不仅与物质种类有关。

对金属晶体而言,由于它们是由许多晶粒构成的,这些晶粒在空间方位上排列是无规则的,整体表现出各相同性。

它们的线膨胀在各个方向均相同。

虽然固体的热膨胀非常微小,但使物体发生很小形变时就需要很大的应力。

在建筑工程、机械装配、电子工业等部门中都需要考虑固体材料的热膨胀因素。

因此固体线胀系数是选择材料的一项重要指标,测定固体的线膨胀系数具有重要的实际意义。

1. 掌握测量固体线热膨胀系数的基本原理。

测量铁、铜、铝棒的线热膨胀系数。

2. 学会使用千分表,掌握温度控制仪的操作。

3. 学习图解图示法处理实验数据。

【实验原理】设为物体在温度时的长度,则该物体在时的长度可由下式表示:(1)其中,为该物体的线膨胀系数,在温度变化不大时,可视为常数。

将式(23-1)改写为:(2)可见,的物理意义为:温度每升高时物体的伸长量与它在时的长度之比,单位为:或。

实际测量中,一般只能测得材料在温度及时的长度及,设是常量,则有:(3)由式(6)即可求得物体在温度之间的平均线膨胀系数。

其中,微小长度变化量可直接用千分表测量。

本实验对金属铁、铜、铝进行测量求出不同金属的线膨胀系数。

【实验仪器】FD-LEA固体线热膨胀系数测定仪(一套)、(电加热箱、千分表、温控仪)金属棒、电源线、加热线、传感器及电缆仪器介绍1.千分表是一种测定微小长度变化量的仪表,其外形结构如图1所示。

外套管G用以固定仪表本身;测量杆M被压缩时,指针H转过一格。

而指针P则转过一周,表盘上每周等分小格,每小格即代表0.001mm,千分表亦由此得名。

图1千分表2.FD-LEA固体线热膨胀系数测定仪由电加热箱和温控仪两部分组成。

固体线胀系数的测定讲义(新)

固体线胀系数的测定讲义(新)

固体线胀系数的测定绝大多数物体都具有 “热胀冷缩” 的特性, 这是由于构成物体的微观粒子热运动随温度的升、 降而加剧或减弱造成的。

固体材料的线胀系数是反映固体材料受热膨胀时, 在一维方向上伸长性质的重要参数。

线胀 系数是选用材料的一项重要指标, 是材料工程、 热力工程和自动控制技术中的一个重要技术参数, 在工程设计(如桥梁和过江电缆工程) 、精密仪表设计,材料的焊接和加工中都必须加以考虑。

、实验目的1. 学会一种测定金属线胀系数的方法。

2. 掌握光杠杆法测量长度微小变化量的原理和方法。

3. 学会用最小二乘法处理数据。

、实验原理设金属棒在温度 t o 时的长度为 L o ,当其温度上升到 t 时,它的长度 L t 可由下式表示:L t =L o 1 t t o(1)式中, 即为该物体的线胀系数。

可将式( 1)改写成:L t L o L L o t t oL o t t o由此可见,线胀系数 的物理意义是温度每升高 1 o C 时物体的伸长量 L 与原长之比。

般 随温度有微小的变化,但在温度变化不太大时,可把它当作常量。

由式( 2)可以看出,测量线胀系数的关键是准确测量长度的微小变化量估算一下 L 的大小。

若 L o 500mm ,温度变化 t t o 100 C ,金属线胀系数 的数量级 为10 5 C 1 ,则可估算出 L 0.50mm 。

对于这么微小的长度变化量,用普通量具如钢尺 和游标卡尺无法进行精确测量,一般采用千分表法(分度值为0.001mm ),光杠杆法,光学干涉本实验采用光杠杆法, 整套实验装置由固体线胀系数测定仪, 光杠杆和尺读望远镜等几部分 组成,如图 1 所示。

2)L 。

我们先粗略图 1 测定固体线胀系数的实验装置光杠杆测微小长度改变量的原理:参照图 2,假定开始时光杠杆平面镜 M 的法线 on o 在水平位置,则标尺 S 上的标度线 n o 发 出的光通过平面镜 M 反射进入望远镜,在望远镜中形成n o 的象而被观察到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验11 电热法测固体的线胀系数
当固体温度升高时,由于分子的热运动加剧,固体分子间平均距离增大,结果使固体体积发生膨胀;反之当温度降低时,固体体积就会收缩 ,这就是“热胀冷缩”现象。

任何固体都具有“热胀冷缩”特性,材料的热胀系数就是表示物质的“热胀冷缩”特性的,是物质的基本属性之一。

在建筑设计、工程施工及机械加工制造等工程技术中,常常需要知道材料的热胀系数,以便在设计或施工中留有余地或充分利用固体的热膨胀性质。

【实验目的】
1.学习测定金属杆的线膨胀系数的方法;
2.进一步熟悉用光杠杆测定微小伸长量的原理和方法。

【预习检测题】
1.本实验的直接测量量有哪几个?分别用什么仪器,用什么方法测量?间接测量量是什 么?与直接测量量的关系如何?
2.光杠杆利用了什么原理?有什么优点?
3.如何才能在望远镜中迅速找到标尺的像?
【实验原理】
1.固体的线膨胀系数
固体受热引起的长度增加,称为线膨胀,长度变化的大小取决于温度的改变,材料的种类和材料的原长度。

设在温度为t 0℃时金属杆的长度为L 0,当温度升至t ℃时其长度为L ,则金属杆的伸长量ΔL 正比于原长度和温差。

即:
ΔL=L -L 0=αL 0(t -t 0)=αL 0Δt (5.3.1)
式中α称为固体的线膨胀系数。

不同的物质线胀系数不同,同一质料的线胀系数因温度不同稍有些改变。

对于大多数固体在不太大的温度范围内可以把它看作常数,故常用平均线胀系数为:
t
L L ∆∆=
α (5.3.2) 由⑵式可以看出物体线胀系数α的物理意义是:在数值上等于当温度每升高1℃时,金属杆每单位原长度的伸长量。

实验过程中,只要侧出ΔL 、L 0和相应的Δt 值,就可以求得线胀系数α的值。

由于固体的长度变化量ΔL 很小,不易直接测量,在实验时可采用光杠杆法测量金属杆的伸长量ΔL 。

2.光杠杆测量法
由光杠杆测量原理(见杨氏弹性模量实验光杠杆原理图)知:
n D
b
L ∆⋅=
∆2 (5.3.3) 式中b 为光杠杆前足与后足连线的垂直距离,D 为小平镜到直尺距离,Δn=n t -n 0为温度t 、t 0时对应的标尺读数之差。

不难看出小位移ΔL 被放大成能观测的大位移Δn ,其作用像杠杆的作用一样,所以光杠杆的方法是一种机械放大法。

2D /b 称为光杠杆的放大倍数,一般为25~40倍。

将式⑶代入式⑵得: k DL b
t n DL b ⋅=∆∆⋅=
022α (5.3.4) 实验中测出b 、D 、L 0及与t 0、t 对应的标尺读数n 0、n ,在Δn ~Δt 图上求得斜率k ,代如上式就可得到线胀系数α,或利用逐差法也可求得k 及α。

【实验仪器】
金属杆线胀仪,光杠杆,铜杆,尺读望远镜,温度计,钢卷尺,游标卡尺。

线胀系数仪是采用电热法来测定金属棒的线膨胀系数,它主要包括:给被测材料加热的加热器、安装加热器和散热罩的支架、放置光杠杆的平台。

加热器中的加热管道上绕有电阻丝,接通电源即可逐渐升温,并有温场均匀的特点。

加热管道内可放置待测材料杆和温度计。

实验装置如
所示,实验前先测量金属棒在室温的长度L 0,再把被测棒慢慢放入线胀仪的孔中,调节温度计使下端长度为150~200mm ,小心放在加热管内的被测棒孔内。

将光杠杆的前边两足(或刀口)放在平台的凹槽内,后足尖立于被测杆顶端,并使光杠杆平面镜法线大致与望远镜同轴,且平行与水平底座。

【实验内容】
1.测量铜管长度L 0,记录室温t 0(℃),将铜杆慢慢放入线胀仪,将温度计小心放人铜管上端中心的小孔中。

2.将光杠杆放在线胀仪上,使其单足放在待测铜管上端,双足放在仪器平台槽内,使小平镜平面、望远镜面和标尺均垂直于水平面。

3.调望远镜目镜,看清十字叉丝,然后用三点—线法调望远镜与光杠杆小平镜等高,用眼睛从望远镜上方观察光杠杆小镜中是否有直尺的像,如果有,则从望远镜中观察,调望远镜物镜焦距,使望远镜中直尺的像清晰,仔细调节消除视差,记录标尺读数n 0(在0刻度附近),此后切勿碰动整个系统。

4.将调压电位器旋至零端,接通电源,调节电位器旋钮,使指示灯发出微弱光亮。

5.观察望远镜中标尺读数随温度变化,每隔5℃同时记录温度t 与标尺读数n ,共测10~12组数据。

6.切断电源,记录降温过程中上述各温度对应的标尺读数n '值,并求同一温度标尺读数的平均值n 。

7.用米尺测量标尺到镜面距离D ,然后将光杠杆放在白纸上轻压一下,
得到三个足的位置,用笔画出图5.3.1 实验装置
两后足的连线OO ˊ,自单足作OO ˊ的垂线,用直尺或卡尺测出垂线长度b ,或用卡尺直接测量光杠杆两后足及前足与任一后足的距离,由三角形边高关系求出b 。

【实验记录】
线胀仪号码___,L 0= ___cm ,D=___cm ,b=___cm ,t 0 =___℃
【数据处理】
1. 以Δt=t -to 为横坐标,Δn= n -n 0为纵坐标,以实验数据作Δn ~Δt 图线,用两点法求斜率K ,
代人公式(4)求α。

2. 用逐差法处理数据求α。

例:将数据(平均值)分为两组:n 1,n 2,n 3,n 4,n 5,n 6和n 7,n 8,n 9,n 10,n 11,n 12,则温度每升高(或降低)30℃标尺读数的平均变化为
N
n n n n n n n n n n n n n )
()()()()()(612511410392817-+-+-+-+-+-=

式中N 为分子中项数,此处N=6,将n ∆(注意n ∆对应的温差为30℃)代入(4)式中可求得α值,可与作图法求得的结果比较。

3. 随机误差的估算
由t
n
DL b ∆∆⋅=
02α 取微分得 t t d L dL D dD n n d b db d ∆∆---∆∆+=)()(00αα 单次直接测量的绝对误差取仪器最小分度值的一半,则D 和L 0的相对误差很小,可以忽略不计,视温度
为直接控制量,读取温度的误差也可忽略。

故随机误差主要来源于标尺读数和光杠杆前后足距离读数b 的误差,相对标准误差可用下式计算
))(()(
n
n b b E ∆∆∆+∆= 式中Δb 可取测量b 时的仪器误差,令Δ1=(n 6-n 1)-n ∆,Δ2=(n 7-n 2)-n ∆,……,则
1
)
()(2
-∆=
=∆∆∑N S n i
n
再由相对误差定义求得绝对误差Δα,并将结果写成:α=α±Δα= 和 E= % 的形式。

【主要系统误差】
1.温度计的热惯性,升温时实际温度高于读数温度,降温时实际温度低于读数温度,采取了升温、降温同一温度对应的标尺读数n 取平均的办法,可消除这种误差。

2.铜棒温度不均匀,中下部温度高,上部温度偏低,温度计所在部位不同,可使测量结果有所不同,由于温度计在中上部,可能使测得的线胀系数α偏小。

3.光杠杆原理公式(5.3.4)具有近似性,只有当Δn 很小时,才近似成立。

【思考题】
1.本实验是在温度连续变化条件下进行的,读标尺时应注意什么?
2.用实验数据代入(5.3.3)式计算铜管在实验范围内的线膨胀值ΔL ,并分析是否能用米尺或游标卡尺来直接测量ΔL 。

3.实验中为什么要调节电位器旋钮,使指示灯发出微弱光亮? 4.本实验的温度间隔是否可以随意选取?。

相关文档
最新文档