有理数的乘方(一)教学设计
人教版七年级数学上册有理数的乘方教学设计

3.提高挑战题:设置2-3道综合性的题目,要求学生综合运用乘方及其他相关知识,解决问题。这些题目旨在激发学生的学习兴趣,提升他们的逻辑思维能力和创新意识。
-引导学生进行独立思考和探索,鼓励他们尝试不同的解题方法。
4.小组合作作业:安排一个小组合作项目,要求学生共同探讨乘方在实际生活中的应用案例,并撰写一个小报告。这个项目旨在培养学生的团队合作能力和沟通交流能力。
-培养学生运用乘方解决简单问题的能力。
3.教学方法:
-采用讲解、举例、演示等多种教学方法,帮助学生理解乘方的概念和性质。
-引导学生通过观察、思考,总结乘方的运算法则。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,针对乘方的运算法则进行讨论。
-每个小组选取一道具有代表性的题目,共同探讨解题思路和方法。
-鼓励学生在报告中包含实际调查、数据分析和解决方案等元素。
5.自主学习任务:鼓励学生利用网络资源或图书馆书籍,自主学习与乘方相关的数学历史或趣味数学知识,并撰写学习心得体会。
-通过自主学习,拓宽学生的知识视野,增强他们对数学学科的兴趣。
作业布置时应注意以下原则:
-作业量适中,避免过多增加学生负担。
-关注学生个体差异,提供不同难度的题目,满足不同学生的学习需求。
2.难点:
-理解乘方的意义,尤其是负数的乘方和零的乘方的实际意义。
-掌握乘方的运算法则,特别是不同符号之间的乘方运算。
-运用乘方解决实际问题时,能够正确设置运算步骤,避免运算错误。
(二)教学设想
1.引入阶段:
-利用生活实例或数学故事引入乘方的概念,激发学生的好奇心和学习兴趣。
-通过具体例子,让学生观察、思考乘方的规律,引导学生发现乘方的性质。
七年级数学《有理数的乘方(一)》教案

七年级数学《有理数的乘方(一)》教学设计分)到不同的发展,同时,及时反馈教学效果,随时调节教学进程。
教学程序问题与情境师生互动设计意图及媒体应用分析活动一创设情境,导入新课问题1:把一张纸对折2次可裁成几张?你能用算式表示吗?对3次呢?若对折10次可裁成几张?怎样用一个算式表示(不用算出结果)?若对折100次,算式中有几个2相乘?问题2:对折100次裁成的张数,可用算式表示,在这个积中有100个2相乘。
这么长的算式有简单的记法吗?【教师活动】(1)用一张纸边演示操作,边用课件出示问题1;(2)鼓励学生操作并猜测,在小组内讨论交流。
(3)关注并适时评价学生的表现。
结合学生回答板书:对折2次可以裁成2×2张;对折3次可以裁成2×2×2张;对折10次可以裁成2×2×2×2×2×2×2×2×2×2;对折100次的裁成的张数就是100个2相乘,黑板上能写下吗?有没有简单的记法呢?这就是本节课要研究的内容(揭示并板书课题)。
【学生活动】(1)动手操作感知问题,大胆提出猜想。
(2)将自己的猜想在小组内交流探讨,(1)问题旨在帮助学生认识数学与生活的密切关系,激发求知欲。
(2)学生自己动手折纸是为了获得亲身体验和感知问题,激发探索欲。
(3)通过独立思考大胆猜测、同伴讨论交流、代表发言让学生感受多种情感体验,并进一步理解问题。
【媒体应用分析】PPT课件出示问题1、2,引导学生理解建构乘方意义的必要性,为进一步探究乘方意义及运算打下伏笔。
教学反思:。
人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计

人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计一. 教材分析人教版数学七年级上册1.5.1《有理数的乘方(1)》是学生在学习了有理数的加减乘除、相反数、绝对值等概念的基础上,进一步深化对有理数运算法则的理解。
本节课主要让学生掌握有理数的乘方运算,为后续学习幂的运算、指数函数等知识打下基础。
教材通过具体的例子引导学生探究有理数乘方的规律,从而让学生自主发现并掌握有理数乘方的法则。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加减乘除运算较为熟悉。
但是,对于有理数的乘方运算,学生可能存在一定的困难,因为乘方运算涉及到多个有理数的乘积,运算规则相对复杂。
因此,在教学过程中,需要引导学生通过实例探究有理数乘方的规律,让学生在理解的基础上掌握乘方运算。
三. 教学目标1.理解有理数乘方的概念,掌握有理数乘方的法则。
2.能够熟练进行有理数的乘方运算。
3.培养学生的抽象思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:有理数乘方的概念,有理数乘方的法则。
2.教学难点:有理数乘方运算的规律,有理数乘方在实际问题中的应用。
五. 教学方法1.实例导入:通过具体的例子引导学生探究有理数乘方的规律。
2.小组讨论:让学生分组讨论,共同发现有理数乘方的法则。
3.练习巩固:通过大量练习,让学生熟练掌握有理数乘方运算。
4.实际应用:引导学生运用有理数乘方知识解决实际问题。
六. 教学准备1.教学课件:制作课件,展示有理数乘方的例子和知识点。
2.练习题:准备适量练习题,巩固学生对有理数乘方的掌握。
3.教学道具:准备一些教学道具,如卡片、小黑板等,方便学生直观地理解乘方运算。
七. 教学过程1.导入(5分钟)利用实例引入有理数乘方的概念,如:2的3次方表示2乘以自己3次,即2×2×2=8。
让学生初步认识有理数乘方。
2.呈现(10分钟)展示多个有理数乘方的例子,引导学生发现有理数乘方的法则。
浙教版数学七年级上册2.5《有理数的乘方》(第1课时)教学设计

浙教版数学七年级上册2.5《有理数的乘方》(第1课时)教学设计一. 教材分析《有理数的乘方》是浙教版数学七年级上册第2.5节的内容,主要介绍了有理数的乘方概念、性质及运算法则。
这部分内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
本节内容与现实生活紧密相连,有利于激发学生的学习兴趣。
二. 学情分析七年级的学生已具备一定的数学基础,掌握了有理数的加减乘除运算。
但学生对于乘方的概念和性质可能较为抽象,需要通过具体的例子和实际操作来理解和掌握。
此外,学生的学习习惯和思维方式各有不同,需要教师在教学中善于引导和调动学生的积极性。
三. 教学目标1.理解有理数的乘方概念,掌握有理数乘方的性质和运算法则。
2.能够运用乘方知识解决实际问题,提高学生的数学应用能力。
3.培养学生的逻辑思维和抽象思维能力,提高学生的数学素养。
4.激发学生学习数学的兴趣,养成良好的学习习惯。
四. 教学重难点1.有理数的乘方概念和性质的理解。
2.有理数乘方的运算法则的掌握。
3.乘方知识在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入乘方概念,激发学生学习兴趣。
2.引导发现法:教师引导学生发现乘方的性质和运算法则,培养学生的自主学习能力。
3.实践操作法:让学生通过实际操作,加深对乘方知识的理解和掌握。
4.巩固拓展法:通过课堂练习和课后作业,巩固所学知识,提高学生的应用能力。
六. 教学准备1.教学PPT:制作包含乘方概念、性质和运算法则的PPT,以便于课堂展示和讲解。
2.教学案例:准备一些与生活紧密相关的乘方实例,以便于引导学生学习和应用。
3.练习题:准备一些有针对性的练习题,以便于课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)利用生活实例引入乘方概念,如“2的3次方表示3个2相乘,即2×2×2=8”。
通过实例让学生感受乘方的意义,激发学生的学习兴趣。
2.呈现(10分钟)呈现乘方的性质和运算法则,如“乘方的性质:a m×a n=a(m+n);乘方的运算法则:a m÷a n=a(m-n)”。
有理数乘方(1)教案

有理数乘方(1)教案11有理数的乘方(1)一、教学目的:1、通过现实背景,使学生理解并掌握有理数乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算,并让学生经历探索乘方的有关规律的过程。
2、通过尝试过程,感受数学的奇妙性,领会重要的数学建模思想、归纳思想、形成数感、符号感,发展抽象思维。
二、教学重点难点:重点:理解有理数乘方的意义和表示,会进行乘方运算。
三、教学设计:(一)、复习旧知,引入新课1、有理数加法和减法法则?两个学生回答2、将一张作业本的纸对折30次,你们猜一猜它有多厚?学生们可讨论、想象,教师在此不作任何解答。
3、我们小学学过相同加数的简便运算用乘法,那么相同因数的乘法的简便运算又可用什么方法呢?(二)、讲授新课:1、通过探索,得出乘方的意义由边长为2的正方形,面积:422,棱长为2的正方体,体积:8222为了简便,将它们分别记作322,2,读作“2的平方”(或2的二次方),“2的立方”(或2的三次方)同样:的四次方”,读作“)记作(22),2()2()2()2(4,)的五次方”,读作“())记作(()()()()(52525252525252512aaaaa可以记作什么?读作什么?师提出:aaaa(n个a,n为正整数)呢?生归纳总结:(抽学生回答)可以记作na,读作a的n次方。
板书①一般地,n个相同的因数a相乘,即aaaa(n个a),记作na,读作“a的n次方”。
②定义:求n个相同因数的积的运算,叫作乘方。
乘方的结果叫做幂,在na中,相同的因数a叫底数,(a可取任何有理数),n叫作指数,(n取正整数)。
注意:⑴乘方是一种运算,⑵幂是乘方的结果,na看作是a的n的次方的结果时,也可读作a 的n的次幂。
(没有特别说明:a的n的次方和a的n次幂,两种读法都正确。
)⑶单独的一个数可以看作这个数本身的一次方。
例:3就是13,指数是1的通常省略不写。
2、应用乘方的意义回答下列的问题(1)、32读作________,或________,或_______,幂是______;2)2(的底数是_______,指数是_____,幂是_______;3)21(的底数是_______,指数是_____,幂是_______;431)(读作________,底数是_______,指数是_______。
七年级数学上册《有理数的乘方》教案、教学设计

3.注重培养学生的观察、分析、总结能力,引导学生发现乘方的性质和规律,提高学生的数学思维能力。
4.考虑到学生的年龄特点,采用生动、有趣的教学方法,激发学生的学习兴趣,营造轻松愉快的学习氛围。
5.关注学生的学习情感,鼓励学生积极参与课堂讨论,培养合作精神,提高学生的自信心和自主学习能力。
(三)教学设想
1.创设情境,引入乘方概念
利用生活中的实例,如平方土地面积、立方体体积等,引导学生理解乘方的意义。通过实际操作,让学生感受乘方的产生过程,从而加深对乘方概念的理解。
2.分层教学,突破难点
针对学生的认知差异,设计不同层次的例题和练习题。对基础薄弱的学生,重点辅导乘方的基本运算;对中等程度的学生,引导他们发现乘方的性质,提高解题能力;对优秀学生,设置拓展题,培养他们的数学思维能力。
(2)学生回答:“边长乘以边长,即a×a。”
(3)教师继续提问:“如果这个正方体的体积怎么计算呢?如果边长为a,那么它的体积是多少呢?”
(4)学生回答:“边长的三次方,即a×a×a。”
通过这个实例,引出乘方的概念,让学生明白乘方是表示几个相同因数相乘的运算。( Nhomakorabea)讲授新知
1.教学内容:讲解有理数乘方的定义、运算方法以及乘方的性质。
教学过程:
(1)教师讲解有理数乘方的定义,让学生明白乘方是指数运算的一种形式,表示几个相同因数相乘。
(2)教师举例说明有理数乘方的运算方法,如:2^3=2×2×2,(-3)^2=(-3)×(-3)。
(3)引导学生发现乘方的性质,如:负数的奇数次幂是负数,偶数次幂是正数;零的任何正整数次幂都是零。
(4)教师通过例题,演示乘方运算的步骤和注意事项,如符号的处理、计算的准确性等。
有理数的乘方第一课时教学设计

有理数的乘方第一课时教学设计教学目标:1. 理解有理数的乘方的概念和意义;2. 能够计算简单的有理数乘方;3. 能够运用有理数乘方解决实际问题。
教学重点:1. 有理数乘方的概念和性质;2. 有理数乘方的计算方法;3. 运用有理数乘方解决实际问题的能力。
教学准备:1. 教师准备教学课件和教具,并确保设备正常运行;2. 学生准备笔记本和教材。
教学步骤:步骤一:导入(5分钟)教师通过一个简单的问题导入,例如:“如果有一个正方形的边长是3米,你知道它的面积是多少吗?”学生回答后,引导他们思考如何将乘方运算应用到这个问题中。
步骤二:引入有理数乘方的概念(10分钟)教师通过课件和示意图引入有理数乘方的概念。
解释有理数乘方的含义,例如“a的n次方(aⁿ)表示a连乘自己n次。
”步骤三:讲解有理数乘方的性质(15分钟)教师依次介绍有理数乘方的三个性质,包括乘方的零次方、乘方的负指数和乘方的乘法法则。
通过具体的例子和图示讲解,并引导学生进行思考和讨论。
步骤四:计算有理数乘方(15分钟)教师向学生介绍有理数乘方的计算方法,例如aⁿ= a × a × a × ... × a(n个a相乘)。
通过课件和示例演示计算有理数乘方的过程,并让学生进行练习。
步骤五:运用有理数乘方解决实际问题(20分钟)教师提供一些与实际生活相关的问题,引导学生运用有理数乘方解决问题。
例如:“如果一块土地的长为5米,宽为2米,你能计算出它的面积吗?”学生思考后回答,并解释使用有理数乘方的原因。
步骤六:总结(5分钟)教师对本节课的内容进行总结,并强调有理数乘方的重要性和应用价值。
鼓励学生继续加强乘方运算的练习,并留下问题供下节课引入。
布置作业:1. 完成课堂练习题;2. 自行查找有关有理数乘方的实例并写出解题步骤;3. 准备下节课的新知课前预习。
教学反思:本节课通过引入问题、讲解概念与性质、演示计算过程以及实际问题的应用,使学生逐步理解有理数乘方的概念和意义。
浙教版数学七年级上册2.5《有理数的乘方》教学设计1

浙教版数学七年级上册2.5《有理数的乘方》教学设计1一. 教材分析《有理数的乘方》是浙教版数学七年级上册第二章第五节的内容,主要介绍了有理数的乘方概念、性质及其运算方法。
这部分内容是有理数的重要组成部分,也是进一步学习函数、方程等数学知识的基础。
本节课的内容对于学生来说比较抽象,需要通过实例和练习让学生理解和掌握有理数的乘方。
二. 学情分析七年级的学生已经学习了有理数的基本概念和运算,对于简单的数学运算已经有一定的基础。
但是,对于有理数的乘方,学生可能初次接触,理解起来较为困难。
因此,在教学过程中,需要通过实例和练习让学生逐步理解和掌握有理数的乘方。
三. 教学目标1.理解有理数的乘方概念,掌握有理数的乘方性质。
2.能够熟练进行有理数的乘方运算。
3.培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.有理数的乘方概念及其性质。
2.有理数的乘方运算方法。
五. 教学方法1.情境教学法:通过实例和问题情境,引发学生的思考,激发学生的学习兴趣。
2.启发式教学法:引导学生主动探索,发现有理数的乘方规律。
3.练习法:通过大量的练习,让学生巩固所学知识,提高运算能力。
六. 教学准备1.PPT课件:制作有关有理数乘方的PPT课件,包括概念、性质、运算方法等内容。
2.练习题:准备一些有关有理数乘方的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用PPT课件展示有理数的乘方实例,引导学生思考有理数乘方的意义和性质。
2.呈现(10分钟)讲解有理数的乘方概念,阐述有理数乘方的性质,让学生理解和掌握。
3.操练(10分钟)让学生进行有理数乘方运算的练习,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)通过一些典型例题,让学生进一步巩固有理数乘方的运算方法。
5.拓展(10分钟)利用有理数乘方的知识,解决实际问题,培养学生的数学应用能力。
6.小结(5分钟)对本节课的内容进行总结,让学生明确有理数乘方的概念、性质和运算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章有理数及其运算
9.有理数的乘方(一)
一、学生起点分析
记作 a²,读作a的平方或a的二次方,前几节课,学生已掌握了有理数的乘法法则,具备了进一步学习有理数的乘法运算的知识技能基础.
学生的活动经验基础:在以往的学习过程中,学生经历了不同类型的数学活动,积累了较为丰富的经验,合作学习的水平和探究学习的意识都有明显的进步,尤其是语言表达水平的提升,为本节课的学习奠定了重要的基础.
二、学习任务分析
新版教科书在学生熟练掌握了有理数的乘法运算的基础上,尤其是在学生具备了一定的学习水平和探究方法的基础上,提出了本节课的具体学习任务,理解有理数乘方的意义,掌握有理数乘方的概念,学会有理数乘方的运算,本节课的教学目标是:
1、在现实背景中,感受有理数乘方的必要性,理解有理数乘方的意义;
2、掌握有理数乘方的概念,能实行有理数的乘方运算;
3、经历有理数乘方的符号法则的探究过程,领悟乘方运算符号的确定法则。
三、教学过程设计
本节课设计了六个环节:第一环节:引入情境,导入新课;第二环节:定义乘方,熟悉概念;第三环节:例题练习,乘方运算;第四环节:随堂演练,符号法则;第五环节:联系拓广,发散思维;第六环节:课堂小结;第七环节:布置作业。
第一环节:引入情境,导入新课
活动内容:观察教科书给出的图片,阅读理解教科书提出的问题,弄清题意,计算每一次分裂后细胞的个数,五小时经过十次分裂后细胞的个数.
活动目的:感受现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用,
面对实际问题,主动尝试从数学的角度使用所学知识解决实际问题,并在解决问题的过程中体验到乘法运算的必要性和优越性,同时体会细胞分裂的述度非常快,从而引出本节课的学习课题:有理数的乘方.
活动的注意事项:在活动中需要使用乘法运算计算五小时一个细胞能分裂成多少个细胞,这个过程不要一次完成,而应让学生仔细分析,逐步完成,并依次类推,如果一次分裂成2个,第2次分裂成2×2个,第三次分裂成2×2×2个.因为五小时要分裂10次,所以第十次分裂成2×2×2………×2×2个.得到这个结果时要指出两点:一是让学生感受细胞分裂的速度非常快的事实.二是要指出这种表示方法很复杂,为了简便,可将它写成210
,表示10个2相乘,培养学生的符号感,同时指出这就是乘法运算,从而引出本节课的学习内容:有理数的乘方.
第二环节:定义乘方,熟悉概念
活动内容:1.归纳多个相同因数相乘的符号表示法,定义乘方运算的概念。
2.通过练习熟悉乘方运算的相关概念. 填空: (1)(-2)10
的底数是_______,指数是________,读作_________
(2)(-3)12表示______个_______相乘,读作_________,
(3)( 1/3)8的指数是________,底数是________读作_______,
(4)3.65的指数是_________,底数是________,读作_______,x m 表示____个_____相乘,指数是______,底数是_______,读作_________.
把下列各式写成乘方的形式: (1)6×6×6; (2)2.1×2.1;
(3)(-3)(-3)(-3)(-3);
(4) 2
121212121⨯⨯⨯⨯. 活动目的: 培养学生的归纳抽象水平,建立符号感,理解符号所表示的数量关系和变化
规律,学习新知识,理解乘方是一种运算,幂是乘方运算的结果.还要让学生明白:一个数能够
看作这个数本身的一次方,例如8就是18,通常指数为1时省略不写。
活动的注意事项: 教科书在给出乘方运算的 概念后,相关练习放在随堂练习的第一题中.为了即时消化新知识,要完成活动中的填空练习及乘方与乘法的相互转换,真正弄清楚幂的读法和写法,区分幂的指数和底数.
第三环节:例题练习,乘方运算
活动内容:教科书例1,例2分别计算:
例1:① 53 ;② (-3)4;③ (-1/2)3
. 例2:①3)2(--; ② 4
2-;③432
-. 活动目的:例题讲解是为了熟悉有理数的乘方运算,并规范幂的书写格式。
活动的注意事项:例题讲解时要让学生明确有理数的乘方运算是由有理数的乘法来实行的,例2指明当底数是负数或分数时,书写时一定要用括号把底数括起来,再把指数写在右上角.如(-3)4 不能写成-34,(-1/2)3不能写成-1/23
.要引导学生持续地回顾幂的意义. 第四环节:课堂演练,符号法则
活动内容:计算:
(4)﹣(﹣3)2;(5)﹣(﹣2)3。
活动目的:学生独立完成,检验知识是否掌握。
活动的注意事项:学生练习,教师一方面要引导学生持续地回顾幂的意义.熟练有理数的乘方运算.另一方面要指出题目的特点.鼓励学生尽可能多地从运算结果中观察、发现正数幂的符号特点,负数幂的符号特点等等.切忌教师自己给出结果并让学生死记硬背的作法.正数的任何次方都是正数,负数的偶数次的幂是正数,
负数的奇数次的幂是负数.
第五个环节:联系拓广,发散思维
活动内容:1.
2.
活动目的:第1题可让学生感悟逆向思维。
一个数的平方是16,学生很容易认为这个数是4,而忽略-4;第2题主要是引导学生理解到2n表示偶数,2n+1表示奇数。
从而体会到-1的偶次方为1.奇次方为-1.
活动的注意事项:教师切忌直接给出结果,并要求学生对这些结论死记硬背.
第六个环节:课堂小结
活动内容:用提问的方式由学生完成课堂小结,如:“本节课同学们学到了哪些知识?”“乘方运算与四则运算有何联系?”
活动目的:培养学生的交流水平.小结水平,激励学生展示自我,理解自我,建立自信.
活动的注意事项:教师要尊重学生的个体差异.尊重学生在小结过程中所表现出的不同水平,对学习有困难的学生,教师要给予即时的关照和协助,尽量给他们以发言的机会,鼓励他们主动参与小结,发表看法,要肯定他们的点滴进步,以增强他们的兴趣和信心,而不能每次都由优等生实行课堂小结.
第七环节:布置作业
活动内容:习题2.13,知识技能1、2、数学理解1,问题解决1、2.
活动目的:复习巩固检测本节知识,训练提升运算技能,以及应用数学知识解决实际问题的水平.
活动的注意事项:对知识技能第2题的计算,学生时常会产生如下误区:(1)混淆乘方与乘法的概念,如把73当作7×3来计算;(2)运算中出现符号错误.如(-6)3=216.为此,应要求学生把解答过程写出来,不要直接写出结果.如按乘方的定义,将乘方运算先转为乘法运算再实行计算.并注意乘方运算符号法则的使用对于习题2.13的联系拓广,可让学有余力的学生思考,不要求全体学生完成.
四、教学反思
从学生的作业情况反馈的信息表明,教学设计中缺乏负数乘方与乘方的相反数的比较,
使得学生在阅读上和计算中产生了混淆,造成了错误,所以在今后的教学设计中应作适当调整.如设计一个(-2)4和-24列表辨析,协助学生区别负数乘方与乘方的相反数这两个概念.
另外,对那些在数学学习上有特殊需求的学生,可在联系拓广中适当补充一两个有思维难度的题目,以满足他们的学习需求,如“试比较有理数a与a2的大小”,像这样的题,一方面是字母表示了数,另一方面需要分类讨论,这对学生来说,无疑是一个挑战,实践证明,这种做法很有意义.。