江西省初中名校联考2020年4月九年级数学模拟试卷(含答案)

合集下载

【2020精品】江西省九年级数学中考模拟试题含答案

【2020精品】江西省九年级数学中考模拟试题含答案

2020江西省九年级数学中考模拟试题一、选择题(本大题共6小题,每小题3分,共18分) 1.下列计算正确的是 ( )A. -3-(-3) =-6B. -3-3=0C.-3÷3×3=-3D. -3÷3÷3=-32. 在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C3.下面说法中,不.正确的是 ( ) A .绝对值最小的实数是0 B .立方根最小的实数是0 C .平方最小的实数是0 D .算术平方根最小的实数是04.下列计算结果为正数的是 ( ) A .21()2-- B.01()2-- C. 31()2- D.-125.在下列说法中,菱形对角线不具有的性质是 ( ) A .对角线互相垂直; B.对角线所在的直线是对称轴; C .对角线相等; D.对角线互相平分.6.如图抛物线2y=ax bx c ++与x 轴交于A 、B 两点,其中B 点坐标为(4,0),直线DE 是抛物线的对称轴,且与x 轴交于点E ,C D⊥DE 于D ,现有下列结论:① a <0, ② b <0, ③ 2b -4ac >0, ④ AE+CD=4下列选项中选出的结论完全正确..............的.是. . (第6题) A .①②③ B. ①②④ C. ① ③ ④ D. ①②二、填空题 (本大题共6小题,每小题3分,共18分) 7.化简:188-= . 8. .一次体检中,某班学生视力情况如下表: 视力情0.7以下 0.7 0.80.91.01.0以上况人数所占的百分比5﹪8﹪15﹪20﹪40﹪12﹪从表中看出全班视力情况的众数是9.已知命题“关于x的一元二次方程x2+bx+14=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是.10.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸BC的C处测得∠BCA=50 ,BC=10m,则桥长AB= m(用计算器计算,结果精确到0.1米)11.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要个小立方体.(第10题) (第11题) (第12题)12.如图,在直角坐标系中,ABCD的四个顶点的坐标分别为A(0,8),B(-6,8),C(-6,0),D(0,0),现有动点P在线段CB上运动,当△ADP为等腰三角形时,P点坐标为 .三、(本大题共5小题, 每小题6分,共30分)13. (本题共2小题,每小题3分)(1)解方程:12222x x x++=--(2)如图,在⊙O 中,OA ⊥OB ,∠A=20°,求∠B 的度数.14.已知2(2a ++与2b +-互为相反数,求22(2)(2)(2)2a b b a b a a +-+--的值.(第(2)题)15,.关于x 的不等式组.;01234⎪⎩⎪⎨⎧<-+>+a x x x (1)当3=a 时,解这个不等式组; (2)若不等式组的解集是1<x ,求a 的值.16.如图,点A 、B 在⊙O 上,点O 是⊙O 的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A 的余角. (1)图①中,点C 在⊙O 上; (2)图②中,点C 在⊙O 内;17.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜。

2020年江西省九年级数学中考模拟试题 含答案

2020年江西省九年级数学中考模拟试题 含答案

2020年江西省九年级数学中考模拟试题考生须知:1.全卷共六大题,23小题.满分为120分.考试时间120分钟.2.本卷答案必须做在答题纸的对应位置上,做在试题卷上无效. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(本大题共有6小题,每小题3分,共18分。

请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1、在0 ,-2,1,5这四个数中,最小的数是() A .0 B .-2 C .1 D .5 2、下列三条线段不能构成三角形的三边的是() A .3cm ,4cm ,5cm B .5cm ,6cm ,11cm C .5cm ,6cm ,10cm D .2cm ,3cm ,4cm 3、已知sin α=23,且α是锐角,则α等于( ) A.750B.600C.450D.3004、为了调查瑞州市2016年初三年级学生的身高,从中抽取出200名学生进行调查,这个问题中样本容量为( )A .被抽取的200名学生的身高B .200C .200名D .初三年级学生的身高5、平行四边形、矩形、正方形之间的关系是( )6、下面几何体的主视图是( )二、填空题(本大题共6个小题,每小题3分,共18分.)7、2016年我市经济依然保持了平稳增长。

据统计,截止到今年4月底,我市金融机构存款余额约为1193亿元,用科学计数法应记为元8、分解因式:a3-16a=____________。

9、有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是。

10、定义新运算“※”,规则:a※b=ab-a-b,如1※2=1×2-1-2=-1。

若x2+x-1=0的两根为x1,x2,则x1※x2=。

11、如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是。

江西省初中名校联考2020年九年级数学模拟试卷(4月份)(含答案)

江西省初中名校联考2020年九年级数学模拟试卷(4月份)(含答案)

江西省初中名校联考2020年九年级数学模拟试卷(4月份)一.选择题(每题3分,满分18分)1.下列各数中,负数是()A.﹣(﹣2)B.﹣|﹣2| C.(﹣2)2D.(﹣2)02.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.116×106B.11.6×107C.1.16×107D.1.16×1083.下列运算正确的是()A.a3•a2=a6B.C.(﹣3a)2=﹣6a2D.(a﹣1)2=a2﹣14.将4个红球、3个白球、2个黑球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生5.关于下列说法:(1)反比例函数y=,在每个象限内y随x的増大而减小:(2)函数y=x,y随x的指大而减小:(3)函数y=,当x>0时,y随x的増大而减小.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB的中点,点O是边BC 上的一个动点,设点A绕点O顺时针旋转90°的对应点为A′.则点M到A′点的最小距离为()A.B.C.D.二.填空题(满分18分,每小题3分)7.若数轴上的点A与点B表示的两个数互为相反数,并且这两个数的距离是7,则这两个点所表示的数分别是和.8.如图,已知AD:DB=2:1,CE:EA=2:3,则CF:DF=.9.实验初中初二(1)班同学参加社会实践活动,几名同学打算包租一辆车前往,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加实践活动的学生原有x人,则可列方程为.10.如图,一次函数y=ax+b的图象交x轴于点B,交y轴于点A,交反比例函数y=的图象于点C,若AB=BC,且△OBC的面积为2,则k的值为.11.将抛物线y=﹣5x2沿x轴对称,再先向左平移5个单位,再向下平移3个单位,可以得到新的抛物线是.12.如图,在平面直角坐标系中,直线y=﹣3x+6与x轴、y轴分别交于A、B两点,以AB 为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是.三.解答题13.如图,在菱形ABCD中,E、F分别为边AD和CD上的点,且AE=CF.连接AF、CE交于点G.求证:∠DGE=∠DGF.14.关于x的方程(m+2)x2﹣4x+1=0有两个不相等实数根.(1)求m的取值范围;(2)当m为正整数时,求方程的根.15.如图1,点E是正方形ABCD对角线AC上的一点,连接EB、ED.(1)求证:EB=ED.(2)如图2,延长BE交CD于F,点G在AB上,连接FG交DE于点O,如果FB=FG,请求证:△FDO∽△FBC.16.为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分)中位数(分)众数(分)一班8.76 a=b=二班8.76 c=d=根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.17.已知▱ABCD的对角线AC,BD交于点O,点E在AB边上.(1)尺规作图:在图中作出点E,使得OE=;(保留作图痕迹,不写作法)(2)在(1)的条件下,若AB=OE,AO=,求证:四边形ABCD是矩形.18.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利40元.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,销量为件;(用含x的式子表示)(2)为了扩大销售,尽快减少库存,商场决定釆取降价措施.但需要平均每天盈利1200元,求每件衬衫应降价多少元?19.校园文化是学校的灵魂,近期,实外西区肖明华校长推出《读100本名著》、《听100首名曲》、《赏100幅名画》、《懂100个名人》等一系列文化活动.为了解学生对这些文化活动的喜爱情况,我校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《读100本名著》(记为A)、《听100首名曲》(记为B)、《赏100幅名画》(记为C)、《懂100个名人》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他校园文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(150名)(2)将条形统计图补充完整,并求出扇形统计图中“B所在扇形圆心角的度数;(D:75人,B:15人,36)(3)若选择“E“的学生中有2名女生,其余为男生,现从选择“E“的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.(P =)20.如图,电源两端的电压U保持不变,电流强度I与总电阻R成反比例.在实验课上,调整滑动变阻器的电阻,改变灯泡亮度.实验测得电路中总电阻R为 15Ω时,通过的电流强度I为0.4A.(1)求I关于R的函数表达式,并说明比例系数的实际意义;(2)如果灯泡的电阻为5Ω,电路中电流控制在0.3A到0.6A之间(包括0.3,0.6),那么这个滑动变阻器的电阻应控制在什么范围;(3)若电路中的总电阻扩大到原来的n倍,则所通过的电流将怎样变化?请利用I关于R的函数表达式来说明理由.21.如图乙,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD,CE的交点.(1)如图甲,将△ADE绕点A旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个.(回答直接写序号)①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)(2)若AB=6,AD=3,把△ADE绕点A旋转:①当∠CAE=90°时,求PB的长;②直接写出旋转过程中线段PB长的最大值和最小值.22.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点B,与y轴交点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴交于另一点A.如图1,点P为抛物线上任意一点.过点P作PM⊥x轴交BC于M.(1)求抛物线的解析式;(2)当△PCM是直角三角形时,求P点坐标;(3)如图2,作P点关于直线BC的对称点P′,作直线P′M与抛物线交于EF,设抛物线对称轴与x轴交点为Q,当直线P′M经过点Q时,请你直接写出EF的长.23.【综合与实践】如图①,在正方形ABCD中,点E、F分别在射线CD、BC上,且BF=CE,将线段FA绕点F顺时针旋转90°得到线段FG,连接EG,试探究线段EG和BF的数量关系和位置关系.【观察与猜想】任务一:“智慧小组”首先考虑点E、F的特殊位置如图②,当点E与点D重合,点F与点C重合时,易知:EG与BF的数量关系是,EG与BF的位置关系是.【探究与证明】任务二:“博学小组”同学认为E、F不一定必须在特殊位置,他们分两种情况,一种是点E、F分别在CD、BC边上任意位置时(如图③);一种是点E、F在CD、BC边的延长线上的任意位置时(如图④),线段EG与BF的数量关系与位置关系仍然成立.请你选择其中一种情况给出证明.【拓展与延伸】“创新小组”同学认为,若将“正方形ABCD”改为“矩形ABCD,且=k(k≠1)”,点E、F分别在射线CD、BC上任意位置时,仍将线段FA绕点F顺时针旋转90°,并适当延长得到线段FG,连接EG(如图⑤),则当线段BF、CE、AF、FG满足一个条件时,线段EG与BF的数量关系与位置关系仍然成立.(请你在横线上直接写出这个条件,无需证明)参考答案一.选择1.解:A、﹣(﹣2)=2,故此选项错误;B、﹣|﹣2|=﹣2,故此选项正确;C、(﹣2)2=4,故此选项错误;D、(﹣2)0=1,故此选项错误;故选:B.2.解:将116000000用科学记数法表示应为1.16×108.故选:D.3.解:A、a3•a2=a5,故此选项错误;B、(﹣)3=﹣,正确;C、(﹣3a)2=9a2,故此选项错误;D、(a﹣1)2=a2﹣2a+1,故此选项错误;故选:B.4.解:4个红球、3个白球、2个黑球放入一个不透明的袋子里,若摸到所有的红球与白球共7个,一定还会摸到1个黑球;若摸到所有的白球与黑球共5个,还会摸到3个红球;若摸到所有的红球与黑球共6个,还会摸到2个白球;所以从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情是必然事件.故选:D.5.解:当m<0时,反比例函数y=,在每个象限内y随x的増大而增大,故(1)错误;函数y=x,y随x的指大而减小,故(2)正确;函数y=,当x>0时,y随x的増大而减小,故(3)正确;故选:C.6.解:过A′作A′G⊥BC于G,∵点A绕点O顺时针旋转90°的对应点为A′.∴OA=OA',∠AOA'=90°,∵∠ACO=90°,∠A'GO=90°,∴∠A'OG=∠OAC,∴△A'OG≌△OAC,(AAS),∴A′G=OC,OG=AC=6,过M作MH⊥BC于H,则MH=3,CH=4,过M作MN⊥A′G于N,则A′N=|A'G﹣3|,设OC=x,则MN=x+2,A′N=|x﹣3|,∴A′M2=(x+2)2+(x﹣3)2=2(x﹣)2+,∴A′M的最小值为.故选:A.二.填空7.解:由A、B表示的数互为相反数,并且两点间的距离是7,得这两个点所表示的数分别是﹣3.5,3.5,故答案为:﹣3.5,3.5.8.解:过D作DM∥AC,交BE于M,∵DM∥AC,∴△BMD∽△BEA,∴=,∵AD:DB=2:1,∴===,即AE=3DM,∵CE:EA=2:3,∴CE=2DM,∵DM∥AC,∴△DMF∽△CEF,∴===,故答案为:2:1.9.解:依题意,得:﹣=3.故答案为:﹣=3.10.解:作CD⊥y轴于D,则OB∥CD,∴=,∵AB=BC,∴OA=OD,∴S△OCD =S△AOC∵AB=BC,∴S△AOB =S△OBC=2,∴S△AOC =S△AOB+S△OBC=4,∴S△OCD=4,∵反比例函数y=的图象经过点C,∴S△OCD=|k|=4,∵在第一象限,∴k=8.故答案为8.11.解:∵将抛物线y=﹣5x2沿x轴对称,∴得到的抛物线的解析式为:y=5x2,∵向左平移5个单位,∴得到的抛物线的解析式为:y=5(x+5)2,∵再向下平移3个单位,∴新抛物线的解析式为:y=5(x+5)2﹣3=5x2+50x+122.故答案为:y=5x2+50x+122.12.解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+6中,令x=0,解得:y=6,即B的坐标是(0,6).令y=0,解得:x=2,即A的坐标是(2,0).则OB=6,OA=2.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=6,DF=OA=BE=2,故D的坐标是(8,2),C的坐标是(6,8).代入y=得:k=16,则函数的解析式是:y=.∴OE=8,则C的纵坐标是8,把y=4代入y=得:x=2.即G的坐标是(2,8),∴CG=4,∴a=4.故答案为4.三.解答13.证明:∵四边形ABCD是菱形,∴DA=DC=AB=BC,∵AE=CF,∴DE=DF,∵∠ADG=∠CDG,DG=DG,∴△DEG≌△DFG(SAS),∴∠DGE=∠DGF.14.解:(1)由题意得,m+2≠0,(﹣4)2﹣4×(m+2)>0,解得,m<2且m≠﹣2;(2)∵m<2,m为正整数,∴m=1,则原方程可化为3x2﹣4x+1=0,(3x﹣1)(x﹣1)=0,解得,x1=,x2=1.15.证明:(1)∵四边形ABCD是正方形,∴DC=BC,∠DCE=∠BCA=45°,在△DCE和△BCE中∴△DCE≌△BCE(SAS),∴BE=ED;(2)∵四边形ABCD是正方形,∴DC∥AB,∴∠DFO=∠FGB,∠CFB=∠FBG,∵FB=FG,∴∠FGB=∠FBG,∴∠DFO=∠CFB,∵△DCE≌△BCE,∴∠CDG=∠CBF,∴△FDO∽△FBC.16.解:(1)设一班C等级的人数为x,则8.76(6+12+x+5)=6×10+9×12+8x+5×7,解得:x=2,补全一班竞赛成绩统计图如图所示:(2)a=9;b=9;c=8;d=10,故答案为:9,9,8,10.(3)一班的平均分和二班的平均分都为8.76分,两班平均成绩都一样;一班的中位数9分大于二班的中位数8分,一班成绩比二班好.综上,一班成绩比二班好.17.(1)解:如图3,点E即为所求.(2)证明:∵四边形ABCD是平行四边形,∴AC=2AO=AB,又∵OE=BC,AB=OE,∴BC=2AB,△ABC中,AB2+BC2=AB2+(2AB)2=5 AB2,AC2=(AB)2=5 AB2,∴AB 2+BC2=AC2,∴∠ABC=90°,∴四边形ABCD是矩形.18.解:(1)∵每件衬衫降价x元,∴每件衬衫的利润为(40﹣x)元,销量为(20+2x)件.故答案为:(40﹣x);(20+2x).(2)依题意,得:(40﹣x)(20+2x)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20.∵为了扩大销售,增加盈利,尽快减少库存,∴x=20.答:每件衬衫应降价20元.19.解:(1)30÷20%=150(人),∴共调查了150名学生.(2)D:50%×150=75(人),B:150﹣30﹣75﹣24﹣6=15(人)补全条形图如图所示.扇形统计图中“B”所在扇形圆心角的度数为×360°=36°.(3)记选择“E”的同学中的2名女生分别为N1,N2,4名男生分别为M1,M2,M3,M4,列表如下:N 1N2M1M2M3M4N 1(N1,N2)(N1,M1)(N1,M2)(N1,M3)(N1,M4)N 2(N2,N1)(N2,M1)(N2,M2)(N2,M3)(N2,M4)M 1(M1,N1)(M1,N2)(M1,M2)(M1,M3)(M1,M4)M 2(M2,N1)(M2,N2)(M2,M1)(M2,M3)(M2,M4)M 3(M3,N1)(M3,N2)(M3,M1)(M3,M2)(M3,M4)M 4(M4,N1)(M4,N2)(M4,M1)(M4,M2)(M4,M3)∵共有30种等可能的结果,其中,恰好是同性别学生的有14种情况,∴选到同性别学生的概率=.20.解:(1)由题意得:U=IR,则U=15×0.4=6,则I=;实际意义:电流强度I与总电阻R的乘积是定值,定值为6.(2)R=,当I=0.3时,R=20,当I=0.6时,R=10,则滑动变阻器的电阻应控制在5﹣15Ω之间;(3)总电阻扩大到原来的n倍,由I=知,电流缩小到原来的.21.(1)解:如图甲:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确.②∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴②正确.③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确.④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2),∴④错误.故答案为①②③.(2)①解:a、如图乙﹣1中,当点E在AB上时,BE=AB﹣AE=3.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=.b、如图乙﹣2中,当点E在BA延长线上时,BE=9.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=.综上,PB=或.②解:a、如图乙﹣3中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB 的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE 最大,因此PB最大)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=2,∴PB=BD+PD=3+3.综上所述,PB长的最大值是3+3.b、如图乙﹣4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.理由:此时∠BCE最小,因此PB最小,(△PBC是直角三角形,斜边BC为定值,∠BCE 最小,因此PB最小)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=4,∴PB=BD﹣PD=3﹣3.综上所述,PB长的最小值是3﹣3.22.解:(1)∵直线y=﹣x+2与x轴交于点B,与y轴交点C,∴B(4,0),C(0,2),∴把B(4,0),C(0,2)代入y=﹣x2+bx+c得,,解得,,∴抛物线的解析式为:y=﹣+2;(2)∵PM⊥x轴交BC于M.BC不平行x轴,∴∠PMC≠90°,当∠CPM=90°时,PC∥x轴,则P点的纵坐标为2,∵y=﹣+2的对称轴为x=1,∴P点的横坐标为:2,此时P(2,2);当∠PCM=90°时,设P(m,),则M(m,﹣m+2),由PC2+CM2=PM2得,=,解得,m=0(与C的横坐标相同,舍去),或m=﹣6,此时P(﹣6,﹣10);综上,P点的坐标为(2,2)或(﹣6,﹣10);(3)作Q点关于直线BC的对称点K,QK与BC相交于点N,再过K作KL⊥x轴于点L,如图所示,则根据题意可知,KL与BC的交点为M,P点在KM上,P'在QM上,∵y=﹣+2,∴抛物线的对称轴为x=1,∴Q(1,0),∴BQ=4﹣1=3,∵∠QBN=∠CBO,∠QNB=∠COB=90°,∴△BQN∽△BCO,∴,即,∴QN=,∴QK=2QN=,∠BQN=∠KQL,∠BNQ=∠KLQ=90°,∴△BQN∽△KQL,∴,即,∴QL=,∴OL=1+,∴M(,),设QM的解析式为:y=kx+b(k≠0),则,∴,∴直线QM的解析式为:y=,联立方程组,解得,,或,∴E(,),F(,),∴EF=.23.【观察与猜想】解:∵四边形ABCD是正方形,∴∠B=∠BCD=∠ADC=90°,AB=BC=CD=AD,∠ACB=∠ACD=45°,由旋转的性质得:GC=AC,∠ACG=90°,∴∠ACB=∠GCD=45°,在△ABC和△GDC中,,∴△ABC≌△GDC(SAS),∴AB=GD,∠GDC=∠B=90°,∴DG∥BC,△CDG是等腰直角三角形,∴DG=CD=BC,∵点E与点D重合,点F与点C重合,∴EG=BF,EG∥BF;故答案为:EG=BF,EG∥BF;【探究与证明】证明:点E、F分别在CD、BC边上任意位置时,如图③所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;点E、F在CD、BC边的延长线上的任意位置时,如图④所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;【拓展与延伸】解:==k(k≠1)时,线段EG与BF的数量关系与位置关系仍然成立;理由如下:作GM⊥BC,交BC延长线于M,如图⑤所示:则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,∠B=∠GMF,由旋转的性质得:∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,∴△ABF∽△FMG,∴==,∵==k,∴==k,==k,∴FM=BC,GM=CE,∴BF=CM,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;故答案为:==k(k≠1).。

2020年江西省中考数学模拟试卷(三)(含答案解析)

2020年江西省中考数学模拟试卷(三)(含答案解析)

2020年江西省中考数学模拟试卷(三)一、选择题(本大题共6小题,共18.0分)1.−5的绝对值是()A. 15B. −5 C. 5 D. −152. 4.下列运算正确的是()A. a2⋅a3=a6B. a8÷a4=a4C. a2+a2=a4D. (a3)2=a53.如图所示的几何体是由五个完全相同的正方体组成的,它的俯视图是()A.B.C.D.4.若不等式组{x>−2x>m+2的解集是x>−1,则m的值是()A. −1<m<1B. −1或−3C. −1D. −35.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A. 54B. 154C. 4D. 926.已知直线y=kx+b(k≠0)过点(−1,0),且与直线y=3x−6在第四象限交于点M,则k的取值范围是()A. −6<k<0B. −3<k<0C. k<−3D. k<−6二、填空题(本大题共6小题,共18.0分)7.函数y=√1−2x的自变量x的取值范围是______.1+x8.福布斯2018年全球富豪榜出炉,中国上榜人数仅次于美国,其中马化腾以491亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为______美元.9.王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB为6m,则桥拱半径OC为______m.10.已知a,b是一元二次方程x2+4x−3=0的两个实数根,则a2−ab+4a的值是______.11.如图,矩形ABCD中,点E在边BC上,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为____________.12.已知:如图,矩形ABCD,AB=2,BC=4,对角线AC,BD相交于点O,点P在对角线BD上,并且A,O,P组成以OP为腰的等腰三角形,那么OP的长等于______.三、解答题(本大题共11小题,共84.0分)13.先化简,再求值:4x(2x2−x+1)+2(2x−1)−4(1−2x2),其中x=1.14.如图,△ABC中,BD平分∠ABC,E为BC上一点,∠BDE=∠BAD=90°.(1)求证:BD2=BA⋅BE;(2)若AB=6,BE=8,求CD的长.15.如图,四边形ABCD是菱形,请仅用无刻度的直尺按要求画图.(不写画法,保留作图痕迹).(1)在图1中,画出∠A的平分线;(2)在图2中,AE⊥CD,过点C画出AD边上的高CF;(3)在图3中,AE⊥CD,过点C画出AB边上的高CG.16.生死守护,致敬英雄.湘潭28名医护人员所在的湖南对口支援湖北黄冈医疗队红安分队,精心救治每一位患者,出色地完成了医疗救治任务.为致敬英雄,某校音乐兴趣小组根据网络盛传的“红旗小姐姐”跳的儋州调声组建了舞蹈队.现需要选取两名学生作为舞蹈队的领舞,甲、乙两班各推荐了一男生和一女生.(温馨提示:用男 1、女 1;男 2、女 2分别表示甲、乙两班4个学生)(1)请用列举的方法写出所有可能出现的结果;(2)若选取的两人来自不同的班级,且按甲、乙两班先后顺序选取.请用列表或画树状图的方法求出恰好选中一男一女的概率.17.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.18.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表类别时间t(小时)人数A t<0.510B0.5≤t<120C1≤t<1.515D t≥1.5a(1)求表格中的a的值,并在图中补全条形统计图;(2)该校现有1300名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?19.如图,直线y=k1x+b与双曲线y=k2相交于A(1,3),B(m,−1)两点.x(1)求直线和双曲线的解析式;(2)点C为x轴正半轴上一点,连接AO,AC,且AO=AC,求S△AOC;(3)设直线y=k1x+b与x轴的交点D;在双曲线上是否存在合适的点P,使S△PDO=S△AOC?若存在,求出点P的坐标;若不存在,请说明理由.20.如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2√5米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)21.如图1,⊙O的半径r=25,弦AB、CD交于点E,C为弧AB的中点,过D点的直线交AB延长3线于点F,且DF=EF.(1)试判断DF与⊙O的位置关系,并说明理由;AE,求CE的长.(2)如图2,连接AC,若AC//DF,BE=3522.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.AC;(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=13(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3√3时,求旋转角的大小并指明旋转方向.23.如图,抛物线y=ax2+bx+c经过A(−3,0)、C(0,4),点B在抛物线上,CB//x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.【答案与解析】1.答案:C解析:解:−5的绝对值是5.故选:C.根据一个负数的绝对值是它的相反数求解即可.本题考查了绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.答案:B解析:根据合并同类项法则、积的乘方、同底数幂的乘法和除法,对各项计算后即可判断【详解】解:A、a2⋅a3=a5,故此选项错误;B、a8÷a4=a4,故此选项正确;C、a2+a2=2a2,故此选项错误;D、(a3)2=a6,故此选项错误;故选:B.此题考查单项式乘单项式,同底数幂的除法,幂的乘方与积的乘方,合并同类项,掌握运算法则是解题关键3.答案:A解析:解:从上面看易得上面一层有3个正方形,下面第二层最左边有一个正方形.故选:A.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.答案:D解析:解:∵不等式组{x >−2x >m +2的解集是x >−1, ∴m +2=−1,即m =−3.故选D .利用不等式组取解集的方法判断即可求出m 的值.此题考查了一元一次不等式组的解集,熟练掌握不等式组取解集的方法是解本题的关键. 5.答案:B解析:解:如图所示,连接EG ,由旋转可得,△ADE≌△ABF ,∴AE =AF ,DE =BF ,又∵AG ⊥EF ,∴H 为EF 的中点,∴AG 垂直平分EF ,∴EG =FG ,设CE =x ,则DE =5−x =BF ,FG =8−x ,∴EG =8−x ,∵∠C =90°,∴Rt △CEG 中,CE 2+CG 2=EG 2,即x 2+22=(8−x)2,解得x =154,∴CE 的长为154,故选:B .连接EG ,根据AG 垂直平分EF ,即可得出EG =FG ,设CE =x ,则DE =5−x =BF ,FG =EG =8−x ,再根据Rt △CEG 中,CE 2+CG 2=EG 2,即可得到CE 的长.本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.6.答案:A解析:解:将点(−1,0)代入y =kx +b ,∴k =b ,∴y =kx +k ,与直线y =3x −6在第四象限交于点M ,则有kx +k =3x −6,∴M(k+63−k ,9k 3−k ),∵M 在第四象限,∴k+63−k >0,9k 3−k <0,∴−6<k <0;故选:A .将点(−1,0)代入y =kx +b ,可求k =b ,再由直线交点的求法,联立方程可得M(k+63−k ,9k 3−k ),根据M 在第四象限,则有k+63−k >0,9k 3−k <0,即可求解.本题考查一次函数的图象及性质;能够掌握直线交点坐标的求法,牢记象限内点的坐标特点是解题的关键. 7.答案:x ≤12且x ≠−1解析:解:根据题意得:{1−2x ≥01+x ≠0解得:x ≤12且x ≠−1.根据二次根式的性质和分式的意义,被开方数大于或等于0,就可以求解.本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.8.答案:4.91×1010解析:解析:以491亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为4.91×1010美元,故答案为:4.91×1010.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.9.答案:5解析:连接OA,根据垂径定理求出AD,根据勾股定理列式计算即可.本题考查的是勾股定理和垂径定理的应用,掌握垂直于弦的直径平分弦是解题的关键.解:连接OA,∵OD⊥AB,∴AD=1AB=3,2在Rt△AOD中,OA2=OD2+AD2,即OC2=(9−OC)2+32,解得,OC=5,故答案为:5.10.答案:6解析:解:根据题意,易得ab=−3,将其代入a2−ab+4a可得a2+4a+3,而a是方程的一根,故a2+4a=3,所以原式=3+3=6,故答案为6.根据一元二次方程根与系数的关系可得ab 的值,将其代入a 2−ab +4a =a 2+4a −ab 中,可得关于a 的代数式,又由a 是方程的一根,可得代数式a 2+4a 的值,可得答案.本题考查了一元二次方程根与系数的关系,要掌握根与系数的关系式:x 1+x 2=−b a ,x 1x 2=c a . 11.答案:2√10解析:本题考查了三角形的全等和勾股定理的应用,一定要熟练掌握全等三角形的判定方法和勾股定理的内容.由翻折易得△DFE≌△DCE ,则DF =DC ,∠DFE =∠C =90°,再由AD//BC 得∠DAF =∠AEB ,证出△ABE≌△DFA ;设CE =x ,再由勾股定理,求得DE .解:由矩形ABCD ,得∠B =∠C =90°,CD =AB ,AD =BC ,AD//BC ,由△DEC 沿线段DE 翻折,点C 恰好落在线段AE 上的点F 处,得△DFE≌△DCE ,∴DF =DC ,∠DFE =∠C =90°,∴DF =AB ,∠AFD =90°,∴∠AFD =∠B ,由AD//BC 得∠DAF =∠AEB ,∴在△ABE 与△DFA 中,{∠AEB =∠DAF ∠B =∠AFD AB =DF,∴△ABE≌△DFA(AAS),∵由EC :BE =1:4,∴设CE =x ,BE =4x ,则AD =BC =5x ,由△ABE≌△DFA ,得AF =BE =4x ,在Rt △ADF 中,由勾股定理可得DF =3x ,又∵DF =CD =AB =6,∴x =2,在Rt △DCE 中,DE =√EC 2+DC 2=√22+62=2√10.故答案是2√10. 12.答案:√5或5√56解析:本题考查了矩形的性质、等腰三角形的判定、勾股定理、三角形面积以及分类讨论的思想等知识;运用分类讨论的思想是解题的关键.由矩形的性质和勾股定理得出OA =OB =OC =OD =√5,当P 与B 或D 重合时,OP =OB =OD =√5;当AP =OP 时,作AE ⊥OB 于E ,用面积法求出AE ,由勾股定理求出OE ,设AP =OP =x ,则PE =x −3√55,在Rt △APE 中,运用勾股定理列方程求解可得OP 的长度.解:∵四边形ABCD 是矩形,∴AD =BC =4,CD =AB =2,∠ABC =90°,OA =OC ,OB =OD ,AC =BD ,∴AC =BD =√AB 2+BC 2=√22+42=2√5,∴OA =OB =OC =OD =√5.①当P 与B 或D 重合时,OA =OP =OB =OD =√5;②当AP =OP 时,作AE ⊥OB 于E ,如图所示:∵△ABD 的面积=12AD ·AB =12BD ·AE ,∴AE =AD·ABBD =2√5=4√55, ∴OE =√OA 2−AE 2=3√55, 设AP =OP =x ,则PE =x −3√55, 在Rt △APE 中,x 2=(4√55)2+(x −3√55)2,解得x=5√56,此时OP=5√56,综上所述,A,O,P组成以OP为腰的等腰三角形,那么OP的长等于√5或5√56.故答案为:√5或5√56.13.答案:解:原式=8x3−4x2+4x+4x−2−4+8x2=8x3+4x2+8x−6,当x=1时,原式=8+4+8−6=14.解析:此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.原式利用单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.14.答案:证明:(1)∵BD平分∠ABC,∴∠ABD=∠CBD,又∵∠BDE=∠BAD=90°,∴△ABD∽△DBE,∴ABBD =BDBE,∴BD2=BA⋅BE;(2)∵AB=6,BE=8,BD2=BA·BE,∴BD=4√3,∴DE=√BE2−BD2=√64−48=4,∵∠BDC=∠A+∠ABD=∠BDE+∠EDC,∴∠ABD=∠CDE,∴∠CDE=∠DBC,又∵∠C=∠C,∴△BCD∽△DCE,∴DEBD =CDBC=ECDC,∴CD8+EC =ECCD=4√3,∴EC=4,CD=4√3.解析:本题考查了相似三角形的判定和性质,勾股定理,直角三角形的性质等知识,利用相似三角形的性质求线段的长是本题的关键.(1)通过证明△ABD∽△DBE,可得ABBD =BDBE,可得结论;(2)由勾股定理可求DE=4,通过证明△BCD∽△DCE,可得DEBD =CDBC=ECDC,即可求解.15.答案:解:(1)连接AC,射线AC即为所求.(2)连接BD交AE于O,作直线OC交AD于F,线段CF即为所求.(3)连接AC,BD交于点O,作直线OE交AB于G,连接CG,线段CG即为所求.解析:本题考查作图−复杂作图,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)连接AC,射线AC即为所求.(2)连接BD交AE于O,作直线OC交AD于F,线段CF即为所求.(3)连接AC,BD交于点O,作直线OE交AB于G,线段CG即为所求.16.答案:解:(1)可能出现的结果有:男 1女 1、男 1男 2、男 1女 2、男 2女 1、男 2女 2、女 1女 2;(2)列表法表示所有可能出现的结果如下:共有4种情况,其中恰好选中一男一女有2种情况,所以恰好选中一男一女的概率为24=12.解析:本题考查列举法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.(1)直接列举出所有可能出现的结果即可;(2)列表找出符合题意的可能结果,再利用概率公式求出概率即可.17.答案:解:(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°−36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC−∠FDC=18°.解析:本题考查了矩形的判定与性质,平行四边形的判定与性质,属于中档题.(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据直角三角形中两锐角互余求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.18.答案:解:(1)50−10−20−15=5(名),故a的值为5,条形统计图如下:(2)1300×15+550=520(名),答:估计该校共有520名学生课外阅读时间不少于1小时.解析:本题主要考查样本的条形图的知识和分析问题以及解决问题的能力.(1)用抽查的学生的总人数减去A ,B ,C 三类的人数即为D 类的人数也就是a 的值,并补全统计图;(2)先求出课外阅读时间不少于1小时的学生占的比例,再乘以1300即可.19.答案:解:(1)把A(1,3)代入双曲线y =k 2x ,得3=k21,解得k 2=3,∴双曲线的解析式为y =3x ,∵B(m,−1),∴−1=3m,解得,m =−3, ∴B(−3,−1)把A(1,3)、B(−3,−1)代入y =k 1x +b 得:{3=k 1+b −1=−3k 1+b, 解得:{k 1=1b =2, ∴直线的解析式为:y =x +2;(2)如图,过点A 作AE ⊥OC 于点E ,∵AO=AC,∴OE=EC,∵点A在双曲线y=3x图象上,∴12OE·AE=12×3=32,∴12CE·AE=32,又∵OC=2EC∴S△AOC=12·OC·AE=2×32=3;(3)如图,由直线y=x+2可知D(−2,0),∴OD=2,∵S△PDO=S△AOC,S△AOC=3,∴12OD·|y P|=3,∴|y P|=3,把y=3代入双曲线y=3x,解得x=1,把y=−3代入双曲线y=3x,解得x=−1,∴P点的坐标为(1,3)或(−1,−3).解析:本题考查了待定系数法求反比例函数和一次函数的解析式以及三角形的面积,熟练掌握待定系数法是解题的关键.(1)先求出双曲线的解析式,即可求出m的值,再利用A,B的坐标求出直线的解析式;(2)过点A作AE⊥OC于点E,根据等腰三角形的性质和S△AOE=12|k|,即可求得;(3)求得D的坐标,然后根据已知条件得出12×2×|y P|=3,即可求得P的纵坐标,代入反比例函数解析式即可求得坐标.20.答案:解:如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.在Rt△QEN中,设EN=x,则EQ=2x,∵QN2=EN2+QE2,∴20=5x2,∵x>0,∴x=2,∴EN=2,EQ=MF=4,∵MN=3,∴FQ=EM=1,在Rt△PFM中,PF=FM⋅tan60°=4√3,∴PQ=PF+FQ=4√3+1.解析:如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.分别在Rt△EQN、Rt△PFM 中解直角三角形即可解决问题.本题考查了解直角三角形的应用−坡度问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.答案:证明:(1)如图1,连接OC、OD;∵C为弧AB的中点,∴OC⊥AB,∠OCE+∠AEC=90°;∴DF=EF,∴∠FDE=∠FED=∠AEC;∵OA=OC,∴∠OCE=∠ODC,∴∠ODC+∠CDF=90°,即OD⊥DF,∴DF与⊙O相切.(2)如图2,连接OA、OC;由(1)知OC⊥AB,∴AH=BH;∵AC//DF,∴∠ACD=∠CDF;而EF=DF,∴∠DEF=∠CDF=∠ACD,∴AC=AE;设AE=5λ,则BE=3λ,∴AH=4λ,HE=λ,AC=AE=5λ;∴由勾股定理得:CH=3λ;CE2=CH2+HE2=9λ2+λ2,∴CE=√10λ;在直角△AOH中,由勾股定理得:AO2=AH2+OH2,即r2=(r−3λ)2+(4λ)2,解得:λ=625r=625×253=2,∴CE=2√10.解析:(1)如图,作辅助线;证明∠ODC+∠CDF=90°,即可解决问题.(2)如图,作辅助线;证明OH⊥AB,AH=4λ,此为解题的关键性结论;证明CE=√10λ;列出方程r2=(r−3λ)2+(4λ)2,求出λ=625r=625×253=2,即可解决问题.该题主要考查了圆的切线的判定及其性质的应用问题;解题的关键是作辅助线;灵活运用有关定理来分析、解答.22.答案:(1)证明:如图1,连接BD,交AC于O,在菱形ABCD中,∠BAD=60°,AD=AB,∴△ABD为等边三角形,∵DE⊥AB,∴AE=EB,∵AB//DC,∴AMMC =AEDC=12,同理,CNAN =12,∴MN=13AC;(2)解:∵AB//DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,当∠EDF顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF=√3,∠DEG=∠DFP=90°,在△DEG和△DFP中,{∠GDE=∠PDF ∠DEG=∠DFP DE=DF,∴△DEG≌△DFP,∴DG=DP,∴△DGP为等边三角形,∴△DGP的面积=√34DG2=3√3,解得,DG=2√3,则cos∠EDG=DEDG =12,∴∠EDG=60°,∴当顺时针旋转60°时,△DGP的面积等于3√3,同理可得,当逆时针旋转60°时,△DGP的面积也等于3√3,综上所述,将△EDF 以点D 为旋转中心,顺时针或逆时针旋转60°时,△DGP 的面积等于3√3. 解析:(1)连接BD ,证明△ABD 为等边三角形,根据等腰三角形的三线合一得到AE =EB ,根据相似三角形的性质解答即可;(2)分∠EDF 顺时针旋转和逆时针旋转两种情况,根据旋转变换的性质解答即可.本题考查的是菱形的性质和旋转变换,掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等是解题的关键.23.答案:解:(1)如图1,∵A(−3,0),C(0,4),∴OA =3,OC =4.∵∠AOC =90°,∴AC =5.∵BC//AO ,AB 平分∠CAO ,∴∠CBA =∠BAO =∠CAB .∴BC =AC .∴BC =5.∵BC//AO ,BC =5,OC =4,∴点B 的坐标为(5,4).∵A(−3,0)、C(0,4)、B(5,4)在抛物线y =ax 2+bx +c 上,∴{9a −3b +c =0c =425a +5b +c =4解得:{a =−16b =56c =4∴抛物线的解析式为y =−16x 2+56x +4.(2)如图2,设直线AB 的解析式为y =mx +n ,∵A(−3,0)、B(5,4)在直线AB 上,∴{−3m +n =05m +n =4解得:{m =12n =32 ∴直线AB 的解析式为y =12x +32. 设点P 的横坐标为t(−3≤t ≤5),则点Q 的横坐标也为t .∴y P =12t +32,y Q =−16t 2+56t +4. ∴PQ =y Q −y P =−16t 2+56t +4−(12t +32) =−16t 2+56t +4−12t −32=−16t 2+t 3+52=−16(t 2−2t −15) =−16[(t −1)2−16] =−16(t −1)2+83.∵−16<0,−3≤t ≤5, ∴当t =1时,PQ 取到最大值,最大值为83.∴线段PQ 的最大值为83.(3)①当∠BAM =90°时,如图3所示.抛物线的对称轴为x =−b 2a =−562×(−16)=52. ∴x H =x G =x M =52. ∴y G =12×52+32=114.∴GH =114.∵∠GHA =∠GAM =90°,∴∠MAH =90°−∠GAH =∠AGM .∵∠AHG =∠MHA =90°,∠MAH =∠AGM ,∴△AHG∽△MHA.∴GHAH =AHMH.∴11452−(−3)=52−(−3)MH.解得:MH=11.∴点M的坐标为(52,−11).②当∠ABM=90°时,如图4所示.∵∠BDG=90°,BD=5−52=52,DG=4−114=54,∴BG=√BD2+DG2=√(52)2+(54)2=5√54.同理:AG=11√54.∵∠AGH=∠MGB,∠AHG=∠MBG=90°,∴△AGH∽△MGB.∴AGMG =GHGB.∴11√54MG=1145√54.解得:MG=254.∴MH=MG+GH=254+114=9.∴点M的坐标为(52,9).综上所述:符合要求的点M的坐标为(52,9)和(52,−11).解析:(1)如图1,易证BC=AC,从而得到点B的坐标,然后运用待定系数法求出二次函数的解析式.(2)如图2,运用待定系数法求出直线AB的解析式.设点P的横坐标为t,从而可以用t的代数式表示出PQ的长,然后利用二次函数的最值性质就可解决问题.(3)由于AB为直角边,分别以∠BAM=90°(如图3)和∠ABM=90°(如图4)进行讨论,通过三角形相似建立等量关系,就可以求出点M的坐标.本题考查了平行线的性质、等腰三角形的判定、相似三角形的性质与判定、二次函数的最值等知识,考查了用待定系数法求一次函数及二次函数的解析式,考查了分类讨论的思想,综合性比较强.。

江西省赣州市2019-2020学年中考数学四模试卷含解析

江西省赣州市2019-2020学年中考数学四模试卷含解析

江西省赣州市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF 的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE2.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(3,1)B.(-4,1)C.(1,-1)D.(-3,1)3.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是()A.-1 B.-C.D.–π米折返跑.在整个过程中,跑步者距起跑线的距离y(单4.小苏和小林在如图①所示的跑道上进行450位:m)与跑步时间t(单位:s)的对应关系如图②所示.下列叙述正确的是().A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次5.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=13CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为()A.6 B.7 C.8 D.106.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是()A.0 B.0.8 C.2.5 D.3.47.如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A.6cm B.35cm C.8cm D.53cm8.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D 9.下列二次根式中,2的同类二次根式是()A.4B.2x C.29D.1210.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3D.x=311.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)12.一元二次方程mx2+mx﹣12=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.2 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x的分式方程2233x mx x-=--有增根,则m的值为_____.14.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O 为圆心,OA 为半径作△ABC 的外接圆;④在弧ACB 上取一点P ,连结AP ,BP .所以∠APB =∠ACB .老师说:“小明的作法正确.”请回答:(1)点O 为△ABC 外接圆圆心(即OA =OB =OC )的依据是_____;(2)∠APB =∠ACB 的依据是_____.15.如图,抛物线2y x 2x 3=-++交x 轴于A ,B 两点,交y 轴于点C ,点C 关于抛物线的对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,则四边形EDFG 周长的最小值为__________.16.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____.17.已知⊙O 的面积为9πcm 2,若点O 到直线L 的距离为πcm ,则直线l 与⊙O 的位置关系是_____. 18.化简))201720182121的结果为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在等腰△ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 相交于点D 且BD =2AD ,过点D 作DE ⊥AC 交BA 延长线于点E ,垂足为点F .(1)求tan ∠ADF 的值;(2)证明:DE 是⊙O 的切线;(3)若⊙O 的半径R =5,求EF 的长.20.(6分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,•景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,•位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).求景点C与景点D之间的距离.(结果精确到1km).21.(6分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).(1)如图2,ω=45°,矩形OAB C中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=l.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=3,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.。

2020年江西省中考数学仿真试卷(四) (含答案解析)

2020年江西省中考数学仿真试卷(四) (含答案解析)

2020年江西省中考数学仿真试卷(四)一、选择题(本大题共6小题,共18.0分)1.−3的绝对值等于()A. 3B. 13C. −13D. −32.下列运算结果正确的是()A. (a2)3=a5B. (a−b)2=a2−b2C. −3a2b−2a2b=−a2bD. −a2b÷a2=−b3.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息,以下判断错误的是()A. 男女生5月份的平均成绩一样B. 4月到6月,女生平均成绩一直在进步C. 4月到5月,女生平均成绩的增长率约为8.5%D. 5月到6月女生平均成绩比4月到5月的平均成绩增长快4.如图,四边形ABCD内接于⊙O,E是DC延长线上一点,如果⊙O的半径为6,∠BCE=60°,那么BCD⏜的长为()A. 6πB. 12πC. 2πD. 4π5.二次函数y=−x2−6x−7图象的开口方向、对称轴和顶点坐标分别为()A. 向下,直线x=3,(3,2)B. 向下,直线x=−3,(3,2)C. 向上,直线x=−3,(3,2)D. 向下,直线x=−3,(−3,2)6.下列图形(包括数)按照一定的规律排列,依此规律,第300个图形是()A. B. C. D.二、填空题(本大题共6小题,共18.0分)7.要使x在实数范围内有意义,x的取值范围是.1−x8.已知x1、x2是一元二次方程x2+x−3=0的两个根,则x1+x2=______.9.如果函数y=(m−3)x+1−m的图象经过第二、三、四象限,那么常数m的取值范围为______ .10.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.11.二次函数y=x2+bx+c经过(5,3)和(−2,3),则当x=_______时,函数取到最小值.12.如图,在平面直角坐标系xOy中,一次函数y=−x+2与反比例函数y=k(x<0)相交于点B,与x轴相交于点A,点B的横坐标为−2,设点Mx(x<0)是直线AB上的一点,过点M作MN//x轴,交反比例函数y=kx的图象于点N,若以A、O、M、N为顶点的四边形为平行四边形,则点M的坐标为______.三、解答题(本大题共12小题,共84.0分))−1−(√2)213.(1)计算:|−3|−20180+(14(2)计算:(2√3−5√8)−(√75−√18)14. 如图,△ABC 中,AB =AC ,AD 是△ABC 的角平分线,点O 为AB的中点,连接DO 并延长到点E ,使OE =OD ,连接AE 、BE ,求证:四边形AEBD 是矩形.15. 解不等式组{2(x +2)>3x,1−3x 2≤−1,并将它的解集在数轴上表示出来.16. 如图,在四边形ABCD 中,AB//CD ,对角线BD 的垂直平分线分别与DC 、AB 、BD 相交于点E 、F 、O ,求证:四边形DFBE 是菱形.17.某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同.顾客每次摸出1个球,若摸到红球,则获得1份奖品;若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)18.如图,已知反比例函数y1=k1与一次函数y2=k2x+b的图象交于点A(1,8),B(m,−2).x(1)求这两个函数的表达式;(2)求△AOB的面积.19.2014年11月,绵阳某中学结合语文阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生3600名,那么请你估计最喜爱科普类书籍的学生人数.20.如图,将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线形成的角为120°(如图1),侧面示意图为图2.使用时为了散热,在底板下垫入散热架ACO′(ACO′是直角三角形)后,电脑绕点A旋转到AO′B′位置(如图3),侧面示意图为图4.此时B′,O′,C共线,已知OA=OB= 26cm。

2020年江西省中考数学模拟试卷及答案解析

2020年江西省中考数学模拟试卷及答案解析

2020年江西省中考数学模拟试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(3分)下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.(3分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a4.(3分)如图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.5.(3分)图1,图2分别是某厂六台机床十月份第一天和第二天生产零件数的统计图,与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是()A.平均数变大,方差不变B.平均数变小,方差不变C.平均数不变,方差变小D.平均数不变,方差变大6.(3分)如图,在平面直角坐标系xOy中,直线y=x与双曲线y=交于A、B两点,且点A的坐标为(4,a),将直线y=x向上平移m个单位,交双曲线y=(>0)于点C,交y轴于点F,且△ABC的面积是.给出以下结论:(1)k=8;(2)点B的坐标是(﹣4,﹣2);(3)S△ABC<S△ABF;(4)m=.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)因式分解:x3﹣9x=.8.(3分)我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?”.其大意是:如图,一座正方形城池,A为北门中点,从点A往正北方向走30步到B处有一树木,C为西门中点,从点C往正西方向走750步到D处正好看到B处的树木,则正方形城池的边长为步.9.(3分)设m,n是方程x2﹣x﹣2019=0的两实数根,则m3+2020n﹣2019=.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为.。

江西省初中名校联盟2020届初三质量监测(一)数学试卷及答案(图片版)

江西省初中名校联盟2020届初三质量监测(一)数学试卷及答案(图片版)

江西省2020年初中名校联盟考试数学答案一、选择题(本大题共6小题,每小题3分,共18分)1.C ;解析:A .|-5|=5; B .-(-3)=3; C .(-1)2019 =-1; D .(-1)0=1.2.B ;解析:50万=500000=5×105.3.D ;解析:A .2a 2+a 2=3a 2 ;B .(m -n)2=m 2-2mn +n 2 ; C .a 3÷)1(a -•a=-a 4 •a=-a 54.D ;解析:P (红球)=94˂ P (白球)=95;其他的P (红球)≥ P (白球).5.C ;解析:A .32y x =-+, y 随自变量x 增大而减小;B .x y 1-= 在每个象限内,y 随自变量x 增大而增大;D .25y x =,在y 轴的左侧随x 增大而减小,在y 轴的右侧随x 增大而增大.6.A ;解析:∵点B 恰好落在边DE 中点上,∠ECD=∠ACB=900,∴EB=CB ,∵EC=CB ,∴EB=CB=EC∴△EBC 是等边三角形,∠ECB=θ=600 .二、填空题(本大题共6小题,每小题3分,共18分)7.2;解析:点A 表示-2,点A 的相反数B 表示的数为2.8.6;解析:∵1l ∥2l ∥3l ,∴=BC AB =EF DE 23,∴=DF DE 53 ∵DF =10, ∴DE =6.9. =x 416)100(2416-x ;解析:高铁所用的时间是普通列车所用的时间的一半. 10.(-1,-2);解析:如图∵点A(1,t)在y =x2的图象上, ∴A(1,2),点A 与点B 关于原点对称. 第6题图第7题图 第8题图y xo A(1,2)B 第10题x y o11.y=x 2;解析:y=x 2-2x +3=(x -1)2+2.12. 21,1,27;解析:①如图1,AB 的中点D (1,2),平移后D'(a,2)在y =x 3的图象上, ∴a=23,点D (1,2)向右平移21个单位得到D'(23,2); ②如图2,BC 的中点E (2,1),平移后E'(b,1)在y =x3的图象上, ∴b=3,点E (2,1)向右平移1个单位得到E'(3,1);③如图3,AC 的中点F (2,-2),平移后F'(c,-2)在y =x3的图象上, ∴c=23-,点F (2,-2)向左平移27个单位得到F'(3-,-2);三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式:612x --≥ 21x + 解:12-(1-x )≥3(1+x )12-1+x ≥3+3xyx o F 'D AB CE F -2x ≥-8x ≤4 ------3分(2) 证明:∵四边形ABCD 是菱形 ∴AD=CD AD ∥BC CD ∥AB∴∠1=∠2 ∠2=∠3 ∴∠1=∠3∵DE ⊥AB DF ⊥BC ∴∠E=∠F=900∴△AED ≌△CFD ∴DE=DF ------3分14.解:∵|b -1|+0=a ∴a=0 b=1 ------2分∵一元二次方程kx 2+ax +b=0有实数根∴△=0-4k ≥0且k ≠0 ∴k <0 ------6分15.证明:∵四边形ABCD 是正方形 ∴ AB=AD=CD ∠A=∠D=900∵点E 是AD 的中点 ∴AB=AD=2AE=2DE 即2=AEAB ----1分 ∵CD=4DF ∴DE=2DF 即2=DF DE ---2分 ∴=AE AB 2=DFDE ∠A=∠D=900 ∴△ABE ∽△DEF ------6分 16.解:(1)众数为9.2;中位数为9.2 ------2分(2)学生代表的评分为: =61×(9.0+9.2×3+9.3×2)=9.2 ------3分 ∴张馨的最后得分:9.5×20%+9.2×50%+9.0×30%=9.2(分) ------6分17. A B C E FD 1 2 3 x 图1E A B CD F • • 图2E A BCD • F •G(1)如图1,菱形AFCE 为所求;------3分(2)如图2,矩形ABGC 为所求;------6分四、(本大题共3小题,每小题8分,共24分)18.解:设每件商品应降价x 元.(200-160-x)(20+2x)=1200 ------2分解得:x 1=10 x 2=20 ------4分∵尽快减少库存 ∴x=20 每件商品应降价20元.------5分若小明妈妈应打a 折出售,则200×0.1a=200-20 a=9∴每件商品应降价20元;为了满足降价要求,小明妈妈应打9折出售.------8分19. 解:(1)15÷25%=60(人)A 类人数为:60-24-15-9=12人 m%=6012×100%=20% ∴m=20 ------1分 609×3600=540 ∴n=54 ------2分 条形统计图补全如图. ------3分(2)(600×20%)÷3=40 ∴ 能满足选择“围棋班”的学生意愿.------5分(3)表格法: 树状图法:1 2 3 1 (1,1) (2,1) (3,1) 展鹏展飞 展飞 开始展鹏 1 2 3 1 2 3 2 3 1 2 3(3)∴ P (展鹏、展飞同班)= 9331 ------8分20.∴线段AB 的函数表达式为:y=980x +20 ------2分设双曲线BC 的函数表达式为: y=xa ,B(9,100) ∴a=900∴双曲线BC 的函数表达式为:y=x900 ------4分(2)如图,依题意得:(t,20),(m,30),(n,45)在y=x900上 ∴t=45,m=30<45,n=20<45∴可以盛到最佳温度水的同学有:12×(30-20)=120人. ------8分五、(本大题共2小题,每小题9分,共18分) 21.解:(1)∵△EBD 和△ABC 都是等腰直角三角形 ∴∠ABC=∠C=450,∠BED=∠A=9002 (1,2) (2,2) (3,2) 3(1,3)(2,3)(3,3)解:(1)设线段AB 的函数表达式为: y=kx +b ∵A(0,20),B(9,100)在y=kx +b 上 ∴ b=20 k=9809k +b=100 b=20(m,30)(n,45) (t,20) A BCDEDFABCE M图1图2DE=BE=1∴BD=2 ------2分(2) ①∵BD 平分∠ABC ∴ ∠DBM=∠DBF=∠EBF=22.50∵∠EBD=∠EDB=450 ∴ ∠DBM=∠DMB=22.50∵DE=BE=1 ∴DM=BD=2 EM=DE +DM=1+2 ------5分 ② FM=2BE 理由如下: ------6分∵∠EBF=∠DMB=22.50 ∠E=∠E=900 ∴△FBE ∽△BME∴ EM BE BE EF ------7分 ∴EF •EM=BE 2设BE=a ,则EM=(2+1)a ∴EF=(2-1)a ∴FM=EM -EF=(2+1)a -(2-1)a =2a∴FM=2BE ------9分 22. 解:(1)根据抛物线的轴对称性可知: m=1 ------1分 图象与y 轴相交于点A(0,-3)------2分(2)∵抛物线的顶点坐标为(1,-4) ∴设抛物线的关系式为:y=n(x -1)2-4抛物线y 轴相交于点A(0,-3)• ••••Ay=x +ny=x +ny=x +n∴n=1∴二次函数的关系式为:y=(x -1)2-4 或y=x 2-2x -3 ------5分 (3)如图所示,①当y=x +n 与y=x 2-2x -3 交于点(0,-3)时,n=-3 当y=x +n 与y=x 2-2x -3 交于点(s ,t ),且t=5时,s 2-2s -3=5 s 1=-2(舍去) s 2=4 ∴y=x +n 与新图象交于点(4,5) n=1 ∴-3<n ≤1 ------7分 ②当y=x +n 与y=x 2-2x -3 只有一个交点时;x 2-2x -3 =x +nx 2-3x -3-n=0 △=9-4(-3-n)=0 n=421-∴n <421-∴n 的取值范围为:-3<n ≤1或n <421- ------9分六、(本大题共1小题,共12分) 23.解:(1)连接OB 、OC∵△ABC 是等边三角形 ∴∠ABC=∠ACB=600 ∵ O 是∠ABC 和∠ACB 的角平分线交点∴∠DBO=∠OCG=∠CBO=300AO BCDEF G图1H∴OB=OC ∠BOC=∠FOG =120° ∴∠DOB=∠COE ∴△ODB ≌△OEC∴△OBC 的面积与四边形ODBE 的面积相等 过点O 作OH ⊥BC 于H 点 ∵BC=6 ∴ BH=3∵∠CBO=300 ∴OB=2OH 根据勾股定理得:OH=3 ∴S △OBC =21×6×3=33∴四边形ODBE 的面积为33. ------3分 (2)①∵△ABC 是等边三角形 ∴ ∠B =60° ∵OF ⊥AB 于点D ∴ ∠BOD =30° ∵OB=2 ∴BD=1∴OD=3 ∴△BOD 的面积=21×1×3=23------5分②过点O 作OM ⊥AB 于M ,ON ⊥AC 于N. 由①得:OM=3 ,同理:ON=23 ∵△ABC 是等边三角形 ∴ ∠B =∠C =60°∵∠FOG=60° ∴∠BDO +∠DOB=∠EOC +∠DOB =120° ∴∠BDO=∠EOC ∴△BDO ∽△COE ------7分AOBCDE F G图2AO BC D EF G 图3OAD FBC E G图4AOBCD EF G 图3 M N∴=EC OB OC BD ∴BD •EC=OB •OC=8 ∴xy=213BD •21•23EC=12 ------10分 ③ab=48 ------12分 过点O 作OM ⊥AB 交AB 的延长线于M ,ON ⊥AC 于N. ∵∠BDO +∠DOC=∠ABC =60° ∴∠FOG=∠EOC +∠DOC =60° ∴∠BDO=∠EOC ∵∠DBO=∠ECO =120° ∴△BDO ∽△COE ∴=EC OB OC BD∴BD •EC=OB •OC=16∵ ∠OBM=∠ABC =60° OB=2 ∴∠BOM =30° ∴OM=3 ∵ ∠ACB =60° OC=8 ∴∠CON =30° ∴ON=43 ∴ab=213BD •21•43EC=48 OA D FB C E G图4M N。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省初中名校联考2020年九年级数学模拟试卷(4月份)一.选择题(每题3分,满分18分)1.下列各数中,负数是()A.﹣(﹣2)B.﹣|﹣2| C.(﹣2)2D.(﹣2)02.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.116×106B.11.6×107C.1.16×107D.1.16×1083.下列运算正确的是()A.a3•a2=a6B.C.(﹣3a)2=﹣6a2D.(a﹣1)2=a2﹣14.将4个红球、3个白球、2个黑球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生5.关于下列说法:(1)反比例函数y=,在每个象限内y随x的増大而减小:(2)函数y=x,y随x的指大而减小:(3)函数y=,当x>0时,y随x的増大而减小.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB的中点,点O是边BC上的一个动点,设点A绕点O顺时针旋转90°的对应点为A′.则点M到A′点的最小距离为()A.B.C.D.二.填空题(满分18分,每小题3分)7.若数轴上的点A与点B表示的两个数互为相反数,并且这两个数的距离是7,则这两个点所表示的数分别是和.8.如图,已知AD:DB=2:1,CE:EA=2:3,则CF:DF=.9.实验初中初二(1)班同学参加社会实践活动,几名同学打算包租一辆车前往,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加实践活动的学生原有x人,则可列方程为.10.如图,一次函数y=ax+b的图象交x轴于点B,交y轴于点A,交反比例函数y=的图象于点C,若AB=BC,且△OBC的面积为2,则k的值为.11.将抛物线y=﹣5x2沿x轴对称,再先向左平移5个单位,再向下平移3个单位,可以得到新的抛物线是.12.如图,在平面直角坐标系中,直线y=﹣3x+6与x轴、y轴分别交于A、B两点,以AB 为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是.三.解答题13.如图,在菱形ABCD中,E、F分别为边AD和CD上的点,且AE=CF.连接AF、CE 交于点G.求证:∠DGE=∠DGF.14.关于x的方程(m+2)x2﹣4x+1=0有两个不相等实数根.(1)求m的取值范围;(2)当m为正整数时,求方程的根.15.如图1,点E是正方形ABCD对角线AC上的一点,连接EB、ED.(1)求证:EB=ED.(2)如图2,延长BE交CD于F,点G在AB上,连接FG交DE于点O,如果FB=FG,请求证:△FDO∽△FBC.16.为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分)中位数(分)众数(分)一班8.76 a=b=二班8.76 c=d=根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.17.已知▱ABCD的对角线AC,BD交于点O,点E在AB边上.(1)尺规作图:在图中作出点E,使得OE=;(保留作图痕迹,不写作法)(2)在(1)的条件下,若AB=OE,AO=,求证:四边形ABCD是矩形.18.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利40元.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,销量为件;(用含x的式子表示)(2)为了扩大销售,尽快减少库存,商场决定釆取降价措施.但需要平均每天盈利1200元,求每件衬衫应降价多少元?19.校园文化是学校的灵魂,近期,实外西区肖明华校长推出《读100本名著》、《听100首名曲》、《赏100幅名画》、《懂100个名人》等一系列文化活动.为了解学生对这些文化活动的喜爱情况,我校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《读100本名著》(记为A)、《听100首名曲》(记为B)、《赏100幅名画》(记为C)、《懂100个名人》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他校园文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(150名)(2)将条形统计图补充完整,并求出扇形统计图中“B所在扇形圆心角的度数;(D:75人,B:15人,36)(3)若选择“E“的学生中有2名女生,其余为男生,现从选择“E“的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.(P=)20.如图,电源两端的电压U保持不变,电流强度I与总电阻R成反比例.在实验课上,调整滑动变阻器的电阻,改变灯泡亮度.实验测得电路中总电阻R为15Ω时,通过的电流强度I为0.4A.(1)求I关于R的函数表达式,并说明比例系数的实际意义;(2)如果灯泡的电阻为5Ω,电路中电流控制在0.3A到0.6A之间(包括0.3,0.6),那么这个滑动变阻器的电阻应控制在什么范围;(3)若电路中的总电阻扩大到原来的n倍,则所通过的电流将怎样变化?请利用I关于R的函数表达式来说明理由.21.如图乙,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图甲,将△ADE绕点A旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个.(回答直接写序号)①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)(2)若AB=6,AD=3,把△ADE绕点A旋转:①当∠CAE=90°时,求PB的长;②直接写出旋转过程中线段PB长的最大值和最小值.22.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点B,与y轴交点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴交于另一点A.如图1,点P为抛物线上任意一点.过点P作PM⊥x轴交BC于M.(1)求抛物线的解析式;(2)当△PCM是直角三角形时,求P点坐标;(3)如图2,作P点关于直线BC的对称点P′,作直线P′M与抛物线交于EF,设抛物线对称轴与x轴交点为Q,当直线P′M经过点Q时,请你直接写出EF的长.23.【综合与实践】如图①,在正方形ABCD中,点E、F分别在射线CD、BC上,且BF =CE,将线段FA绕点F顺时针旋转90°得到线段FG,连接EG,试探究线段EG和BF的数量关系和位置关系.【观察与猜想】任务一:“智慧小组”首先考虑点E、F的特殊位置如图②,当点E与点D 重合,点F与点C重合时,易知:EG与BF的数量关系是,EG与BF的位置关系是.【探究与证明】任务二:“博学小组”同学认为E、F不一定必须在特殊位置,他们分两种情况,一种是点E、F分别在CD、BC边上任意位置时(如图③);一种是点E、F在CD、BC边的延长线上的任意位置时(如图④),线段EG与BF的数量关系与位置关系仍然成立.请你选择其中一种情况给出证明.【拓展与延伸】“创新小组”同学认为,若将“正方形ABCD”改为“矩形ABCD,且=k (k≠1)”,点E、F分别在射线CD、BC上任意位置时,仍将线段FA绕点F顺时针旋转90°,并适当延长得到线段FG,连接EG(如图⑤),则当线段BF、CE、AF、FG满足一个条件时,线段EG与BF的数量关系与位置关系仍然成立.(请你在横线上直接写出这个条件,无需证明)参考答案一.选择1.解:A、﹣(﹣2)=2,故此选项错误;B、﹣|﹣2|=﹣2,故此选项正确;C、(﹣2)2=4,故此选项错误;D、(﹣2)0=1,故此选项错误;故选:B.2.解:将116000000用科学记数法表示应为1.16×108.故选:D.3.解:A、a3•a2=a5,故此选项错误;B、(﹣)3=﹣,正确;C、(﹣3a)2=9a2,故此选项错误;D、(a﹣1)2=a2﹣2a+1,故此选项错误;故选:B.4.解:4个红球、3个白球、2个黑球放入一个不透明的袋子里,若摸到所有的红球与白球共7个,一定还会摸到1个黑球;若摸到所有的白球与黑球共5个,还会摸到3个红球;若摸到所有的红球与黑球共6个,还会摸到2个白球;所以从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情是必然事件.故选:D.5.解:当m<0时,反比例函数y=,在每个象限内y随x的増大而增大,故(1)错误;函数y=x,y随x的指大而减小,故(2)正确;函数y=,当x>0时,y随x的増大而减小,故(3)正确;故选:C.6.解:过A′作A′G⊥BC于G,∵点A绕点O顺时针旋转90°的对应点为A′.∴OA=OA',∠AOA'=90°,∵∠ACO=90°,∠A'GO=90°,∴∠A'OG=∠OAC,∴△A'OG≌△OAC,(AAS),∴A′G=OC,OG=AC=6,过M作MH⊥BC于H,则MH=3,CH=4,过M作MN⊥A′G于N,则A′N=|A'G﹣3|,设OC=x,则MN=x+2,A′N=|x﹣3|,∴A′M2=(x+2)2+(x﹣3)2=2(x﹣)2+,∴A′M的最小值为.故选:A.二.填空7.解:由A、B表示的数互为相反数,并且两点间的距离是7,得这两个点所表示的数分别是﹣3.5,3.5,故答案为:﹣3.5,3.5.8.解:过D作DM∥AC,交BE于M,∵DM∥AC,∴△BMD∽△BEA,∴=,∵AD:DB=2:1,∴===,即AE =3DM , ∵CE :EA =2:3, ∴CE =2DM , ∵DM ∥AC , ∴△DMF ∽△CEF , ∴===,故答案为:2:1. 9.解:依题意,得:﹣=3.故答案为:﹣=3.10.解:作CD ⊥y 轴于D ,则OB ∥CD , ∴=,∵AB =BC , ∴OA =OD , ∴S △OCD =S △AOC ∵AB =BC ,∴S △AOB =S △OBC =2, ∴S △AOC =S △AOB +S △OBC =4, ∴S △OCD =4,∵反比例函数y =的图象经过点C , ∴S △OCD =|k |=4, ∵在第一象限, ∴k =8. 故答案为8.11.解:∵将抛物线y=﹣5x2沿x轴对称,∴得到的抛物线的解析式为:y=5x2,∵向左平移5个单位,∴得到的抛物线的解析式为:y=5(x+5)2,∵再向下平移3个单位,∴新抛物线的解析式为:y=5(x+5)2﹣3=5x2+50x+122.故答案为:y=5x2+50x+122.12.解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+6中,令x=0,解得:y=6,即B的坐标是(0,6).令y=0,解得:x=2,即A的坐标是(2,0).则OB=6,OA=2.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=6,DF=OA=BE=2,故D的坐标是(8,2),C的坐标是(6,8).代入y=得:k=16,则函数的解析式是:y=.∴OE=8,则C的纵坐标是8,把y=4代入y=得:x=2.即G的坐标是(2,8),∴CG=4,∴a=4.故答案为4.三.解答13.证明:∵四边形ABCD是菱形,∴DA=DC=AB=BC,∵AE=CF,∴DE=DF,∵∠ADG=∠CDG,DG=DG,∴△DEG≌△DFG(SAS),∴∠DGE=∠DGF.14.解:(1)由题意得,m+2≠0,(﹣4)2﹣4×(m+2)>0,解得,m<2且m≠﹣2;(2)∵m<2,m为正整数,∴m=1,则原方程可化为3x2﹣4x+1=0,(3x﹣1)(x﹣1)=0,解得,x1=,x2=1.15.证明:(1)∵四边形ABCD是正方形,∴DC=BC,∠DCE=∠BCA=45°,在△DCE和△BCE中∴△DCE≌△BCE(SAS),∴BE=ED;(2)∵四边形ABCD是正方形,∴DC∥AB,∴∠DFO=∠FGB,∠CFB=∠FBG,∵FB=FG,∴∠FGB=∠FBG,∴∠DFO=∠CFB,∵△DCE≌△BCE,∴∠CDG=∠CBF,∴△FDO∽△FBC.16.解:(1)设一班C等级的人数为x,则8.76(6+12+x+5)=6×10+9×12+8x+5×7,解得:x=2,补全一班竞赛成绩统计图如图所示:(2)a=9;b=9;c=8;d=10,故答案为:9,9,8,10.(3)一班的平均分和二班的平均分都为8.76分,两班平均成绩都一样;一班的中位数9分大于二班的中位数8分,一班成绩比二班好.综上,一班成绩比二班好.17.(1)解:如图3,点E即为所求.(2)证明:∵四边形ABCD是平行四边形,∴AC=2AO=AB,又∵OE=BC,AB=OE,∴BC=2AB,△ABC中,AB2+BC2=AB2+(2AB)2=5 AB2,AC2=(AB)2=5 AB2,∴AB 2+BC2=AC2,∴∠ABC=90°,∴四边形ABCD是矩形.18.解:(1)∵每件衬衫降价x元,∴每件衬衫的利润为(40﹣x)元,销量为(20+2x)件.故答案为:(40﹣x);(20+2x).(2)依题意,得:(40﹣x)(20+2x)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20.∵为了扩大销售,增加盈利,尽快减少库存,∴x=20.答:每件衬衫应降价20元.19.解:(1)30÷20%=150(人),∴共调查了150名学生.(2)D:50%×150=75(人),B:150﹣30﹣75﹣24﹣6=15(人)补全条形图如图所示.扇形统计图中“B”所在扇形圆心角的度数为×360°=36°.(3)记选择“E”的同学中的2名女生分别为N1,N2,4名男生分别为M1,M2,M3,M4,列表如下:N1N2M1M2M3M4 N1(N1,N2)(N1,M1)(N1,M2)(N1,M3)(N1,M4)N2(N2,N1)(N2,M1)(N2,M2)(N2,M3)(N2,M4)M1(M1,N1)(M1,N2)(M1,M2)(M1,M3)(M1,M4)M2(M2,N1)(M2,N2)(M2,M1)(M2,M3)(M2,M4)M3(M3,N1)(M3,N2)(M3,M1)(M3,M2)(M3,M4)M4(M4,N1)(M4,N2)(M4,M1)(M4,M2)(M4,M3)∵共有30种等可能的结果,其中,恰好是同性别学生的有14种情况,∴选到同性别学生的概率=.20.解:(1)由题意得:U=IR,则U=15×0.4=6,则I=;实际意义:电流强度I与总电阻R的乘积是定值,定值为6.(2)R=,当I=0.3时,R=20,当I=0.6时,R=10,则滑动变阻器的电阻应控制在5﹣15Ω之间;(3)总电阻扩大到原来的n倍,由I=知,电流缩小到原来的.21.(1)解:如图甲:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确.②∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴②正确.③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确.④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2),∴④错误.故答案为①②③.(2)①解:a、如图乙﹣1中,当点E在AB上时,BE=AB﹣AE=3.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=.b、如图乙﹣2中,当点E在BA延长线上时,BE=9.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=.综上,PB=或.②解:a、如图乙﹣3中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE 最大,因此PB最大)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=2,∴PB=BD+PD=3+3.综上所述,PB长的最大值是3+3.b、如图乙﹣4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.理由:此时∠BCE最小,因此PB最小,(△PBC是直角三角形,斜边BC为定值,∠BCE 最小,因此PB最小)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=4,∴PB=BD﹣PD=3﹣3.综上所述,PB长的最小值是3﹣3.22.解:(1)∵直线y=﹣x+2与x轴交于点B,与y轴交点C,∴B(4,0),C(0,2),∴把B(4,0),C(0,2)代入y=﹣x2+bx+c得,,解得,,∴抛物线的解析式为:y=﹣+2;(2)∵PM⊥x轴交BC于M.BC不平行x轴,∴∠PMC≠90°,当∠CPM=90°时,PC∥x轴,则P点的纵坐标为2,∵y=﹣+2的对称轴为x=1,∴P点的横坐标为:2,此时P(2,2);当∠PCM=90°时,设P(m,),则M(m,﹣m+2),由PC2+CM2=PM2得,=,解得,m=0(与C的横坐标相同,舍去),或m=﹣6,此时P(﹣6,﹣10);综上,P点的坐标为(2,2)或(﹣6,﹣10);(3)作Q点关于直线BC的对称点K,QK与BC相交于点N,再过K作KL⊥x轴于点L,如图所示,则根据题意可知,KL与BC的交点为M,P点在KM上,P'在QM上,∵y=﹣+2,∴抛物线的对称轴为x=1,∴Q(1,0),∴BQ=4﹣1=3,∵∠QBN=∠CBO,∠QNB=∠COB=90°,∴△BQN∽△BCO,∴,即,∴QN=,∴QK=2QN=,∠BQN=∠KQL,∠BNQ=∠KLQ=90°,∴△BQN∽△KQL,∴,即,∴QL=,∴OL=1+,∴M(,),设QM的解析式为:y=kx+b(k≠0),则,∴,∴直线QM的解析式为:y=,联立方程组,解得,,或,∴E(,),F(,),∴EF=.23.【观察与猜想】解:∵四边形ABCD是正方形,∴∠B=∠BCD=∠ADC=90°,AB=BC=CD=AD,∠ACB=∠ACD=45°,由旋转的性质得:GC=AC,∠ACG=90°,∴∠ACB=∠GCD=45°,在△ABC和△GDC中,,∴△ABC≌△GDC(SAS),∴AB=GD,∠GDC=∠B=90°,∴DG∥BC,△CDG是等腰直角三角形,∴DG=CD=BC,∵点E与点D重合,点F与点C重合,∴EG=BF,EG∥BF;故答案为:EG=BF,EG∥BF;【探究与证明】证明:点E、F分别在CD、BC边上任意位置时,如图③所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;点E、F在CD、BC边的延长线上的任意位置时,如图④所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;【拓展与延伸】解:==k(k≠1)时,线段EG与BF的数量关系与位置关系仍然成立;理由如下:作GM⊥BC,交BC延长线于M,如图⑤所示:则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,∠B=∠GMF,由旋转的性质得:∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,∴△ABF∽△FMG,∴==,∵==k,∴==k,==k,∴FM=BC,GM=CE,∴BF=CM,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;故答案为:==k(k≠1).。

相关文档
最新文档