()刚体习题课

合集下载

静力学-刚体系统平衡习题课2

静力学-刚体系统平衡习题课2

p
FGy
G
3、再研究AG杆,求出 FGy
0 FGy
刚体系平衡求解
1、研究对象
2、受力分析
3、平衡条件 4、列方程、求解 尽量一个方程解一个未知量!
例:已知 F,求 AG 杆上的约束力。
A
a
C
F
2a E
a
B
a
a
a
D
a
解:1、研究AG杆, 画受力图. H
A
F
FDx FGx
G
O
FDy
D
M
D
(F ) 0
FGxa Fa 0
G
FGy
FGx F FDx 2F
G
M
(F ) 0
FDxa F 2a 0
A
a D
F
2a E
x
FDy
D
FGx F FGy 3F
FGy 3F
[AG]:
Fy 0
FDy 3F
FGy
G
A C a D a G
F
2a a
B E a H
研究图示构件,画受力图 B C
FDx D
a 2a
E a
H
O
a
O
FCG FDy
方法3 A
F
FDx FGx
求出
FDy
p
FH
FDy
D
M F
y
0 FDy
13 G G F A sin 45 8

D A

K C B Ⅰ
2. [DEC] 受力分析如图所示
列平衡方程
E

M
其中

刚体习题课资料

刚体习题课资料

6、一飞轮以角速度0绕轴旋转,飞轮对轴的转
动惯量为J1,另一静止飞轮突然被啮合到同一个
轴上,该飞轮对轴的转动惯量为前者的两倍。啮 (1/3).0 合后整个系统的角速度
利用J1o=(J1+2J1)
一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量m1 和 m2 的物体 (m1< m2),如图所示.绳与轮 之间无相对滑动,某时刻滑轮沿逆时针方 向转动,则绳的张力
(A)
2v 3L
4v (B) 5L 8v (D) 9 L
L
6v (C) 7L
以顺时针为转动正方向 两小球与细杆组成的系统 对竖直固定轴角动量守恒
m
v
o
m
o

v
L


Lmv+Lmv=2mL2+J
J= mL2/3
可知正确答案为 [ C ]
作业:P19.5
人:m=75kg,转台:J=3000kgm2, R=2m,初始,系 统静止;人沿转台边缘行走,v=1m/s,在转台上行走一 周所用的时间? 解: 人和转台系统,外力矩为0,角动量守恒
0 mRv J1
2 2 T mR 2 2 1 2 (1 ) J
v 2 R
40 s 11
5.如图所示,一均匀 细杆长为 l ,质量为 m,平放在摩擦系数 为 m 的水平桌面上, 设开始时杆以角速 度 0 绕过中心 o 且 垂直与桌面的轴转 动,试求:
0
1 1 2 Md J 2 J12 2 26.动能定理 2 Nhomakorabea1
7.机械能守恒
1 1 2 2 mgh c1 J1 mgh c 2 J 2 2 2
8.刚体的角动量(动量矩):

大学物理第三章刚体力学基础习题答案培训课件

大学物理第三章刚体力学基础习题答案培训课件

1 )
t2
下次上课内容:
§5-1 简谐运动 §5-2 旋转矢量表示法 §5-3 单摆和复摆 §5-4 振动的能量
角动量定理
t2 Mdt
t1
J2
J1
角动量守恒 M 0, J 恒矢量
力的功
W
r F
drr
力矩的功 W Md
动 能 1 mv2
2
动能定理
W
1 2
mv22
1 2
mv12
转动动能 1 J 2
2
转动动能定理W
1 2
J22
1 2
J12
习 题 课 (三)
3-1 一轻绳绕在有水平轴的定滑轮上,绳下端挂一
的角加速度 =
。从开始制动到 =1/3 0所经过
的时间t = 。
M k2 J
k 2 k02
J 9J
k2 J d
dt
t k dt
0J
1 3
0
d
0
2
t 2J
k0
3-6 一长为L的轻质细杆,两端分别固定有质量为
m 和2m 的小球,此系统在铅直平面内可绕过中心点
O且与杆垂直的水平固定轴转动。开始时杆与水平成
方向上,正对着杆的一端以相同的速率v相向运动,
如图所示。当两小球同时与杆的两端发生完全非弹性
碰撞后,就与杆粘在一起转动,则这一系统碰撞后的
转动角速度为
m
(A) 2v
4v (B)
v
3L
✓(C)
6v 7L
5L (D) 8v
9L
(E) 12v v m
o
7L
2mvL 1 mL2 2mL2
3
6v
7L

拉格朗日方程刚体动力学振动 习题课

拉格朗日方程刚体动力学振动 习题课

x
A vA
vCA
m 1 g c B
m 2g
解:系统的主动力均为有势力
分析系统的动能和势能
vT A 1 2xm 1 vA 2 A1 2 JA rx A 2 1 2 Am B2 v C 2 1 2JCA 2 B
vC vAvCA
T 3 4 m 1 x 2 1 2 m 2 x 2 1 6 m 2 L 22 1 2 m 2 x L c o s T ( x ,,)
V L2m2g(1cos)
拉格朗日函数 LTVL(x ,,)中不显含广义坐标x和时间t
7
BUAA
习题课
T x3 2m 1xm 2x1 2m 2L co sC 系统的什么广义动量守恒?
研究整体:
x
A vA
研究圆盘:
LrA12mAr2A12m1rxF Ay
A
F
vCA LrA Fr
A
r
F Ax
c m 1 g
T V 1 2 m 1 x 2 1 2 m 2 x 2 1 6 m 2 L 2 2 1 2 m 2 x L c o s L 2 m 2 g ( 1 c o s ) E
6
BUAA
习题课
例:机构在铅垂面内运动,均质圆盘质量m1在地面上纯滚动,均 质杆AB质量m2用光滑铰链与圆盘连接。求系统首次积分。AB=L
拉格朗日方程刚体动力学振动 习 题课
BUAA
第二类拉格朗日方程的总结
对于具有完整理想约束的质点系,若系统的自由度为k,
则系统的动力学方程为:
d dt
L qj
qLj
Q'j
(j1, ,k)
其中:LTV T:为系统的动能,V:为系统的势能
Q

《大学物理期末复习》刚体转动习题课李明明 -

《大学物理期末复习》刚体转动习题课李明明 -
有一只小虫以速率 垂直v0落在距点O为 l/4 处,并背离点
O向细杆的端点A爬行。设小虫与细杆的质量均为m。问: 欲使细杆以恒定的角速度转动,小虫应以多大速率向细杆 端点爬行?
O
l/4
解 虫与杆的碰撞前 后,系统角动量守恒
mv0
l 4
1 12
ml
2
m( l )2 4
12 v0
7l
12 v0 c
2 2n2
J1
m( l1 2
)2
m( l1 2
)2
J2
m( l2 2
)2
m( l2 2
)2
J0
m l12n1 2 n2
l
2 2
n2
n1
将转台、砝码、人看作一个系统22,(J(0J+0+过程中人作的功W等于系统动能
之增量 将J0代入W式,得
W
E 12 (J J ) k ) n1 = 2 (J0+
0 t 2 02 2
0
0t
1 2
t 2
18:
已知:1
20 ,60转变2
30 ,
22 12 2 , 6.54(rad / s)
19:
2 1 t, t 4.8(s)
已知:5s内,由1 40,变2 10,求: ?,t ? 0
0
t,
0 t0
2
02
2, N
2
62.5
(3)、从t=0到t=10s内所转过的角度:
0t
1 2
t 2
3. 解:根据转动定律:
已知:M = -k
M=J =Jd (3) 10=0t+ / dt = -k
d k dt
J
0 / 2 1 d t k d t

高中物理奥林匹克竞赛专题--刚体-习题课(共12张PPT)

高中物理奥林匹克竞赛专题--刚体-习题课(共12张PPT)

解:
设碰后棒开始转动的角速度为 , 滑块m2可视为质点, 碰撞瞬时忽略摩擦阻 力矩, 则m1、m2系统对o轴的角动量守恒, 取逆时针转动的方向为正方向, 由角动量 守恒定律, 有 碰后棒在转动过程中受到的摩擦阻力矩为
o
m1
m v1 2 v2
l
1 2 m2 v1l m2 v 2 l m1l 3
使 L 方向改变,而大小不变.
M L
自转轴将在水平面内逆时针方向(俯视)回转
质点力学、刚体力学有关公式对照表
质点的运动 速度 加速度 质量 刚体的定轴转动 角速度
d r dt
2
dr v dt dv a dt
角加速度 转动惯量

ddt
d dt

d 2 dt 2
m 力 F 运动定律 F ma 动量 p mv 角动量 L r p
动量定理
力矩
转动定律 动量 角动量
M r F
J r 2 dm
M J p mi vi
L J
dmv F dt
2 mg R 2 2 M f dM f r dr mgR 2 0 R 3
(2)求圆盘停止转动的时间有两种解法
dr r
o
R
解1 用转动定律 2 1 2 d M f mgR J mR 3 2 dt
3R dt d 4g

t
0
3R 0 dt d 4g 0
l
A
m1 1 M f gxdx m1 gl 0 l 2
1 m2 v1l m2 v 2 l m1l 2 3

刚体习题

刚体习题

M β = = J
L mg cos θ 2
2 1 mL 3
g cos 3 θ = 2L
ω d ω d d θ β = dt = dθ dt =ω
θ d d 0ω ω = 0 β θ = 0
ω
θ
ω d d θ 3gcos θ d θ 2L
L
ω =
3 g sinθ L
θ
2 L 2
mg
3、如图所示,水平桌面上有有长L=1.0m,质量 m=3.0kg 的匀质细杆,细杆可绕过通过端点O的垂直轴 OO’转动,杆与桌面间的摩擦系数μ=0.20。开始时杆静 止,有一子弹质量 m2=20g,速度v=400m· s-1,沿水平 方向以与杆成θ=300角射入杆的中点,且留在杆中。求:
m
m1
m2
2、一均质细杆可绕一水平轴旋转,开始时 处于水平位置,然后让它自由下落。求:
θ) ω = ω(
解一: M = mg L cosθ
W= =
θ
0
M dθ 1 mg L cos d θ θ
2
L
θ
2
L 2
1 θ = 2 mg L sin
1 ω W= J 2
2
mg
0
ω =
3 g sinθ
L
解二: M = J β
3L 4 m v
θ
L
M
碰撞过程角动量守恒,得:
3 mv 4 L = ( Jm+ JM )ω 2 1 3 2 JM = 3 M L Jm = m ( 4 L )
3L 4 M θ m L
ω
3 mv L 3 mv 4 =9 4 2 1 = 2 9 mL 1 M L m L M L +3 +3 16 16

第2章 刚体力学例题指导资料

第2章  刚体力学例题指导资料

求(3) t 1s 时轮缘上一点的加速度.
a
r 0.5m at
at a 0.4ms2
t 0.8rad s1
an r 2 0.32m s2
r
an
a
a at2 an2 0.51m s2
arctan(an at ) 38.7
第2章 刚体力学
刚体的转动习题课选讲例题
大学物理教程
(陈信义第二版)
例 人造地球卫星, 绕地球作椭圆轨道运动, 地球 在椭圆的一个焦点上, 则卫星的:
(A) 动量不守恒, 动能守恒; (B) 动量守恒, 动能不守恒; (C) 角动量守恒, 动能不守恒; (D) 角动量不守恒, 动能守恒.
第2章 刚体力学
刚体的转动习题课选讲例题
大学物理教程
刚体的转动习题课选讲例题
大学物理教程
(陈信义第二版)
例 一人握有两只哑铃, 站在一可无摩擦地转动 的水平平台上, 开始时两手平握哑铃, 人、哑铃、平台 组成的系统以一角速度旋转, 后来此人将哑铃下垂于 身体两侧, 在此过程中, 系统
(A) 角动量守恒, 机械能不守恒; (B) 角动量守恒, 机械能守恒; (C) 角动量不守恒, 机械能守恒; (D) 角动量不守恒, 机械能不守恒.
大学物理教程
(陈信义第二版)
例 一长为 l,重为W 的均匀梯子,靠墙放置,墙
光滑,当梯子与地面成 角时处于平衡状态,求梯子
与地面的摩擦力。
解:刚体平衡的条件
Fi 0 Mi 0
Ff N2 0 P N1 0
以支点O为转动中心,梯子受
的合外力矩:
N2
l
P Ff
N1
o
P
l 2
cos
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

程中,支撑轴o对细杆的水平切向力Fx
o
为零,称该点为打击中心。试求:
(1)打击中心A与支撑轴o之间的距离RA。 RA
(2)如果用质量为m=M,速度为v的弹
Rc
性球沿水平方向击中A点,碰撞后轴o对
细杆的作用力将如何?
F
解(1)由转动定律 FRA J
质心运动定理 F Mac
1 ML2
3
ac rc
L 2
刚体定轴转动习题课
1
1.刚体定轴转动定律:
M J
2.刚体的转动惯量: J mi ri2
J r 2dm
平行轴定理: J J c md 2
3.刚体定轴转动的角动量定理:
Mz
dLz dt
(Lz J )
4.角动量守恒定律:Mz=0
Lz1 Lz2 恒量
5.刚体转动的功和能:
A 2 Md 1
rA A = rBB 3
则:FA : FB = 1 : 2 6
例3、一轻绳绕过一半径为R,质量为m/4的滑轮。质量
为m的人抓住了绳的一端,在绳的另一端系一个质量为
m/2的重物,如图所示。求当人相对于绳匀速上爬时,
重物上升的加速度是多少?
解:选人、滑轮与重物为系统
R
o
m 4
v
对O轴,系统所受的外力矩为:
解: 铁质和木质圆板的转动惯量分别为:
J铁
1 2
m R铁2
J木
1 2
m R木2
由角动量定理得:M L J t t
M相同,也相同, 所以:
R铁 R木
J铁 J木
J铁 J木 t铁 t木
t木
J木 J铁
t铁
t铁
因此,铁圆板先停
5
例2. 如图,转轮A、B可分别独立地绕o轴转动。
A、B轮的质量分别为mA 10kg和mB 20kg,
的固定光滑轴转动。另有一水平运动的质量为m的
o 小撞。滑时求块间细, 极 棒从 短 碰侧 。 撞面 已 后垂知直直碰到于撞静棒前止方后所向小需与滑的棒块时发速间生度是碰 分多撞 别少, 为?v1设碰和v2
解: m与M碰撞过程,
系统(m,M)对O轴角动量守恒
mv 1 L mv 2 L J (1) v2
6.机械能守恒定律
Ek
1 J 2
2
E p mghc
当只有保守力矩作功 Ek Ep 恒量
2
说明: (1)粘接在一起的两个圆盘(或圆柱)形状的刚体,要把它们看 成一个刚体,不要分开考虑。
它们的和均相同,但不同半径处的和a不同。
如图,在r处:
or
r at r an 2 / r
R
在R处 :
半径分别为rA和rB。现用力f
A和f
分别拉系在轮上
B
的细绳且使绳与轮间无滑动。为使A、B两轮边缘处
切向加速度相同,相应的拉力f
A、f
之比为多少?
B
解:A、B滑轮视为两个刚体
rB
它们的和将不再相同。
o
rA
由转动定律:rA fA = J A A 1
fB
fA
由题意: rB fB = JBB 2
atA = atB
联立可得:
RA
2 3
L
Fy
Fx c A
13
(2)如果用质量为m=M,速度为v1的弹性球 沿水平方向击中A点,碰撞后轴o对细杆的作用
Fy
力将如何?
球打在A点,轴间仍没有x方向轴力 球和棒系统,水平方向动量守恒
o RA Rc c
mv1 mv 2 MVc
系统角动量守恒
vv
A
1
RA mv1 RA mv 2 J RAmv
R at R an 2 / R
(2)用一根绳连接两个或多个刚体时,要把刚体分开考 虑。
3
BC
1 同一根绳上各点的切向
M2 o2 R2
o
R
1
1
M1
加速度和线速度相同;
A
m2
D at A = at B = at C = at D C D
m1
(2)跨过有质量的圆盘两边的绳子中的张力不相等;
dM 2rf (2rdr) 4kvr2dr
o
4kr3dr
r
M R 4kr3dr kR4 0
dr
பைடு நூலகம்
由转动定理:J
d 2kR2 dt
m
d
dt
0
M
d
1 mR2 2
2kR2
m
d
dt
kR4
t
dt
0
0e
2kR
m
2
t
9
例5. 质量为M长为L的均质细棒静止平放在滑动摩
擦系数为 的水平桌面上。它可绕O点垂直于桌面
L x dx g
0
1 MgL
2
(3)
Mdt Jd
有:
t 0
Mf dt
J
0
d
(4)
由以上四式解出: t 2mv1 v2
Mg
11
例6、质量为M,长为 l 的均匀棒,如图,若用水平力F
打击在离轴下 y处,求:轴对棒的作用力。 Ry
解:设轴的作用力为: Rx Ry 由转动定律: yF J
M
Rmg
R
m 2
g
1 2
Rmg
设u为人相对绳的匀速度,v 为重物上升
m
的速度, 则系统对o轴的角动量为:
m 2
L
R
m 2
v
Rm
u
v
J
J 1 m R2 2 4
L 13 mRv mRu
8
7
R
o
m 4
v
m
m 2
M 1 Rmg L 13 mRv mRu
2
根据角动量定理:
M
8
dL
dt
TA TB TD 但 TB T(C 忽略绳子的质量)
(3)两个圆盘的角速度和角加速度不相等。
1 2 1 2
4
例1. 现有质量相同,厚度相同的铁质和木质圆板各一个。令其 各自绕通过圆板中心且与圆板垂直的光滑轴转动。设其角速度 也相同。某时刻起两者受到同样大小的阻力矩,问:哪种质料 的圆板先停止转动?
v1
J 1 ML2 3
(2)
碰后细棒转动直至停止,受摩擦阻力矩作用
10
mv 1 L mv 2 L J (1)
J 1 ML2 (2)
碰后:
3
dm dx o
v1
x
任意质点所受阻力: df dN gdm gdx
任意质点所受阻力矩: dM f xdf
M f xdf
由角动量定理 L
d
Rx
t 为作用时间
得到: 0
由质心运动定理:
dt
yF J
t
F
y
切向:F Rx
法向:
m
Ry
l 2
d
dt
mg
于是得到:Rx
(1
3y)F 2l
m
l 2
2 Ry
mg
9F
2 y2 (t)2 2l 3m
12
例7、如图所示,以水平力F打击悬
挂着的质量为M、长度为L的均匀细杆。
如果打击点A选择得合适,在打击的过
1 mgR d 13 mRv mRu
2
dt 8
du 0 a dv 4 g
dt
dt 13
8
例4、质量为m,半径为R的圆盘,可绕过盘中心且垂直
于盘面的轴转动,在转动过程中单位面积所受空气的阻
力为 f kv ,t 0 时,圆盘的角速度为0 ,求盘在任
意时刻的速度 (t)。
解:先求阻力力矩, 取半径为r宽为dr的圆带
相关文档
最新文档