七年级数学上册 1.5《有理数的乘方》教案(2) (新版)新人教版

合集下载

七年级数学上册 (有理数乘方)教学设计 人教新课标版 教案

七年级数学上册 (有理数乘方)教学设计 人教新课标版 教案

初中数学《有理数乘方》教学设计一、指导思想:根据《新课标》要求,联系实际使学生明确乘方的意义及表示方法.会根据定义进行有理数的乘方运算.引导学生用数学的眼光观察分析生活中的实际问题.培养学生通过类比、联想、归纳,加强对乘方意义的理解,发展学生的思维能力.二、教学分析1.教学内容分析有理数的乘方是初中七年级上学期第一章第五节的教学内容,是有理数的一种基本运算,从教材编排的结构上看,共需要4个课时,此课为第一课时,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后继学习有理数的混合运算、科学记数法、整式乘方以及开方的基础,起到承前启后、铺路架桥的作用.在这一课的教学过程中,可以培养学生观察问题、分析问题和解决问题的能力,以及转化的数学思想,通过这一课的学习,对培养学生的这些能力和转化的数学思想起到很重要的作用.完成本课的教学,需要1课时的时间,教学时以学生自己为主,教师起组织、引导作用.2.教学方法分析本节课的教学是以学生为主体,教师为主导.通过创造情境,通过动手操作调动学生学习积极性,让学生在课堂上多活动,多观察、主动参与到整个教学的全过程,通过自己的努力,发现规律,总结出法则.它符合教学论中的自觉性和积极性.并有利于培养学生勇于探索新知的创新精神.3.学情分析初中七年级的学生,已具备了进行有理数的加减乘除四则运算的能力,对于一个具体的数,能用身边熟悉的、具体的事物来描述刻画它的大小.我主要通过一张纸对折20次后有多高来加深学生对乘方意义的理解,从而进行一些较为复杂的乘方运算.在这样的情景中,学生的许多个人知识和直接经验都能用的上,不同的学生会从中获得不同的心得.因此以这种内容设置作为培养学生数感的载体,恰当且顺应了中学生身心发展的需要.研究表明,这个阶段的学生还以抽象逻辑思维为主要发展趋势,他们的思维仍属于经验性的逻辑思维,很大程度上仍需依赖具体形象的经验材料来理解抽象的逻辑关系,故本节课老师在第一环节尽力通过学生的切身感受和体验发展他们的数感,提倡“做中学”,引导学生先进行猜想,再动手操作,后探索规律,再思考验证,帮助学生发展抽象思维能力.同时据初中七年级学生好动、好问、好奇的心理特征,课堂上创设情境,让每个学生都动口、动脑、动手,积极思考,参与讨论,自己归纳出运算法则.学会自主探究、合作交流的学习方式,在合作交流中培养学生学习的积极性和主动性,使学习方式由“学会”变为“会学”,培养学生良好的学习品质.4 教学环境分析学习地点:多媒体教室硬件条件:投影机和投影屏幕,教师用机1台软件条件:Windows XP系统,microsoft office,math3.0新课标、新理念要求学生充分发挥自身的主体性,通过实际操作,亲身体验得到新知.而多媒体教学具有信息容量大、直观、鲜明、省时等特点,恰好符合我想通过精讲多练让学生牢固掌握本节知识的要求,故做成幻灯片进行本节课的教学. 将实际问题直观化,以图片的形式展示出来,便于理解三、设计理念:1、数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力,教学中既要注重逻辑推理能力的培养,又要注重观察、归纳以及合情推理能力的培养,因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳、推理等能力列入了教学目标.2、学生是学习的“主人”,教学应以学生为中心.从学生已有的生活经验出发,创设有助于学生自主学习的的情境,让学生在老师的指导下主动地学习.学生必须通过自己的探索才能学会数学和会学数学,本人认为学习数学,不如说体验数学,始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上.3、把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷.四、教学目标1教学目标(1)知识技能:理解乘方的意义,理解底数、指数、幂的意义及相互关系,会进行有理数的乘方运算,会用计算器求有理数乘方.(2) 数学思考:培养学生通过类比、联想、归纳,加强对乘方意义的理解,发展学生的思维能力.使学生初步具备类比,特殊到一般,化归及分类讨论的数学思想,并培养学生的逆向思维.(3)解决问题:会进行简单的有理数乘方运算和解答简单的实际问题。

七年级数学《有理数的乘方-复习课》教案

七年级数学《有理数的乘方-复习课》教案
2、第二个问题在回忆小学混合运算的基础上,引入有理数范围内的混合运算概念,让学生感受数学的发展。
3、例3是在有理数的混合运算顺序给给出后,教师引导学生尝试计算,循序渐进,推进对有理数混合运算的学习。
4、例4的学习,一是进一步培养学生的计算能力,在计算能力的基础上进一步提高,二是培养学生的探究能力,激发他们的学习欲望。
0,6,-6,18,-30,66,…;
-1,2,-4,8,-16,32,…;
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和。
【教师活动】
1、口述问题1,学生口答,课件演示六种运算及结果一览表。
2、课件出示一组温故知新题目,组织学生口答结果,关注学生表现适时点拨。
学情分析
教学对象是七年级学生,在学习本节前,已经掌握了有理数的加减法、乘除法和乘方。能正确运用法则进行有理数加、减、乘、除、乘方运算,积累了一定的运算经验,对理解有理数混合运算的运算顺序难度不大。难点是运算中符号的确定。
知识分析
本节学习有理数混合运算,重点是正确运用运算顺序进行混合运算。使学生认识到小学学习的运算律同样适用于有理数运算。
【教师活动】
引导学生自主小结的基础上,进行概括小结,教师应关注学生的表现,包括知识掌握情况、情绪状况等。
【学生活动】
按要求,进行自主小结,注意倾听同伴意见,反思梳整存在问题。
加强教学反思,帮助学生使所学知识条理化、系统化;让学生在交流中共享,在反思中提升。
活动五推荐作业,延展新知
必做题:阅读课本43页内容、习题1.5第3题
【学生活动】
1、口答问题1、2
2、先观察式子确定运算顺序尝试计算再积极思考混合运算顺序,在小组和同伴交流,发表见解。

人教版七年级数学上册教案 1.5 有理数的乘方(3课时)

人教版七年级数学上册教案 1.5 有理数的乘方(3课时)

1.5有理数的乘方1.5.1乘方(第1课时)一、基本目标【知识与技能】1.理解有理数乘方的意义,能正确区分幂的底数与指数.2.能进行有理数的乘方运算,并能进行有理数的混合运算.【情感态度与价值观】培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.二、重难点目标【教学重点】乘方的意义,利用乘方运算法则进行有理数乘方运算.【教学难点】理解一个负数的奇次幂和偶次幂的符号,有理数混合运算的顺序.环节1自学提纲,生成问题【5 min阅读】阅读教材P41~P44的内容,完成下面练习.【3 min反馈】(一)乘方1.求n个相同因数的积的运算叫乘方,乘方的结果叫做幂.2.在式子a n(n为正整数)中,a叫底数,n叫指数,a n叫幂.读作a的n次方或a的n 次幂.3.在94中,底数是9,指数是4,读作9的4次方,或9的4次幂.一个数可以看作这个数本身的一次方,例如5就是5的一次方.指数1通常省略不写.4.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.5.计算:(1)(-3)4;(2)-34;(3)⎝⎛⎭⎫-233; (5)(-1)2018. 解:(1)原式=81. (2)原式=-81. (3)原式=-827. (4)原式=1. (二)有理数的混合运算做有理数的混合运算时,先乘方,再乘除,最后加减;同级运算,从左到右进行;如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(-2)100+(-2)101;(2)(-0.25)2017×42018.【互动探索】(引发学生思考)观察算式的特点,利用乘方的意义进行简算.【解答】(1)原式=(-2)100+(-2)×(-2)100=(1-2)×(-2)100=(-1)×2100=-2100.(2)原式=(-0.25)2017×4×42018=(-0.25×4)2017×4=(-1)2017×4=(-1)×4=-4.【互动总结】(学生总结,老师点评)灵活运用乘方的定义的逆应用,把底数相同的幂转化成指数也相同后,再逆应用运算律解答问题.【例2】计算:(1)-14+|3-5|-16÷(-2)×12; (2)6×⎝⎛⎭⎫13-12-32÷(-12). 【互动探索】(引发学生思考)利用有理数的混合运算顺序进行计算.【解答】(1)原式=-1+2-16×⎝⎛⎭⎫-12×12=-1+2+4=5.(2)原式=6×13-6×12-9×⎝⎛⎭⎫-112 =2-3+34=-14. 【互动总结】(学生总结,老师点评)计算有理数的混合运算,正确掌握运算法则是解题关键.活动2 巩固练习(学生独学)1.一根长1 m 的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( C )A.⎝⎛⎭⎫123 mB .⎝⎛⎭⎫125 m C.⎝⎛⎭⎫126 mD .⎝⎛⎭⎫1212 m2.计算:(1)⎝⎛⎭⎫-172; (2)-1.52;(3)8+(-3)2×(-2);(4)-14-16×[2-(-3)2]; (5)-33+(-1)2018÷16+(-5)2; (6)(-0.125)2016×82018.解:(1)原式=149. (2)原式=-2.25. (3)原式=-10. (4)原式=16. (5)原式=4. (6)原式=64.活动3 拓展延伸(学生对学)【例3】阅读下列材料:求1+2+22+23+...+22017的值,可令S =1+2+22+23+...+22017,则2S =2+22+23+24+ (22018)所以2S -S =22018-1,故S =22018-1.仿照以上推理,求1+5+52+53+…+52017的值.【互动探索】根据题目提供的信息,设S =1+5+52+53+…+52017,用5S -S 整理即可得解.【解答】设S =1+5+52+53+ (52017)则5S =5+52+53+54+ (52018)所以5S -S =52018-1,故S =52018-14. 【互动总结】(学生总结,老师点评)本题考查了乘方,读懂题目提供的信息,是解题的关键,注意整体思想的利用.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的乘方⎩⎪⎨⎪⎧ 乘方的定义负数的奇、偶次幂有理数的混合运算请完成本课时对应练习!1.5.2 科学记数法(第2课时)一、基本目标【知识与技能】理解科学记数法的意义和特征,能够用科学记数法表示大数.【过程与方法】通过收集一些大数,让学生感受大数的普遍存在以及数学与现实的联系,同时增强活动性和趣味性.【情感态度与价值观】正确使用科学记数法表示数,表现出一丝不苟的精神.二、重难点目标【教学重点】会用科学记数法表示大数.【教学难点】掌握10n的特征以及科学记数法中n与数位的关系.环节1自学提纲,生成问题【5 min阅读】阅读教材P44~P45的内容,完成下面练习.【3 min反馈】1.把下面各数写成幂的形式.(1)100=102;(2)1000=103;(3)10000=104;(4)100000=105.2.一个大于10的数都可以表示成a×10n的形式,其中a的取值范围是大于等于1且小于10的数,n是正整数,用这种方法表示数叫做科学记数法.3.用科学记数法表示数时,整数的位数与10的指数的关系是整数位数-1=指数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】用科学记数法表示下列各数:(1)24 800 000;(2)-5 764.3;(3)361万.【互动探索】(引发学生思考)科学记数法中的n怎样确定?【解答】(1)24 800 000=2.48×107.(2)-5 764.3=-5.7643×103.(3)361万=3 610 000=3.61×106.【互动总结】(学生总结,老师点评)对于一个绝对值大于10的有理数,用科学记数法表示时,a是原数的小数点向左移动后的结果,n是比原数整数位数少1的正整数.【例2】将下列用科学记数法表示的数还原成原数.(1)1.2×105;(2)2.3×107;(3)3.6×108;(4)-4.2×106.【互动探索】(引发学生思考)将用科学记数法表示的数还原成原数怎样确定位数?【解答】(1)1.2×105=120 000.(2)2.3×107=23 000 000.(3)3.6×108=360 000 000.(4)-4.2×106=-4 200 000.【互动总结】(学生总结,老师点评)把用科学记数法表示的绝对值大于10的有理数化成原数时,只需把小数点向右移动n位即可,不足的用零补充.活动2巩固练习(学生独学)1.2017年,山西省接待入境游客95.71万人次,实现海外旅游创汇3.5亿美元,同比增长分别为6.38%、10.32%;累计接待国内游客5.6亿人次,实现国内旅游收入5338.61亿元,同比增长分别为26.49%、26.27%.实现旅游总收入约5360亿元,同比增长26.21%.数据5360亿元用科学记数法可表示为(B)A.0.536×1012元B.5.36×1011元C.53.6×1010元D.536×109元2.用科学记数法表示出下列各数.(1)30 060;(2)15 400 000;(3)123 000.解:(1)3.006×104.(2)1.54×107.(3)1.23×105.3.已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105;(3)-3×103.解:(1)20 100.(2)607 000.(3)-3000.活动3拓展延伸(学生对学)【例3】比较下列两个数的大小.(1)-3.65×105与-1.02×106;(2)1.45×102017与9.8×102018.【互动探索】根据有理数的大小比较方法对比比较用科学记数法表示的数的方法.【解答】(1)|-3.65×105|=3.65×105,|-1.02×106|=1.02×106.因为1.02×106>3.65×105,所以-3.65×105>-1.02×106.(2)因为9.8×102018=98×102017,98>1.45,所以1.45×102017<9.8×102018.【互动总结】(学生总结,老师点评)比较用科学记数法表示的数时,利用乘方的意义,把10的指数转化成相同的,然后比较a 的大小,若a 大,则原数就大;若a 小,则原数就小.环节3 课堂小结,当堂达标(学生总结,老师点评)科学记数法⎩⎪⎨⎪⎧ 用科学记数法表示数还原用科学记数法表示的数比较用科学记数法表示的数请完成本课时对应练习!1.5.3 近似数(第3课时)一、基本目标【知识与技能】了解近似数的概念,能按要求取近似数.【过程与方法】在认识、理解近似数的过程中感受大数目近似数的使用价值,增强学生的应用意识,提高应用能力.二、重难点目标【教学重点】近似数、精确度和有效数字的意义.【教学难点】由给出的近似数求其精确度及有效数字,按给定的精确度或有效数求一个数的近似数.环节1自学提纲,生成问题【5 min阅读】阅读教材P45~P46的内容,完成下面练习.【3 min反馈】1.在现实生活与生产实践中,能准确地表示一些量的数,称为准确数;近似数是与实际的准确数非常接近的数.2.下列各个数据中,哪些数是准确数?哪些数是近似数?(1)小琳称得体重为38千克;(2)现在的气温是-2 ℃;(3)1 m等于100 cm;(4)教窒里有50张课桌;(5)由于我国人口众多,人均森林面积只有0.128公顷.解:(1)小琳称得体重为38千克,是近似数.(2)现在的气温是-2 ℃,是近似数.(3)1 m等于100 cm,是准确数.(4)教室里有50张课桌,是准确数.(5)由于我国人口众多,人均森林面积只有0.128公顷,是近似数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按照括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0238(精确到0.001);(2)2.605(精确到0.1);(3)20 543(精确到百位).【互动探索】(引发学生思考)什么是精确度?怎样求一个数的近似数?【解答】(1)0.0238(精确到0.001)≈0.024.(2)2.605(精确到0.1)≈2.6.(3)20 543(精确到百位)≈2.05×104.【互动总结】(学生总结,老师点评)近似数一般是由四舍五入得到的,当用四舍五入法取近似值时,近似数的末位数字0不能省略.活动2 巩固练习(学生独学)1.下列说法正确的是( C )A .近似数32与32.0的精确度相同B .近似数5万与近似数5000的精确度相同C .近似数0.0108有3个有效数字2.近似数1.02×105精确到了千位.3.把489 960按四舍五入法保留三个有效数字是4.90×105.4.用四舍五入法,对下列各数按括号中的要求取近似数:(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)130.96(精确到十分位);(4)46 021(精确到百位).解:(1)0.63. (2)8.(3)131.0. (4)4.60×104.活动3 拓展延伸(学生对学)【例2】已知有理数x 的近似值是5.40,则x 的取值范围是________.【互动探索】如果近似值5.40是“四舍”得到的,那么原数x 最大是5.4+0.004=5.404;如果近似值5.40是“五入”得到的,那么原数x 最小是5.40-0.005=5.395.原数x 的取值范围是5.395<x <5.404.【答案】5.395<x <5.404【互动总结】(学生总结,老师点评)本题考查了准确值的取值范围,如果近似值是“四舍”得到的,那么原数最大;如果近似值是“五入”得到的,那么原数最小.环节3 课堂小结,当堂达标(学生总结,老师点评)近似数⎩⎪⎨⎪⎧ 求一个数的近似数精确度、有效数已知近似数求原数请完成本课时对应练习!。

七年级上册数学人教版教案《乘方》

七年级上册数学人教版教案《乘方》

1.5 有理数的乘方1.5.1 乘方第1课时乘方的概念及性质一、教学目标1.理解有理数乘方的意义.2.理解乘方、幂、底数等概念.3.有理数乘方的运算及幂的符号法则.二、教学重难点重点理解有理数乘方的意义,会进行有理数乘方的运算.难点有理数乘方的运算及幂的符号法则.重难点解读1.有理数的乘方,是求几个相同因数的积的运算,所以乘方是特殊的有理数的乘法运算,因而乘方结果的符号与有理数乘法中积的符号的确定方法是一样的.2.在乘方运算时,底数是负数或分数,要先用括号将底数括上,再在其右上角写上指数.负号在括号内,参与乘方的运算,负号在括号外,不参与乘方的运算,先保留,到最后再化简.3.有理数乘方的运算:(1)正数的任何次幂都是正数;(2)负数的偶次幂是正数,负数的奇次幂是负数;(3)0的任何正整数次幂都是0;(4)1的任何次幂都是1,-1的偶次幂是1,奇次幂是-1.三、教学过程活动1 旧知回顾1.回顾有理数的乘法法则.2.算式(-2.5)×0.37×1.25×(-4)×(-8)的值为.活动2 探究新知1.教材第41页内容.提出问题:(1)2个2相乘记作22,3个2相乘记作23,n 个2相乘记作多少?(2)引入负数后,4个-2相乘记作多少?-24和(-2)4一样吗?为什么?(3)求n 个相同因数的积的运算,叫做什么?它们的结果又叫做什么?(4)在a n 中,a 和n 分别叫做什么?2.教材第42页 思考.活动3 知识归纳1.一般地,n 个相同的因数a 相乘,即n a aa ⋅⋅个,记作 a n .在a n 中,a 叫做 底数 ,n 叫做 指数 .求n 个相同因数的积的运算,叫做 乘方 ,乘方的结果叫做 幂 .注意:乘方和幂的区别2.负数的奇次幂是 负 数,负数的偶次幂是 正 数;正数的任何次幂都是 正 数,0的任何正整数次幂都是 0 .活动4 典例赏析及练习例1 将下列各式写成乘方(即幂)的形式:(1)(-5)×(-5)×(-5)×(-5)×(-5)= (-5)5 ;(2)(-14)×(-14)×(-14)×(-14)= (14)4. 例2 (-3)4表示( B )A .-3个4相乘B .4个-3相乘C .3个4相乘D .4个3相乘例3 计算:(1)(-2)5;(2)(-0.4)4;(-75)3. 【答案】(-2)5=(-2)×(-2)×(-2)×(-2)×(-2)=-32.(2)(-0.4)4=(-0.4)×(-0.4)×(-0.4)×(-0.4)=0.025 6.(3)(-75)3=(-75)×(-75)×(-75)=-343125. 例4 用计算器计算下列各式:(1)(-11)5= -161 051 ;(2)(-9)6= 531 441 .练习:1.下列运算正确的是( B )A .-24=16B .-(-2)2=-4C .(-31)2=-91D .-(-21)2=-41 2.下列各组数:-52和(-5)2;(-3)3和-33;-(-2)3和-23;323和(32)3;02 022和 02 021;(-1)2n 和(-1)2 020,其中相等的有( B )A .2组B .3组C .4组D .5组3.35 cm 比较接近于( D )A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高(2.26 m )D .一张纸的厚度活动5 课堂小结1.求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数.当把a n 看作a 的n 次方的结果时,也可读作“a 的n 次幂”.2.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0.四、作业布置与教学反思第2课时 有理数的混合运算一、教学目标1.确定有理数混合运算的顺序.2.熟练地进行有理数的混合运算.二、教学重难点重点有理数的混合运算顺序的确定和符号的处理.难点利用运算律进行有理数的混合运算.重难点解读1.进行有理数的混合运算,应注意运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.括号内的运算同样按上述运算顺序进行.算式中有带分数,一般把带分数化为假分数,算式中有小数的,把小数化为分数.2.在进行有理数的混合运算时,若能利用运算律,就利用运算律计算.三、教学过程活动1 旧知回顾1.回顾有理数的加减乘除混合运算的顺序和乘方的相关概念.2.计算:(1)|-512|÷(13-12)×(-111);(2)(-2)3,(-12)3,(-13)3. 活动2 探究新知 观察3+50÷22×(15)-1. 提出问题:(1)式子中有哪几种运算?(2)如何计算这个式子?它的运算顺序是什么?(3)计算过程中,可以运用运算律吗?活动3 知识归纳有理数的混合运算顺序:(1)先 乘方 ,再 乘除 ,最后 加减 ;(2)同级运算,从 左 到 右 进行;(3)如有括号,先做括号内的运算,按 小 括号、 中 括号、 大 括号依次进行.活动4 典例赏析及练习例1 (1)-14-61×[2-(-3)2];(2)(-3)2-(211)3×92-6÷|-32|. 【答案】解:(1)原式=-1-61×(2-9)=-1-61×(-7)=-1+67=61. (2)原式=9-827×92-6÷32=9-43-6×23=9-43-9=-43.例2观察下列等式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62.请你在观察后用你得出的规律填空:(1)48×52+4= 502;(2)n×(n+4)+4= (n+2)2(n为正整数).练习:1.下列计算中:①74-22÷70=70÷70=1;②2×32=(2×3)2=62=36;③-6÷(2×3)=-6÷2×3=-3×3=-9;④223-(-2)×(14-12)=49-(12-1)=49+12=1718.错误的有( D )A.1个B.2个C.3个D.4个2.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中第100个数是( A )A.9 999 B.10 000 C.10 001 D.10 002 3.x,y是有理数,且满足|x-1|=0,|y+3|=0,求x2-3xy+2y2的值.解:因为x,y是有理数,且满足|x-1|=0,|y+3|=0,所以x=1,y=-3.x2-3xy+2y2=12-3×1×(-3)+2×(-3)2=1+9+18=28.活动5 课堂小结1.有理数混合运算的顺序.2.有理数的混合运算.四、作业布置与教学反思。

人教版七年级数学上册教案《1.5.1乘方》第二课时(人教)

人教版七年级数学上册教案《1.5.1乘方》第二课时(人教)

《1.5.1乘方》第二课时有理数的乘方是初一年级上学期第一章第五节的教学内容,是有理数的一种基本运算,从教材编排的结构上看,共需要4个课时,此课为第二课时,是在学生学习了有理数的加、减、乘、除以及乘方运算的基础上来学习的,。

在这一课的教学过程中,可以培养学生观察问题、分析问题和解决问题的能力,以及转化的数学思想,通过这一课的学习,对培养学生的这些能力和转化的数学思想起到很重要的作用。

【知识与能力目标】掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算。

【过程与方法目标】通过例题学习,发展学生观察、归纳、猜想、推理等能力。

【情感态度价值观目标】体验获得成功的感受、增加学习自信心。

【教学重点】能正确地进行有理数的加、减、乘、除、乘方的混合运算。

【教学难点】灵活应用运算律,使计算简单、准确,明确题目中各个符号的意义,正确运用运算法则。

收集相关文本资料,相关图片,相关动画等碎片化资源。

一、复习引入1、我们已经学习了哪几种有理数的运算?2、有理数的乘方法则是什么?(朗读)3、练习:(1)23中底数是 ,指数是 ,幂是 。

(2) 中底数是 ,指数是 ,幂是 。

(3)(-5)4中底数是 ,指数是 ,幂是___。

2、计算:(-5)4 -54 43 -(-2)3 2)54( 二、探索新知在2 +32×6这个式子中,包含 种运算,它可以读作2加上这个算式里,按怎样的顺序进行运算?有理数的混合运算,应按以下运算顺序进行:1、先乘方,再乘除,最后加减;2、同级运算,从左往右进行;3、如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

例如式子: 3+50÷22×(-15)-1 =3+50÷4×(-15)-1 =3+50×14×(-15)-1 =3-52-1 =-12 例3:计算:(1)2×(-3)3-4×(-3)+15; 243((2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2)。

1.5.2有理数的乘方(教案)-人教版七年级数学上册

1.5.2有理数的乘方(教案)-人教版七年级数学上册
(3)运用乘方解决实际问题:通过实例分析,让学生学会运用乘方知识解决生活中的问题,如面积、体积等。
举例:计算一个正方体的体积,V = a^3(a为正方体的边长)。
2.教学难点
(1)负整数乘方的计算:学生容易混淆负整数乘方的计算方法,需要重点讲解和练习。
难点举例:(-2)^2 = 4,而(-2)^3 = -8。
我尝试用生活中的实例来引导学生理解乘方的实际意义,比如通过折叠纸张来体验指数增长的速度。这个方法似乎很有效,学生们对这些直观的例子表现出浓厚的兴趣,这有助于他们更好地理解乘方的概念。
在小组讨论环节,我注意到学生们积极参与,相互交流想法。他们能够在讨论中提出一些很有见地的问题和观点,这说明学生们已经开始了主动探索和思考的过程。然而,我也观察到有些小组在讨论时可能会偏题,这时我及时介入,引导他们回到主题上来。
(2)乘方性质的掌握:学生难以理解负数乘方的性质,如负数的偶数次方为正数,奇数次方为负数。
难点举例:解释为什么(-2)^2 = 4,而(-2)^3 = -8。
(3)乘方在实际问题中的应用:学生可能不知道如何在实际问题中运用乘方知识,需要通过实例讲解。
难点举例:计算一个边长为2米的正方体的体积,V = 2^3 = 8立方米。
1.5.2有理数的乘方(教案)-人教版七年级数学上册
一、教学内容
本节课选自人教版七年级数学上册第1章《有理数》的1.5.2节,主要内容包括有理数的乘方概念、乘方运算的法则以及乘方在实际问题中的应用。具体教学内容如下:
1.理解有理数的乘方,掌握正整数、零、负整数的乘方运算;
2.掌握乘方的性质,如:负数的偶数次方为正数,负数的奇数次方为负数;
实践活动是课堂中的一个亮点,通过动手操作和实际计算,学生们对乘方的应用有了更深刻的体会。但是,我也发现一些学生在操作过程中遇到了困难,这提示我在未来的课堂中应该提供更多的一对一帮助,确保每个学生都能跟上进度。

1.5 有理数的混合运算2(加减乘除乘方)学案2022-2023学年七年级数学人教版上册

1.5 有理数的混合运算2(加减乘除乘方)学案2022-2023学年七年级数学人教版上册

1.5 有理数的混合运算2(加减乘除乘方)学案学案背景本学案是为了帮助七年级学生巩固和提高有理数的混合运算能力而设计的。

通过加减乘除和乘方的混合运算练习,学生将能够更好地理解和应用有理数的概念和运算规则。

学习目标1.能够熟练进行有理数的加减乘除和乘方运算;2.能够正确应用运算法则解决实际问题;3.能够灵活运用有理数的混合运算进行解题。

学习重点1.有理数的混合运算法则及应用;2.复杂问题的变量分析和求解过程。

学习内容本学案内容主要包括以下几个部分:一、复习与导入(10分钟)通过简单的问题复习上节课所学的有理数加减乘除运算,引出本节课的学习内容。

二、知识点讲解(20分钟)1.有理数的乘方运算法则;2.有理数的混合运算规则;3.实际问题的建模和解决。

三、例题演练(30分钟)通过几个例题的演练,帮助学生掌握有理数的混合运算方法。

四、综合应用(30分钟)设计一些综合应用题,让学生灵活运用有理数的混合运算求解实际问题。

五、小结与作业布置(10分钟)对本节课所学内容进行小结,并布置相应的作业,巩固所学知识。

学习方法与策略1.理解运算规则:掌握有理数的各种运算法则,注重操作过程的理解和记忆。

2.进行变量分析:对于复杂问题,先进行变量的定义和分析,再根据情境和条件构建数学模型。

学习延伸1.阅读教材相关章节,对比书本上的例题和练习题,加深理解;2.利用在线学习资源,进行相关的习题练习和巩固训练;3.创设实际情境,设计有理数混合运算的问题,培养学生应用所学知识解决实际问题的能力。

学习评价1.参与课堂讨论和演练的积极性;2.完成课堂练习的准确性;3.解决实际问题的能力。

学习过程中,老师将通过观察学生的学习情况、听取学生的回答、检查学生的练习结果等方式来进行评价。

同时,鼓励学生互相讨论和合作,相互学习,共同进步。

以上是本学案的设计内容,希望能帮助学生们更好地掌握有理数的混合运算方法。

学生们在学习过程中,应该充分发挥自己的主动性和创造性,积极思考和探索,提高数学思维和解决问题的能力。

最新人教版初中七年级上册数学《有理数的乘方》教案

最新人教版初中七年级上册数学《有理数的乘方》教案

1.5 有理数的乘方1.5.1 乘方第1课时有理数的乘方【知识与技能】正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.【过程与方法】1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.【情感态度】培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.【教学重点】正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.【教学难点】准确建立底数、指数和幂三个概念,并能求幂的运算.一、情境导入,初步认识提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a 的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a 的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,……,5小时后要分裂10次,分裂成1024个.为了简便可将记作210.二、思考探究,获取新知一般地,n个相同的因数a相乘,即a·a·……·a,记作a n,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可读作a的n次幂.【教学说明】(1)举例56说明概念及读法;(2)一个数可以看作这个数本身的一次方,通常省略指数1不写;(3)因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;(4)乘方是一种运算,幂是乘方运算的结果.试一试(1)(-4)3;(2)(-2)4;(3)-24.【教学说明】教师教学时应强调:(1)计算时仍然是要先确定符号,再确定绝对值;(2)注意(-2)4与-24的区别.【归纳结论】根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何次幂都是0.三、典例精析,掌握新知例1 计算:【教学说明】注意观察,分清符号、底数以及指数.试一试教材第42~43页练习第1、2题.例2用计算器计算.(-8)5和(-3)6(教材第42页例2)【教学说明】教师让学生用计算器计算上面的题,注意让学生知道算乘方时的按键为∧.试一试教材第42~43页练习第3题.四、运用新知,深化理解1.在(-2)6中,指数为______,底数为______.2.在-26中,指数为______,底数为_______.3.若a 2=16,则a=______.4.平方等于本身的数为______,立方等于本身的数为______.5.计算(-151)×461=________. 6.在(-2)5,(-3)5,(-21)5,(-31)5中,最大的数是_______. 7.下列说法正确的是( )A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数8.下列运算正确的是( )A.-24=16B.-(-2)+=-4C. (-31)2=-91 D.(- 21)2=-41 9.下列各组数中,不相等的是( )A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.丨-23丨与丨-23丨10.下列各式计算不正确的是( )A.(-1)2013=-1B.-12012=1C.(-1)2n =1(n 为正整数)D.(-1)2n+1=-1(n 为正整数)【教学说明】以上题目均较简单,可由学生独立完成后再由教师评讲,边评讲边点学生口答.【答案】1.6 -22.6 23.±44.1、0 -1、0、15.-56.(-31) 5 7.D8.B9.A10.B五、师生互动,课堂小结1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.教师扩展:首先,有理数的乘方就是几个相同因数的积的运算,可以运用有理数乘法法则进行符号的确定和幂的求值.乘方的含义:①表示一种运算;②表示运算的结果.乘方的读法:①当a n 表示运算时,读作a 的n 次方;②当a n 表示运算结果时,读作a 的n 次幂.乘方的符号法则:①正数的任何次幂都是正数;②零的任何次幂都是零;③负数的偶次幂是正数,奇次幂是负数.注意(-a )n 与-a n 及(a b )n 与a nb 的区别和联系.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.3.选做题.本课时宜从现实生活里的具体事例出发,引导学生探究理解乘方的意义,在教学过程中采用“自主——合作——讨论——探究——交流”的教学方法,教师始终起着引领学生探寻方向的作用,即遵循“引导——帮助——点拨”的原则,真正做到数学教师由单纯的知识传递者转变为学生学习的组织者、引导者和合作者.这种方式可使学生在动手实践、自主探索、合作交流中主动发展知识,在合作学习及相互交流中形成协作意识.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的乘方
教学目标
知识技能:在现实背景中,理解有理数乘方的意义.能进行有理数的乘方运算,并会用计算器进行乘方运算.掌握幂的符号法则.
数学思考:培养观察.类比.归纳.知识迁移的能力.通过乘方运算,培养运算能力;
解决问题:了解乘方的意义并能正确的读.写;掌握幂的性质并能进行乘方的运算.
情感态度:在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益.
教学重点:有理数乘方的意义,幂,底数,指数的概念及其表示.理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.
教学难点:有理数乘方的意义的理解与运用
教学过程设计
活动一.创设情境,引入新课.
1.教师展示细胞分裂的示意图,引导学生分析某种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何得出结果.
2.结合学生熟悉的边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a及它们的简单记法,告诉学生几个相同因数a相乘的运算就是这堂课所要学习的内容.
在实际背景中创设情境激发学生的学习兴趣.通过计算正方体面积和正方体体积的实例,引出课题.
活动二.合作交流,得出结论.
1.分小组学习课本41页,要求能结合课本中的示意图,用自己的语言表达下列几个概念的意义及相互关系.底数是相同的因数,可以是任何有理数,指数是相同因数的个数,在现阶段中是正整数,而幂则是乘方的结果.
2.定义:n个相同因数a相乘,即a·a·…·a(个),记作a n,读作a的n次方. 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.读作a的n次方或a的n次幂.
3(1)补充例题:把下列各式写成乘方运算的形式,并指出底数,指数各是多少?
①(-2.3)×(-2.3)×(-2.3)×(-2.3).
② (-1
4
)×(-
1
4
)×(-
1
4
)×(-
1
4
).
③x·x·x·......·x(2010个x的积).
1
2 (2)课本例题,教师指导学生阅读分析例题,并规范书写解题过程.
3.此例可由学生口述,教师板述完成.
4.小组讨论: ()4
422--与的区别?
教师要提醒学生注意,相同的分数或相同的负数相乘时,要加括号,例如(-2)×(-
2)×(-2)×(-2)记作(-2)4.通过补充例题和小组讨论:()4
422--与的区别的学习,对有理数的乘方有更进一步的理解.
活动三.应用新知,课堂练习.
1.做一做:课本第42页练习第1题.
2.用计算器算,以及课本42页练习第2题.
3.小组讨论:通过上面练习,你能发现负数的幂的正负有什么规律?正数呢?0呢?学生归纳总结.
4.总结规律:负数的奇数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0.
把问题再次交给学生,充分发挥学生的主观能动性,鼓励学生尽可能地发现规律. 活动四.知识梳理,课堂小结.
1.由学生小结本堂课所学的内容.
2.总结五种已学的运算及其结果.
活动五.知识反馈,作业布置.
1.课本47页第1,2题.
2.课外拓展
(1)用乘方的意义计算下列各式:
①4)2(-; ②42-; ③323⎛⎫- ⎪⎝⎭
; ④223-. (2)观察下列各等式:1=21; 1+3=2
2 ; 1+3+5=23;1+3+5+7=24……
①通过上述观察,你能猜想出反映这种规律的一般结论吗?
②你能运用上述规律求1+3+5+7+...+2011的值吗?。

相关文档
最新文档