北师大版七年级数学下册第一章测试题(1)

合集下载

北师大版七年级数学(下册)第一章测试卷(附参考答案)

北师大版七年级数学(下册)第一章测试卷(附参考答案)

数学七下北师测试卷第一章1.计算(a2)3的结果为( )A.a4B.a5C.a6D.a92.计算a·a-1的结果为( )A.-1B.0C.1D.-a3.2-3可以表示为( )A.22÷25B.25÷22C.22×25D.(-2)×(-2)×(-2)4.若a≠b,下列各式中不能成立的是( )A.(a+b)2=(-a-b)2B.(a+b)(a-b)=(b+a)(b-a)C.(a-b)2n=(b-a)2nD.(a-b)3=-(b-a)35.如果x2-kx-ab=(x-a)(x+b),则k应为( )A.a+bB.a-bC.b-aD.-a-b6.(-)2016×(-2)2016等于( )A.-1B.1C.0D.20167.长方形一边长为2a+b,另一边比它长a-b,则长方形的周长是( )A.10a+2bB.5a+bC.7a+bD.10a-b8.如图所示,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm29.下列各组数中,互为相反数的是( )A.(-2)-3与23B.(-2)-2与2-2C.-33与(-1)3D.(-3)-3与()310.计算(x4+y4)(x2+y2)(y-x)(x+y)的结果是( )A.x8-y8B.x6-y6C.y8-x8D.y6-x611.计算:a·a2=.12.计算:3a3·a2-2a7÷a2=.13.已知a+b=3,a-b=-1,则a2-b2的值为.14.-x-x2y+2π是次项式,单项式的系数是.15.如果2x6y2n和-x3m y3是同类项,则代数式9m2-5mn-17的值是.16.若(x+5)(x-7)=x2+mx+n,则m=,n=.17.人们以分贝为单位来表示声音的强弱,通常说话的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011,摩托车的声音强度是通常说话声音强度的倍.18.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成a,定义a=ad-bc,上述记号就叫做2阶行列式.若x=8,则x=.19.计算:(1)(-3xy2)3·(1x3y)2;(2)y(2x-y)+(x+y)2;(3)(x2y4-x3y3+2x4yz)÷x2y;(4)(2x+y)(2x-y)+(x+y)2-2(2x2-xy).20.化简求值:(1)(1+x)(1-x)+x(x+2)-1,其中x= 1;(2)x(x+y)-(x-y)(x+y)-y2,其中x=0.52016,y=22017. 21.已知2a2+3a-6=0,求代数式3a(2a+1)-(2a+1)(2a-1)的值. 22.解方程:(2m-5)(2m+5)-(2m+1)(2m-3)=(π-3.14)0.23.用简便方法计算:(1)498×502;(2)2992.24.按下列程序计算,:(1)填写表格:(2)请将题中计算程序用代数式表达出来,并给予化简.参考答案1.C2.C3.A4.B5.B6.B7.A8.D9.D10.C11.a312.a513.-314.三三32-2π2π77x y z15.416.-2 -3517.10618.219.(1)解:原式=-27x3y6·1x6y2 =-3x9y8. (2)解:原式=2xy-y2+x2+2xy+y2 =x2+4xy. (3)解:原式=x2y4÷x2y-x3y3÷x2y+2x4yz÷x2y =y3-xy2+2x2z. (4)解:原式=(2x)2-y2+x2+2xy+y2-4x2+2xy =4x2-y2+x2+2xy+y2-4x2+2xy =x2+4xy. 20.(1)解:原式=1-x2+x2+2x-1=2x. 将x=代入,原式=2x=2·=1. (2)解:原式=x2+xy-(x2-y2)-y2=x2+xy-x2+y2-y2=xy. 当x=0.52016,y=22017时,原式=0.52016×22017=(0.5×2)2016×2=2.21.解:原式=3a(2a+1)-(2a+1)(2a-1) =6a2+3a-4a2+1=2a2+3a+1∵2a2+3a-6=0,∴2a2+3a=6.∴原式=7.22.(2m-5)(2m+5)-(2m+1)(2m-3)=(π-3.14)0. 解:4m2-25-(4m2-6m+2m-3)=14m2-25-4m2+6m-2m+3=14m-22=14m=23m=.23.(1)解:498×502=(500-2)×(500+2)=5002-22=250000-4=249996.(2)解:2992=(300-1)2=3002-2×300×1+1=90000-600+1=89401.24.解:(1)(2)代数式可表示为:(n2+n)÷n-n=-n=n+1-n=1.。

北师大版七年级数学下册第一章同步测试题及答案

北师大版七年级数学下册第一章同步测试题及答案

北师大版七年级数学下册第一章同步测试题及答案1.1 同底数幂的乘法一.选择题(共6小题)1.在a•()=a4中,括号内的代数式应为()A.a2B.a3C.a4D.a52.a2m+2可以写成()A.2a m+1B.a2m+a2C.a2m•a2D.a2•a m+13.计算(﹣2)×(﹣2)2×(﹣2)3的结果是()A.﹣64B.﹣32C.64D.324.计算:(﹣a)2•a4的结果是()A.a8B.﹣a6C.﹣a8D.a65.若a•24=28,则a等于()A.2B.4C.16D.186.若x,y为正整数,且2x•22y=29,则x,y的值有()A.1对B.2对C.3对D.4对二.填空题(共4小题)7.计算:(﹣t)2•t6=.8.已知x a=3,x b=4,则x a+b=.9.(﹣x)•x2•(﹣x)6=.10.已知2x+3y﹣5=0,则9x•27y的值为.三.解答题(共7小题)11.计算:a2•a5+a•a3•a3.12.(1)已知10m=4,10n=5,求10m+n的值.(2)如果a+3b=4,求3a×27b的值.13.已知a x=5,a x+y=25,求a x+a y的值.14.规定a*b=2a×2b,求:(1)求2*3;(2)若2*(x+1)=16,求x的值.15.若a m+1•a2n﹣1=a5,b n+2•b2n=b3,求m+n的值.16.记M(1)=﹣2,M(2)=(﹣2)×(﹣2),M(3)=(﹣2)×(﹣2)×(﹣2),…M(n)=(1)计算:M(5)+M(6);(2)求2M(2015)+M(2016)的值:(3)说明2M(n)与M(n+1)互为相反数.17.我们约定:a★b=10a×10b,例如3★4=103×104=107.(1)试求2★5和3★17的值;(2)猜想:a★b与b★a的运算结果是否相等?说明理由.参考答案一.1.B 2.C 3.C 4.D 5.C 6.D二.7.t88.12 9.﹣x910.243三.11.解:a2•a5+a•a3•a3=a7+a7=2a7.12.解:(1)10m+n=10m•10n=5×4=20;(2)3a×27b=3a×33b=3a+3b=34=81.13.解:∵a x+y=25,∴a x•a y=25,∵a x=5,∴a y,=5,∴a x+a y=5+5=10.14.解:(1)∵a*b=2a×2b,∴2*3=22×23=4×8=32;(2)∵2*(x+1)=16,∴22×2x+1=24,则2+x+1=4,解得x=1.15.解:∵a m+1•a2n﹣1=a5,b n+2•b2n=b3,∴m+1+2n﹣1=5,n+2+2n=3,解得:n=,m=4,∴m+n=4.16.解:(1)M(5)+M(6)=(﹣2)5+(﹣2)6=﹣32+64=32;(2)2M(2015)+M(2016)=2×(﹣2)2015+(﹣2)2016=﹣(﹣2)×(﹣2)2015+(﹣2)2016=﹣(﹣2)2016+(﹣2)2016=0;(3)2M(n)+M(n+1)=﹣(﹣2)×(﹣2)n+(﹣2)n+1=﹣(﹣2)n+1+(﹣2)n+1=0,∴2M(n)与M(n+1)互为相反数.17.解:(1)2★5=102×105=107,3★17=103×1017=1020;(2)a★b与b★a的运算结果相等,a★b=10a×10b=10a+bb★a=10b×10a=10b+a,∴a★b=b★a.1.2 幂的乘方与积的乘方一.选择题(共5小题)1.下列计算正确的是()A.a2+a2=a4B.a2•a4=a8C.(a3)2=a6D.(2a)3=2a3 2.下列运算正确的是()A.||=B.(2x3)2=4x5C.x2+x2=x4D.x2•x3=x5 3.下列计算正确的是()A.a3•a4=a12B.(2a)2=2a2C.(a3)2=a9D.(﹣2×102)3=﹣8×1064.计算(x2)3的结果是()A.x6B.x5C.x4D.x35.计算的结果是()A.B.C.D.二.填空题(共5小题)6.若2x=3,2y=5,则22x+y=.7.(﹣a3n)4=.8.a m=2,a n=3,a2m+3n=.9.﹣a2•(﹣a)3=.10.已知3a=5,9b=10,则3a+2b=.三.解答题(共5小题)11.已知:a m=x+2y;a m+1=x2+4y2﹣xy,求a2m+1.12.已知,关于x,y的方程组的解为x、y.(1)x=,y=(用含a的代数式表示);(2)若x、y互为相反数,求a的值;(3)若2x•8y=2m,用含有a的代数式表示m.13.已知4m+3×8m+1÷24m+7=16,求m的值.14.已知x=﹣5,y=,求x2•x2a•(y a+1)2的值.15.计算:(1)(﹣m5)4•(﹣m2)2;(2)(x4)2﹣(x2)4;(3)﹣a•a5﹣(a2)3﹣4(﹣a2)3;(4)﹣p2•(﹣p)3•[(﹣p)3]5.参考答案一.1.C 2.D 3.D 4.A 5.A二.6.45 7.a12n 8.108 9.a510.50三.11.解:a2m+1=a m•a m+1,=(x+2y)•(x2+4y2﹣xy),=x3+2xy2﹣x2y+x2y+8y3﹣2xy2,=x3+8y3.12.解:(1),②﹣①得,y=﹣3a+1,把y=﹣3a+1代入①得,x=a﹣2,故答案为:a﹣2;﹣3a+1;(2)由题意得,a﹣2+(﹣3a+1)=0,解得,a=﹣;(3)2x•8y=2x•(23)y=2x•23y=2x+3y,由题意得,x+3y=m,则m=a﹣2+3(﹣3a+1)=﹣8a+1.13.解:∵4m+3×8m+1÷24m+7=16,∴22m+6×23m+3÷24m+7=24,则2m+6+3m+3﹣(4m+7)=4,解得m=2.14.解:x2•x2a•(y a+1)2=x 2a+2 y 2a+2=(xy)2a+2=(﹣5×)2a+2=1 15.解:(1)(﹣m5)4•(﹣m2)2=m20•m4=m24(2)(x4)2﹣(x2)4;=x8﹣x8=0(3)﹣a•a5﹣(a2)3﹣4(﹣a2)3=﹣a6﹣a6+4a6=2a6(4)﹣p2•(﹣p)3•[(﹣p)3]5.=﹣p2•p3•p15=﹣p20.1.3 同底数幂的除法一.选择题(共7小题)1.下列计算正确的是()A.3a+2b=5ab B.3a﹣2a=1C.a6÷a2=a3D.(﹣a3b)2=a6b22.16m÷4n÷2等于()A.2m﹣n﹣1B.22m﹣n﹣2C.23m﹣2n﹣1D.24m﹣2n﹣13.若=1,则符合条件的m有()A.1个B.2个C.3个D.4个4.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1B.x=1C.x≠0D.x≠15.计算:20180﹣|﹣2|=()A.2010B.2016C.﹣1D.36.计算(﹣1)﹣2018+(﹣1)2017所得的结果是()A.﹣1B.0C.1D.﹣27.已知a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,比较a,b,c,d的大小关系,则有()A.a<b<c<d B.a<d<c<b C.b<a<d<c D.c<a<d<b二.填空题(共1小题)8.将代数式化成不含有分母的形式是.三.解答题(共6小题)9.计算:x3•x5﹣(2x4)2+x10÷x2.10.已知3x=2,3y=5,求:(1)27x的值;(2)求32x﹣y的值.11.计算:(﹣3a4)2﹣a•a3•a4﹣a10÷a2.12.计算:(﹣2)2+﹣(π﹣3)0.13.计算:(3.14﹣π)0+0.254×44﹣()﹣1.14.计算:()﹣2×3﹣1+(π﹣2018)0﹣1.参考答案一.1.D 2.D 3.C 4.D 5.C 6.B 7.C二.8.5ax﹣1y﹣2三.9.解:x3•x5﹣(2x4)2+x10÷x2=x8﹣4x8+x8=﹣2x8.10.解:(1)∵3x=2,∴27x=(3x)3=23=8;(2))∵3x=2,3y=5,∴32x﹣y=32x÷3y=(3x)2÷3y=22÷5=.11.解:原式=9a8﹣a8﹣a8=7a8.12.解:原式=4+﹣1=3.13.解:(3.14﹣π)0+0.254×44﹣()﹣1=1+(0.25×4)4﹣2=1+1﹣2=0.14.解:原式=×+1÷3,=+;=.1.4 整式的乘法一.选择题(共7小题)1.下列运算正确的是()A.(x2)3+(x3)2=2x6B.(x2)3•(x2)3=2x12 C.x4•(2x)2=2x6D.(2x)3•(﹣x)2=﹣8x5 2.计算(﹣3x)•(2x2﹣5x﹣1)的结果是()A.﹣6x2﹣15x2﹣3x B.﹣6x3+15x2+3xC.﹣6x3+15x2D.﹣6x3+15x2﹣13.计算2x(3x2+1),正确的结果是()A.5x3+2x B.6x3+1C.6x3+2x D.6x2+2x4.通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是()A.(a﹣b)2=a2﹣2ab+b2B.2a(a+b)=2a2+2abC.(a+b)2=a2+2ab+b2D.(a+b)(a﹣b)=a2﹣b25.一个长方体的长、宽、高分别3a﹣4,2a,a,它的体积等于()A.3a3﹣4a2B.a2C.6a3﹣8a2D.6a2﹣8a6.计算:(2x2)3﹣6x3(x3+2x2+x)=()A.﹣12x5﹣6x4B.2x6+12x5+6x4C.x2﹣6x﹣3D.2x6﹣12x5﹣6x47.若(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,则m,n的值为()A.m=2,n=1B.m=﹣2,n=1C.m=﹣1,n=1D.m=1,n=1二.填空题(共1小题)8.若2x(x﹣1)﹣x(2x+3)=15,则x=.三.解答题(共7小题)9.计算:5a3b•(﹣a)4•(﹣b2)2.10.计算:.11.计算:(2a2b)3•b2﹣7(ab2)2•a4b.12.计算:(1)x3•x4•x5;(2);(3)(﹣2mn2)2﹣4mn3(mn+1);(4)3a2(a3b2﹣2a)﹣4a(﹣a2b)2.13.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.14.计算:.15.化简:x(x﹣1)+2x(x+1)﹣3x(2x﹣5).参考答案一.1.A 2.B 3.C 4.B 5.C 6.D 7.D 二.8.﹣3三.9.解:5a3b•(﹣a)4•(﹣b2)2=5a7b5.10.解:=﹣a4b2c.11.解:原式=8a6b3•b2﹣7a2b4•a4b=8a6b5﹣7a6b5=a6b5.12.解:(1)原式=x3+4+5=x12;(2)原式=(﹣6xy)×2xy2+(﹣6xy)(﹣x3y2)=﹣12x2y3+2x4y3;(3)原式=4m2n4﹣4m2n4﹣4mn3=﹣4mn3;(4)3a5b2﹣6a3﹣4a×(a4b2)=3a5b2﹣6a3﹣4a5b2=﹣a5b2﹣6a3.13.解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.14.解:原式=a2b2(﹣a2b﹣12ab+b2)=﹣8a4b3﹣a3b3+a2b4.15.解:原式=x2﹣x+2x2+2x﹣6x2+15x=﹣3x2+16x.1.5 平方差公式一.选择题(共4小题)1.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()(第1题图)A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)2.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()(第2题图)A.(2a2+5a)cm2B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm23.下列运用平方差公式计算,错误的是()A.(a+b)(a﹣b)=a2﹣b2B.(x+1)(x﹣1)=x2﹣1C.(2x+1)(2x﹣1)=2x2﹣1D.(﹣3x+2)(﹣3x﹣2)=9x2﹣44.下列多项式相乘不能用平方差公式的是()A.(2﹣x)(x﹣2)B.(﹣3+x)(x+3)C.(2x﹣y)(2x+y)D.二.填空题(共5小题)5.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是.(第5题图)6.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).(第6题图)7.计算:2017×1983=.8.计算:20082﹣2009×2007=.9.计算:=.三.解答题(共1小题)10.已知:x2﹣y2=12,x+y=3,求2x2﹣2xy的值.参考答案一.1.D 2.B 3.C 4.A二.5.a+6 6.Ab 7.3999711 8.1 9.2三.10.解:∵x2﹣y2=12,∴(x+y)(x﹣y)=12.∵x+y=3①,∴x﹣y=4②,①+②得,2x=7.∴2x2﹣2xy=2x(x﹣y)=7×4=28.1.6 完全平方公式一.选择题(共6小题)1.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()(第1题图)A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b22.图(1)是边长为(a+b)的正方形,将图(1)中的阴影部分拼成图(2)的形状,由此能验证的式子是()(第2题图)A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2﹣(a2+b2)=2abC.(a+b)2﹣(a﹣b)2=4ab D.(a﹣b)2+2ab=a2+b23.将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.524.若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89B.﹣89C.67D.﹣675.若x2+2(m﹣1)x+4是一个完全平方式,则m的值为()A.2B.3C.﹣1or3D.2or﹣26.若改动9a2+12ab+b2中某一项,使它变成完全平方式,则改动的办法是()A.只能改动第一项B.只能改动第二项C.只能改动第三项D.可以改动三项中的任一项二.填空题(共3小题)7.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是.(第7题图)8.通过计算比较图1,图2中阴影部分的面积,可以验证的计算式子是.(第8题图)9.已知=3,则=.三.解答题(共2小题)10.已知(x+y)2=9,(x﹣y)2=25,分别求x2+y2和xy的值.11.运用乘法公式计算:(1)752﹣2×25×75+252(2)9×11×101.参考答案一.1.C 2.B 3.C 4.C 5.C 6.D二.7.(a﹣b)2=a2﹣2ab+b28.(a﹣x)(b﹣x)=ab﹣ax﹣bx+x29.119三.10.解:∵(x+y)2=9,(x﹣y)2=25,∴两式相加,得(x+y)2+(x﹣y)2=2x2+2y2=34,则x2+y2=17;两式相减,得(x+y)2﹣(x﹣y)2=4xy=﹣16,则xy=﹣4.11.解:(1)原式=(75﹣25)2=502=2500;(2)原式=(10﹣1)(10+1)(100+1)=(100﹣1)(100+1)=9999.1.7 整式的除法一.选择题(共5小题)1.计算﹣4a4÷2a2的结果是()A.﹣2a2B.2a2C.2a3D.﹣2a32.计算1+2+22+23+…+22010的结果是()A.22011﹣1B.22011+1C.D.3.如图,长方形内的阴影部分是由四个半圆围成的图形,则阴影部分的面积是()(第3题图)A.B.C.D.4.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()(第4题图)A.a=b B.a=3b C.a=b D.a=4b5.计算多项式10x3+7x2+15x﹣5除以5x2后,得余式为何?()A.B.2x2+15x﹣5C.3x﹣1D.15x﹣5二.填空题(共5小题)6.规定一种新运算“⊗”,则有a⊗b=a2÷b,当x=﹣1时,代数式(3x2﹣x)⊗x2=.7.计算(1﹣)()﹣(1﹣﹣)()的结果是.8.如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,则△AFC的面积S为.(第8题图)9.若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是.10.定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果是.三.解答题(共5小题)11.先化简,再求值[(x2+y2)﹣(x﹣y)2+2y(x﹣y)]÷2y,其中x=﹣2,y=﹣.12.(1)计算:[(ab+1)(ab﹣2)﹣(2ab)2+2]÷(﹣ab);(2)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.13.计算:(1)(﹣2x3y)2•(﹣2xy)+(﹣2x3y)3÷2x2;(2)20202﹣2019×2021;(3)(﹣2a+b+1)(2a+b﹣1).14.先化简,再求值:(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.15.已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.参考答案一.1.A 2.A 3.A 4.B 5.D二.6.16 7.8.2 9.11 10.8三.11.解:[(x2+y2)﹣(x﹣y)2+2y(x﹣y)]÷2y =[x2+y2﹣x2+2xy﹣y2+2xy﹣2y2]÷2y=[4xy﹣2y2]÷2y=2x﹣y,当x=﹣2,y=﹣时,原式=﹣4+=﹣3.12.解:(1)原式=(a2b2﹣ab﹣2﹣4a2b2+2)÷(﹣ab)=(﹣3a2b2﹣ab)÷(﹣ab)=3ab+1;(2)解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3,当x=﹣2时,原式=(﹣2)2+3=5.13.解:(1)原式=4x6y2•(﹣2xy)+(﹣8x9y3)÷2x2=﹣8x7y3+(﹣4x7y3)=﹣12x7y3;(2)20202﹣2019×2021=20202﹣(2020﹣1)×(2020+1)=20202﹣20202+1=1;(3)(﹣2a+b+1)(2a+b﹣1)=[b﹣(2a﹣1)][b+(2a﹣1)]=b2﹣(2a﹣1)2=b2﹣4a2+4a﹣1.14.解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.15.解:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2=﹣4xy+3y2=﹣y(4x﹣3y).∵4x=3y,∴原式=0.。

北师大版数学七年级下册第一章单元测试卷(含答案)

北师大版数学七年级下册第一章单元测试卷(含答案)

北师大版数学七年级下册第一章单元测试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合要求的)1.计算(-a 2)3的结果是( )A .a 5B .a 6C .-a 5D .-a 62.计算:20·2-3等于( )A .-18B.18 C .0 D .83.2022年6月5日10时44分,神舟十四号飞船成功发射,将陈冬、刘洋、蔡旭哲三位宇航员送入了中国空间站.已知中国空间站绕地球运行的速度约为7 700 m/s, 7 700用科学记数法可表示为( )A .77×102B .7.7×103C .0.77×103D .0.77×1044.下列计算正确的是( )A .a 3+a 3=a 6B .(a 3)2=a 6C .a 6÷a 2=a 3D .(ab )3=ab 35.一个正方形的边长增加了2 cm ,面积相应增加了32 cm 2,则原正方形的边长为( )A .5 cmB .6 cmC .7 cmD .8 cm6.计算4m ·8-1÷2m 的结果为16,则m 的值等于( )A .7B .6C .5D .47.下列四个等式:①5x 2y 4÷15xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 3b 2c ;③9x 8y 2÷3x 2y =3x 4y ;④(12m 3-6m 2-4m )÷(-2m )=-6m 2+3m +2.其中正确的有( )A .0个B .1个C .2个D .3个8.下列各式中,能用完全平方公式计算的是( )A .(a -b )(-b -a )B .(-n 2-m 2)(m 2+n 2)C.⎝ ⎛⎭⎪⎫-12p +q ⎝ ⎛⎭⎪⎫q +12p D .(2x -3y )(2x +3y )9.若(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab 10.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则a ,b ,c ,d 的大小关系是( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b二、填空题(本题共6小题,每小题3分,共18分)11.计算:2y (x -y )=__________.12.如果x +y =-1,x -y =8,那么代数式x 2-y 2的值是________.13.如果9x 2+kx +25是一个完全平方式,那么k 的值是________.14.若3x =a ,9y =b ,则3x -2y 的值为________.15.如图,长方形ABCD 的周长是12 cm ,以AB ,AD 为边向外作正方形ABEF和正方形ADGH ,若正方形ABEF 和正方形ADGH 的面积之和为26 cm 2,那么长方形ABCD 的面积是____________.316.在一个数字九宫格中,当处于同一横行、同一竖列、同一斜对角线上的3个数之积都相等时称之为“积的九宫归位”.在如图的九宫格中,已填写了一些数或式子,为了完成“积的九宫归位”,则x 的值为____________.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)化简:(1)⎝ ⎛⎭⎪⎫-12ab ⎝ ⎛⎭⎪⎫23ab 2-2ab +43b ;(2)x 2+(x +3)(2x -3)-x (x +2);(3)(a +b )(a -b )+4ab 3÷4ab ;(4)12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫x -12y 2⎝ ⎛⎭⎪⎫x 2-14y 2.18.(8分)计算:(1)992;(2)2 0230-⎝ ⎛⎭⎪⎫12-2+||-32;(3)⎝ ⎛⎭⎪⎫14-2×(3-π)0+⎝ ⎛⎭⎪⎫123÷⎝ ⎛⎭⎪⎫122;5 (4)2 0232-2 022×2 024.19.(8分)先化简,再求值:(x -y 2)-(x -y )·(x +y )+(x +y )2,其中x =3,y =-13.20.(8分)(1)如图①所示的大正方形的边长为a ,小正方形的边长为b ,则阴影部分的面积是________________(写成平方差的形式);(2)若将图①中的阴影部分剪下来,拼成如图②所示的长方形,则阴影部分的面积是__________________(写成多项式相乘的形式);(3)比较两图中阴影部分的面积,可以得到的公式为__________________;(4)应用公式计算:⎝ ⎛⎭⎪⎫1-122⎝ ⎛⎭⎪⎫1-132⎝ ⎛⎭⎪⎫1-142.21.(10分)将完全平方公式:(a±b)2=a2±2ab+b2适当变形,可以解决很多数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,所以a2+b2+2ab=9.因为ab=1,所以a2+b2+2=9,所以a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)若(4-x)(5-x)=8,则(4-x)2+(5-x)2=____________;(3)如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,两正方形的面积分别为S1,S2.若AB=6,S1+S2=18,求图中阴影部分的面积.22.(10分)阅读:已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到x,y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试!(1)已知xy2=-2,求xy(x2y5-2xy3+3y)的值;(2)已知a2+a-1=0,求代数式a3+2a2+2 023的值.7答案一、1.D 2.B 3.B 4.B 5.C 6.A 7.C 8.B9.A 10.B二、11.2xy -2y 2 12.-8 13.±30 14.a b15.5 cm 2 16.-1三、17.解:(1)原式=⎝ ⎛⎭⎪⎫-12ab ·23ab 2+⎝ ⎛⎭⎪⎫-12ab ·(-2ab )+⎝ ⎛⎭⎪⎫-12ab ·43b =-13a 2b 3+a 2b 2-23ab 2.(2)原式=x 2+(2x 2-3x +6x -9)-(x 2+2x )=x 2+2x 2+3x -9-x 2-2x=2x 2+x -9.(3)原式=a 2-b 2+b 2=a 2.(4)原式=12⎝ ⎛⎭⎪⎫x 2+xy +14y 2+x 2-xy +14y 2⎝ ⎛⎭⎪⎫x 2-14y 2 =12×2⎝ ⎛⎭⎪⎫x 2+14y 2⎝ ⎛⎭⎪⎫x 2-14y 2 =x 4-116y 4. 18.解:(1)原式=(100-1)2=10 000-200+1=9 801.(2)原式=1-4+32=29.(3)原式=16×1+12=332.(4)原式=2 0202-(2 023-1)×(2 023+1)=2 0232-(2 0232-1)=1.19.解:原式=x -y 2-x 2+y 2+x 2+2xy +y 2=x +2xy +y 2.当x =3,y =-13时,原式=3-2+19=109.20.解:(1)a 2-b 2(2)(a +b )(a -b )(3)(a -b )(a +b )=a 2-b 2(4) ⎝ ⎛⎭⎪⎫1-122⎝ ⎛⎭⎪⎫1-132⎝ ⎛⎭⎪⎫1-142= ⎝ ⎛⎭⎪⎫1-12⎝ ⎛⎭⎪⎫1+12· ⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1+14=12×32×23×43×34×54=1 2×5 4=5 8.21.解:(1)因为x+y=8,所以(x+y)2=82=64,所以x2+2xy+y2=64.因为x2+y2=40,所以2xy=x2+2xy+y2-(x2+y2)=64-40=24,所以xy=12.(2)17(3)设AC的长为a,BC的长为b,所以AB=AC+BC=a+b=6,所以(a+b)2=36.因为S1+S2=18,所以a2+b2=18,所以2ab=(a+b)2-(a2+b2)=18,所以12ab=92.又因为四边形BCFG是正方形,所以CF=CB,∠ACF=90°,所以S阴影=12AC·CF=12AC·BC=12ab=92.22.解:(1)xy(x2y5-2xy3+3y)=x3y6-2x2y4+3xy2=(xy2)3-2(xy2)2+3xy2=(-2)3-2×(-2)2+3×(-2) =-22.(2)因为a2+a-1=0,所以a2+a=1,所以a3+2a2+2 023=a(a2+a)+a2+2023=a2+a+2 023=1+2 023=2 024.9。

(完整word版)七年级数学下册第一章单元测试题(3套)及答案

(完整word版)七年级数学下册第一章单元测试题(3套)及答案

北师大版七年级数学下册第一章整式的乘除 单元测试卷(一)班级—姓名 ___________ 学号 _________ 得分 __________、精心选一选(每小题3分,共21分)5•下列结果正确的是41.多项式xy^332x y9xy 8的次数是A. 3B. 42.下列计算正确的是亠 2 亠 48 4 m3 mA. 2x 6x 12xB .y y3.计算a ba b 的结果是22 . 2A. b aB .a bC. i24. 3a 5a1与 22a 3a4的和为D. 6mC.2ab b 2x 2D.D. 4a2ab b 22A. 5a 2a 3B. a 28a 3 C.a 2 3aD. a 28aC. 52aB. 500C. 53.7 0D.m n 26.右a ba8b6,那么m22n的值是A. 10B. 52C. 20D. 327.要使式子9x225y2成为一个完全平方式,则需加上A. 15xyB. 15xyC. 30xyD. 30xy长方形铁片,求剩余部分面积。

(6分)、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)2 2 21 2 2 、 » ,1•在代数式3xy , m , 6a a 3 , 12 , 4x yz xy ,中,单项式有53ab—个,多项式有 ______ 个。

2•单项式 5x 2y 4z 的系数是 ____________ ,次数是 ________ 。

2 32a 2b2006⑷ 320052 243•多项式3abab -有5项,它们分别是4•⑴x 2x 53 4⑵y 3a 9 a 3⑹10401 25.⑴一mn36 3 -mn 56•⑴(2a a m 3 b )25312x y2a a2 842c 23xy三、精心做一做(每题5分,共15分)1・4x y 5xy 7x 5x y 4xy xc 2 c 2 c ‘ ,32・2a 3a 2a 1 4a3. 2x2y 6x3y48xy 2xy四、计算题。

北师大版七年级数学下册第一章测试题(1)

北师大版七年级数学下册第一章测试题(1)

精品文档北师大版七年级数学下册第一章测试题(1)4. 若 2v 1 16,则 v= _________ .3 42 32455. 计算题:5 p p 2 p p6. ①若2・8n • 16n =222,求正整数m 的值.②若(9m+) 2=316,求正整数m 的值.积的乘方幂的乘方一.基础题 321. x= ------------------ 43 2n/3、()214a a= _____________ ; a a= ________________ ; (a ) a a ;32 3c = ------------------------ ;2. 若(a 3) n =( a n ) m (m , n 都是正整数),则 m= _______________ . 33. 计算 l x 2v 的结果正确的是( )A. 1 4y 2B.丄工/ C .1 x 5 y 3 D. l v 6 y 32入' 4vy 8vy8入 y8v4. 判断题:(对的打“/,错的打“X”)23 5 a a a () v v v ()(v 2)3 v5()a 4?a 2 a8() (1) p ( p)4 (2) 23-(a ) (3) 2 3(-a )(4) 634 (5) 342 3(6) [(v 2) 3]7 ;(7) 2 n n 2 2 3 3 273 3(v)- -(v ) (8) (-a ) •a + (-4a )•a ・-5 (a ) 7.若 vm 2m v2,求 v9m 的值。

5•若m n 、p 是正整数,则(a ma n )p 等于(). . m np 亠 mp nmp — mp an А. a a p B . aC . a pD . aб. 计算题.提高题:(每小题2分,共16 分) 、 八12 r 12小1°小)A . a B.-a C.-a D.-a1. 计算(-a 2) 3 • (-a 3) 2的结果是( 2. 如果(9n ) 2=38,则n 的值是( )A.4 B.2 C.3 D. 无法确定3.计算(p )8 ( p 2)3[( p )3]2的结果是()A.- 2° p 3620 亠 18B. pC. - pD. 18p一.基础练习3 3 1. (-3 X 10)=-(2 v2y4)3= __1 2 2;(1ab c)=232v y = ___________2 2(av ) (a3)( ) a214a200I ( 3)200 x n3, y2、3/ 2、22;(3a ) (a ) a =7,则(xy)n2 3、n ;(x y )= 2.若 己知产(T)儿则当n=6时炖= ______________________ 计算(3a 2b 3) 3,正确的结果是( ) 27a 6b 9 B . 27a 8b 27 C . 9a 6b 9 D . 27a 5b 63 2 32 a a a 的结果正确的是( ) 3. 4. A . 5.( 6.判断题:(ab 3)2 ab 6( ); (6xy)2 12x 2y 27 .计算题:(每题4分,共28分) 33my3n2xy(xy ) 2n的值. C B ) fl 11 (C ) 一护 42b ) 4b ();a m3 2 ,(1) x 3 x 2(2) x (5)(x 2y )3(xy 3)2 (6) 8.(1)已知 x n = 5, y ° = 3,求 xy (3)6n23pq(4)-234x y(7) 已知 4 8m 16m = 29,2 \ 4(xy z )8 62x y求m 的值。

(完整版)北师大版七年级下册数学第一章单元测试题

(完整版)北师大版七年级下册数学第一章单元测试题

北师大版七年级下册数学第一章单元测试题一.选择题(共10小题)1.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x52.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y24.下列运算正确的是()A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2 D.(a﹣3)2=a2﹣95.下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x66.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1077.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.308.计算:(x﹣1)(x+1)(x2+1)﹣(x4+1)的结果为()A.0 B.2 C.﹣2 D.﹣2a49.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+15)cm2D.(8a+15)cm210.2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是()A.8 B.6 C.4 D.2二.填空题(共10小题)11.若a m=2,a n=8,则a m+n=______.12.计算:(﹣5a4)•(﹣8ab2)=______.13.若2•4m•8m=216,则m=______.14.计算:﹣(﹣)﹣83×0.1252=______.15.已知10m=3,10n=2,则102m﹣n的值为______.16.已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为______.17.观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=______.18.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是______.19.如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2=______.20.计算:=______.三.解答题(共10小题)21.已知a x=5,a x+y=30,求a x+a y的值.22.已知2x+5y=3,求4x•32y的值.23.计算:12×(﹣)+8×2﹣2﹣(﹣1)2.24.先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.25.已知2x=3,2y=5.求:(1)2x+y的值;(2)23x的值;(3)22x+y﹣1的值.26.(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.27.计算:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23;(2)(﹣4xy3)•(xy)+(﹣3xy2)2.28.(2016春•滁州期末)如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.29.已知(x2+mx+n)(x+1)的结果中不含x2项和x项,求m,n的值.30.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).北师大版七年级下册数学第一章单元测试题参考答案与试题解析一.选择题(共10小题)1.(2016•呼伦贝尔)化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5【分析】根据同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2.(2016•哈尔滨)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.【点评】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键.3.(2016•娄底)下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y2【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、幂的乘方运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、5a﹣2a=3a,故此选项错误;C、(a3)4=a12,正确;D、(x+y)2=x2+y2+2xy,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及合并同类项、幂的乘方运算、完全平方公式等知识,正确把握相关定义是解题关键.4.(2016•荆门)下列运算正确的是()A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2 D.(a﹣3)2=a2﹣9【分析】根据合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,差的平方等余平方和减积的二倍,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、积的乘方等于乘方的积,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、差的平方等余平方和减积的二倍,故D错误;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.(2016•东营)下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x6【分析】A:根据合并同类项的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据完全平方公式判断即可.D:根据同底数幂的除法法则判断即可.【解答】解:∵3a+4b≠7ab,∴选项A不正确;∵(ab3)2=a2b6,∴选项B不正确;∵(a+2)2=a2+4a+4,∴选项C不正确;∵x12÷x6=x6,∴选项D正确.故选:D.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了完全平方公式的应用,以及合并同类项的方法,要熟练掌握.6.(2016•聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10﹣7.故选:B.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.7.(2016•临夏州)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.30【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵x2+4x﹣4=0,即x2+4x=4,∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.故选B【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2016春•揭西县期末)计算:(x﹣1)(x+1)(x2+1)﹣(x4+1)的结果为()A.0 B.2 C.﹣2 D.﹣2a4【分析】原式利用平方差公式计算,去括号合并即可得到结果.【解答】解:原式=(x2﹣1)(x2+1)﹣(x4+1)=x4﹣1﹣x4﹣1=﹣2,故选C【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.(2016春•山亭区期末)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+15)cm2D.(8a+15)cm2【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【解答】解:矩形的面积为:(a+4)2﹣(a+1)2=(a2+8a+16)﹣(a2+2a+1)=a2+8a+16﹣a2﹣2a﹣1=6a+15.故选C.【点评】此题考查了图形的剪拼,关键是根据题意列出式子,运用完全平方公式进行计算,要熟记公式.10.(2016春•相城区期中)(2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是()A.8 B.6 C.4 D.2【分析】原式变形后,利用平方差公式计算得到结果,归纳总结即可确定出结果的个位数字.【解答】解:原式=(2﹣1)•(2+1)•(22+1)•(24+1)…(216+1)+1=(22﹣1)•(22+1)•(24+1)…(216+1)+1=(24﹣1)•(24+1)…(216+1)+1=232﹣1+1=232,∵21=2,22=4,23=8,24=16,25=32,…,∴其结果个位数以2,4,8,6循环,∵32÷4=8,∴原式计算结果的个位数字为6,故选:B.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二.填空题(共10小题)11.(2016•大庆)若a m=2,a n=8,则a m+n=16.【分析】原式利用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵a m=2,a n=8,∴a m+n=a m•a n=16,故答案为:16【点评】此题考查了同底数幂的乘法,熟练掌握乘法法则是解本题的关键.12.(2016•临夏州)计算:(﹣5a4)•(﹣8ab2)=40a5b2.【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:(﹣5a4)•(﹣8ab2)=40a5b2.故答案为:40a5b2.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.13.(2016•白云区校级二模)若2•4m•8m=216,则m=3.【分析】直接利用幂的乘方运算法则得出2•22m•23m=216,再利用同底数幂的乘法运算法则即可得出关于m的等式,求出m的值即可.【解答】解:∵2•4m•8m=216,∴2•22m•23m=216,∴1+5m=16,解得:m=3.故答案为:3.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确应用运算法则是解题关键.14.(2016•黄冈模拟)计算:﹣(﹣)﹣83×0.1252=﹣7.【分析】直接利用积的乘方运算法则结合有理数的乘法运算法则化简求出答案.【解答】解:﹣(﹣)﹣83×0.1252=﹣(8×0.125)2×8=﹣8=﹣7.故答案为:﹣7.【点评】此题主要考查了积的乘方运算和有理数的乘法运算,正确应用积的乘方运算法则是解题关键.15.(2016•阜宁县二模)已知10m=3,10n=2,则102m﹣n的值为.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解:102m=32=9,102m﹣n=102m÷10n=,故答案为:.【点评】本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的除法是解题关键.16.(2016•河北模拟)已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为0.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出a,b,c的值,即可求出原式的值.【解答】解:已知等式整理得:x2+2x﹣3=ax2+bx+c,∴a=1,b=2,c=﹣3,则原式=9﹣6﹣3=0.故答案为:0.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.17.(2016•百色)观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017.【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.【解答】解:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017,故答案为:a2017﹣b2017【点评】此题考查了平方差公式,以及多项式乘以多项式,弄清题中的规律是解本题的关键.18.(2016•乐亭县二模)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是(a﹣b)2.【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:∵图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵由题意可得,正方形的边长为(a+b),∴正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故答案为(a﹣b)2.【点评】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键.19.(2016春•沛县期末)如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2=3.【分析】利用平方差公式,对x2﹣y2分解因式,然后,再把x+y=﹣1,x﹣y=﹣3代入,即可解答.【解答】解:根据平方差公式得,x2﹣y2=(x+y)(x﹣y),把x+y=﹣1,x﹣y=﹣3代入得,原式=(﹣1)×(﹣3),=3;故答案为3.【点评】本题考查了平方差公式,熟练掌握平方差公式是解题的关键.公式:(a+b)(a﹣b)=a2﹣b2.20.(2016春•高密市期末)计算:=2015.【分析】原式变形后,利用平方差公式计算即可得到结果.【解答】解:原式===2015,故答案为:2015【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.三.解答题(共10小题)21.(2016春•长春校级期末)已知a x=5,a x+y=30,求a x+a y的值.【分析】首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出a y的值是多少;然后把a x、a y的值相加,求出a x+a y的值是多少即可.【解答】解:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.【点评】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.22.(2016春•江都区校级期中)已知2x+5y=3,求4x•32y的值.【分析】根据同底数幂相乘和幂的乘方的逆运算计算.【解答】解:∵2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8.【点评】本题考查了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘的性质,整体代入求解也比较关键.23.(2016•阜阳校级二模)计算:12×(﹣)+8×2﹣2﹣(﹣1)2.【分析】先算乘方,再算乘法,最后算加减即可.【解答】解:原式=12×(﹣)+8×﹣1=﹣4+2﹣1=﹣3.【点评】本题考查的是负整数指数幂,熟知有理数混合运算的法则是解答此题的关键.24.(2016•湘西州)先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣b2﹣ab+b2=a2﹣ab,当a=﹣2,b=1时,原式=4+2=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.25.(2015春•吉州区期末)已知2x=3,2y=5.求:(1)2x+y的值;(2)23x的值;(3)22x+y﹣1的值.【分析】将所求式子利用幂运算的性质转化,再整体代入即可得到结果.【解答】解:(1)2x+y=2x•2y=3×5=15;(2)23x=(2x)3=33=27;(3)22x+y﹣1=(2x)2•2y÷2=32×5÷2=.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,利用幂运算的性质将所求式子变形是解题的关键.26.(2015春•张家港市期末)(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.【分析】(1)根据积的乘方和幂的乘方法则的逆运算,即可解答;(2)根据同底数幂乘法、除法公式的逆运用,即可解答.【解答】解:(1)(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=16×9=144;(2)32a﹣4b+1=(3a)2÷(32b)2×3=36÷4×3=27.【点评】本题考查的是幂的乘方和积的乘方、同底数幂的乘除法,掌握它们的运算法则及其逆运算是解题的关键.27.(2016春•宿州校级期末)计算:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23;(2)(﹣4xy3)•(xy)+(﹣3xy2)2.【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用乘方的意义计算,即可得到结果.(2)原式第一项利用单项式乘单项式法则计算,第二项利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【解答】解:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23=1+4﹣1﹣8=12;(2)(﹣4xy3)•(xy)+(﹣3xy2)2.=﹣2x2y4+9x2y4=7x2y4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.(2016春•滁州期末)如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.【分析】(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(a+b)(a﹣b)=a2﹣b2;(3)从左到右依次利用平方差公式即可求解.【解答】解:(1),S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.【点评】本题考查了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.29.(2016春•北京校级月考)已知(x2+mx+n)(x+1)的结果中不含x2项和x项,求m,n 的值.【分析】把式子展开,合并同类项后找到x2项和x项的系数,令其为0,可求出m和n的值.【解答】解:(x2+mx+n)(x+1)=x3+(m+1)x2+(n+m)x+n.又∵结果中不含x2的项和x项,∴m+1=0且n+m=0解得m=﹣1,n=1.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.30.(2016春•吉安期中)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是B;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【分析】(1)观察图1与图2,根据两图形阴影部分面积相等验证平方差公式即可;(2)①已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;②原式利用平方差公式变形,约分即可得到结果.【解答】解:(1)根据图形得:a2﹣b2=(a+b)(a﹣b),上述操作能验证的等式是B,故答案为:B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y)=12,x+2y=4,∴x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.。

北师大版数学七年级下册第一章测试题

北师大版数学七年级下册第一章测试题

北师大版数学七年级下册第一章测试题一、选择题1、在下列四个数中,哪个数是质数?A. 7.2 BB. 9.5C. 11D. 142、下列哪个数不是正整数?A. 20B. -5C. 0D. 303、下列哪个数是负分数?A. 1/3B. -2/3C. 0D. 5/7二、填空题1、请在下方空白处填入合适的答案:3/4 + 5/6 = _________.2、请在下方空白处填入合适的答案:已知x = -5,那么x + 2 = _________.三、解答题1、请计算:1/2 + 2/3 - 3/4 + 4/5 - 5/62、请计算:(-5) + (-2) + (-9) + (-4) + (7)3、请解答:如果一个数的倒数是-0.5,那么这个数是多少?四、附加题请在下方空白处解答:请计算:(1/3 - 1/4) + (2/5 - 3/8)这道题考察了我们对分数加减法的理解和掌握,需要我们细心计算,才能得到正确的答案。

北师大版八年级下册数学第一章测试题一、填空题1、在一个等腰三角形中,已知底边长为5,两条相等的边长为____。

2、如果一个矩形的长为6,宽为4,那么这个矩形的周长是____。

3、一个三角形的内角之和是180度,那么这个三角形的外角之和是____。

二、选择题1、下列哪个图形是轴对称图形?A.圆形B.方形C.三角形D.以上都不是2、下列哪个方程式有两个不相等的实数根?A. x² + 2x + 1 = 0B. x² + 2x + 2 = 0C. x² + 2x + 3 = 0D. x² + 2x + 4 = 0三、解答题1、已知:如图,AB=AC,AD=AE,求证:BD=CE。

2、证明:如果一个四边形是平行四边形,那么它的对边相等。

3、求证:在一个三角形中,至少有一个角大于或等于60度。

四、应用题1、一个矩形的长是6厘米,宽是4厘米。

如果将这个矩形的长和宽都增加1厘米,那么这个矩形的面积会增加多少?2、一个等腰三角形的底边长为5厘米,两条相等的边长为多少厘米?如果这个等腰三角形的面积为25平方厘米,那么这个三角形的底边长为多少厘米?七年级生物下册第一章测试题一、选择题1、下列哪个选项不是生物的特征?A.生长和繁殖B.运动和活动C.遗传和变异D.细胞和组织2、下列哪个选项不属于生命系统的结构层次?A.细胞B.组织C.器官D.原子和分子3、下列哪个选项不是植物体的组成部分?A.细胞B.组织C.器官D.系统二、填空题1、生物的主要特征包括______、______、______和______。

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)(满分100分,限时60分钟)一、选择题(共10小题,每小题3分,共30分)1.若2a=5,2b=3,则2a+b=()A.8B.2C.15D.12.计算(-x2)·(-x)4的结果是()A.x6B.x8C.-x6D.-x83.下列式子能用平方差公式计算的是()A.(2x-y)(-2x+y)B.(2x+1)(-2x-1)C.(3a+b)(3b-a)D.(-m-n)(-m+n)4.(2022江苏泰州泰兴济川中学月考)下列运算中,正确的是()A.a8÷a2=a4B.(-m)2·(-m3)=-m5C.x3+x3=x6D.(a3)3=a65.(2022江苏淮安洪泽期中)若a>0且a x=2,a y=3,则a x-y的值为()A.23B.1 C.−1 D.326.4a7b5c3÷(-16a3b2c)÷(18a4b3c2)等于()A.aB.1C.-2D.-17.【整体思想】已知m-n=1,则m2-n2-2n的值为()A.1B.-1C.0D.28.如果x2-(a-1)x+9是一个完全平方式,则a的值为()A.7B.-4C.7或-5D.7或-49.【新独家原创】若a=(π-2 023)0,b=2 0222-2 021×2 023,c=-23,则a-b-c的值为()A.2 021B.2 022C.8D.110.【转化思想】从前,一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算:(−13)100×3101=.12.(2022广东佛山月考)已知a+b=8,ab=15,则a2+b2=.13.(2022江苏盐城滨海第一初级中学月考)已知4×16m×64m=421,则m的值为.14.已知一个三角形的面积等于8x3y2-4x2y3,一条边长等于8x2y2,则这条边上的高等于.15.调皮的弟弟把小明的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮小明算出被除式等于.÷(5x)=x2-3x+6.16.【学科素养·几何直观】有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形如图1,其阴影部分的面积为16.将B放在A的内部得到图2,其阴影部分(正方形)的面积为3,则正方形A,B的面积之和为.三、解答题(共5小题,共52分)17.(2022宁夏银川三中月考)(14分)计算:(1)4y·(-2xy2);(2)(3x2+12y−23y2)·(−12xy)2;(3)(2a+3)(b2+5);(4)(6x3y3+4x2y2-3xy)÷(-3xy).18.(12分)计算:(1)-12+(π-3.14)0-(−13)−2+(-2)3;(2)2 001×1 999(运用乘法公式);(3)(x+y+3)(x+y-3).,y=-1.19.(6分)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=1320.(2022江苏泰州二中月考)(10分)(1)已知m+4n-3=0,求2m·16n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.21.【代数推理】(2022河北保定十七中期中)(10分)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2-12x+37的最小值.解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,∵不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,∴(x-6)2+1≥1,∴当x=6时,x2-12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2-14x+=(x-)2;(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;(3)如图,第一个长方形的长和宽分别是(3a+2)和(2a+5),面积为S1,第二个长方形的长和宽分别是5a和(a+5),面积为S2,试比较S1与S2的大小,并说明理由.参考答案1.C当2a=5,2b=3时,2a+b=2a×2b=5×3=15,故选C.2.C(-x2)·(-x)4=-x2·x4=-x6,故选C.3.D A.原式=-(2x-y)(2x-y)=-(2x-y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B.原式=-(2x+1)(2x+1)=-(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C.原式=(3a+b)(-a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D.原式=(-m)2-n2=m2-n2,原式能用平方差公式进行计算,此选项符合题意.故选D.4.B a8÷a2=a6,故A选项错误;(-m)2·(-m3)=-m5,故B选项正确;x3+x3=2x3,故C选项错误;(a3)3=a9,故D选项错误.故选B.5.A a x-y=a x÷a y=2÷3=23.故选A.6.C4a7b5c3÷(-16a3b2c)÷(18a4b3c2)=-14a4b3c2÷(18a4b3c2)=-2.故选C.7.A∵m-n=1,∴原式=(m+n)(m-n)-2n=m+n-2n=m-n=1,故选A.8.C∵x2-(a-1)x+9是一个完全平方式,∴x2-(a-1)x+9=(x+3)2或x2-(a-1)x+9=(x-3)2,∴a-1=±6,解得a=-5或a=7,故选C.9.C∵a=(π-2 023)0=1,b=2 0222-(2 022-1)×(2 022+1)=2 0222-2 0222+1=1,c=-23=-8,∴a-b-c=1-1+8=8.故选C.10.A由题意可知原土地的面积为ab平方米, 第二年按照庄园主的想法,土地的面积变为(a+10)(b-10)=ab-10a+10b-100=[ab-10(a-b)-100]平方米,∵a>b,∴ab-10(a-b)-100<ab, ∴租地面积变小了,故选A.11.3解析原式=(13)100×3101=(13×3)100×3=3.故答案是3.12.34解析∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为34.13.4解析∵4×16m×64m=421,∴4×42m×43m=421,∴41+5m=421,∴1+5m=21,∴m=4.故答案为4.14.2x-y解析易知该边上的高=2(8x3y2-4x2y3)÷(8x2y2)=16x3y2÷(8x2y2)-8x2y3÷(8x2y2)=2x-y.故答案为2x-y.15.5x3-15x2+30x解析由题意可得被除式等于5x·(x2-3x+6)=5x3-15x2+30x.故答案为5x3-15x2+30x.16.19解析设正方形A的边长为a,正方形B的边长为b,由题图1得(a+b)2-a2-b2=16,∴2ab=16,∴ab=8,由题图2得a2-b2-2(a-b)b=3,∴a2+b2-2ab=3,∴a2+b2=3+2ab=3+2×8=19,∴正方形A,B的面积之和为19.故答案为19.17.解析(1)4y·(-2xy2)=-8xy3.(2)原式=(3x2+12y−23y2)·14x2y2=3 4x4y2+18x2y3−16x2y4.(3)(2a+3)(b2+5)=ab+10a+32b+15.(4)(6x3y3+4x2y2-3xy)÷(-3xy)=-2x2y2-43xy+1.18.解析(1)原式=-1+1-9-8=-17.(2)2 001×1 999=(2 000+1)(2 000-1)=2 0002-1=3 999 999.(3)(x+y+3)(x+y-3)=[(x+y)+3][(x+y)-3]=(x+y)2-9=x2+2xy+y2-9.19.解析(2x+3y)2-(2x+y)(2x-y) =(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.当x=13,y=-1时,原式=12×13×(-1)+10×(-1)2=6.20.解析(1)∵m+4n-3=0,∴m+4n=3,∴2m·16n=2m·24n=2m+4n=23=8.(2)原式=x6n-2x4n=(x2n)3-2(x2n)2=64-2×16=64-32=32.21.解析(1)49;7.(2)x2+10x-2=x2+10x+25-25-2=x2+10x+25-27=(x+5)2-27≥-27, ∴当x=-5时,x2+10x-2有最小值,为-27.(3)由题意得,S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1-S2=6a2+19a+10-(5a2+25a)=a2-6a+10=(a-3)2+1,∵(a-3)2≥0,∴(a-3)2+1≥1,∴S1-S2>0,∴S1>S2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级数学下册第一章测试题(1)幂的乘方一.基础题 1.()23x = ;4231⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛ = ;ny24⎪⎭⎫ ⎝⎛=()3a a -⋅-= ;()a na ⋅2 = ; 3()214()a a a ⋅= ;()332⎥⎦⎤⎢⎣⎡-c = ;2. 若(a 3)n =(a n )m (m ,n 都是正整数),则m =____________.3.计算3221⎪⎭⎫ ⎝⎛-y x 的结果正确的是( ) A. y x 2441 B. y x 3681 C. yx 3581- D. y x 3681-4.判断题:(对的打“√”,错的打“×”)532a a a =+( ) 632x x x =⋅( ) (x x 532)=( )a a a 824=•( )5. 若m 、n 、p 是正整数,则p n ma a )(⋅等于().A .np m a a ⋅B .np mp a +C .nmpa D .anmp a⋅6.计算题(1)4)(p p -⋅- (2) -(a 2)3(3) (-a 2)3(4)()[]436- (5)4332⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛ (6)[(x 2)3]7 ;(7)(x 2)n-(x n)2(8)(-a 2)3·a 3+(-4a )2·a 7-5(a 3)37.若22=⋅mmx x ,求mx 9的值。

二.提高题:(每小题2分,共16分)1. 计算(-a 2)3·(-a 3)2的结果是( ) A .a12B.-a 12C.-a10D.-a362. 如果(9n )2=38,则n 的值是( )A.4 B.2 C.3 D.无法确定3. 计算82332()()[()]p p p -⋅-⋅-的结果是( ) A. -20p B.20p C. -18p D. 18p4. 若1216x +=,则x=________.5.计算题:()()()[]()2542324325p p p p -⋅-+-⋅6.①若 2·8n ·16n =222,求正整数m 的值.②若(9m+1)2=316,求正整数m 的值.积的乘方一.基础练习1. (-3×103)3=________;221()3ab c -=________; 322⎪⎭⎫⎝⎛-y x=-(2x 2y 4)3=________;[]=-322)(ax ; 3()214()a a a ⋅==-⨯⎪⎭⎫ ⎝⎛200200)3(32 ; 23222(3)()aa a +⋅=2.若7,3==n n y x ,则nxy )(= ;23()n x y =3.4. 计算(3a 2b 3)3,正确的结果是( )A .27a 6b 9B .27a 8b 27C .9a 6b 9D .27a 5b 65.()()()2323a a a -⋅⋅-的结果正确的是( )6.判断题:623)(ab ab =( );22212)6(y x xy =( );4224)2(b b -=-( );m m a a a 44=⋅( ) 7.计算题:(每题4分,共28分) (1)23x x ⋅ (2)()my x 33(3)()23pq - (4)-(xy 2z )4(5)2332)()(xy y x (6)()()nn xy xy623+ (7)()()()268432y x y x ⋅-+ 8.(1)已知x n =5,y n =3,求(xy )2n 的值.(2) 已知4·8m ·16m =29,求m 的值。

二.提高题1.221()()n n x y xy -⋅ =_______ ;23()4n n n n a b =;5237()()p q p q ⎡⎤⎡⎤+⋅+⎣⎦⎣⎦= 。

2..设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为A.1B.-1C.3D.-33.计算题(1) (2)同底数幂的除法1.下列运算结果正确的是( )①2x 3-x 2=x ②x 3·(x 5)2=x 13 ③(-x)6÷(-x)3=x 3 ④(0.1)-2×10-•1=10 A.①② B.②④ C.②③ D.②③④ 2.(abc )5÷(abc )3= 。

x n+1·x n-1÷(x n )2= . 3.2324[()()]()m n m n m n -⋅-÷- =_________. 4如果3147927381m m m +++⨯÷=,那么m=_________.5.若35,34m n ==,则23m n -等于( ) A.254 B.6 C.21 D.206.若21025y =,则10y-等于( ) A.15 B.1625C.-15或15D.1257.若a=-0.32,b=-3-2,c=21()3--,d=01()3-, 则( )A.a<b<c<dB.b<a<d<cC.a<d<c<bD.c<a<d<b 8.计算:(12分)(1)03321()(1)()333-+-+÷-; (2)15207(27)(9)(3)---⨯-÷-;(3)(x 2y)6·(x 2y)3(4)2421[()]()n n x y x y ++÷-- (n 是正整数).3372332)5()4()3(a a a a a -•-+•-n n n b a b a )][()2()(3232---⋅-9.若(3x+2y-10)0无意义,且2x+y=5,求x 、y 的值.(6分)整式的乘法一.基础题:1.2y)-x(x 3= ; 2b)-a(a 4-= ; )2y xy (x 43212+-= 1)(-3x )2x -(x 2+= ; )2x y)(y x (-21232xy +=(2x+5)(x-3)= ;(x-3y)( x-5y)= ;2x-3y)( 3x-5y)= 2. 2x 2y ·(21-3xy +y 3)的计算结果是( )A.2x 2y 4-6x 3y 2+x 2y B.-x 2y +2x 2y 4 C.2x 2y 4+x 2y -6x 3y 2D.-6x 3y 2+2x 2y 43. 计算(2x-1)(5x+2)的结果是( ) A.10x 2-2 B.10x 2-5x-2 C.10x 2+4x-2D.10x 2-x-2 4.计算②)312(22ab ab a +-; ③)21(22y y y -; ④3x 2(-y -xy 2+x 2);⑤)3()4(2y x xy xy +⋅-;⑥)562332)(21(22y xy y x xy +--; ⑦)34()5323(2222y x y xy x -•-+; ⑧)1(2)(x 22-+-⋅x x x x ⑨(3x -2y)(2x -3y); ⑩(3x+2)(-x-2); ⑾(-2a-3)(3a-2) 二.提高题1.要使)6()1(32x ax x -⋅++的展开式中不含4x 项,则a=2..(x +q )与(x +51)的积不含x 的一次项,猜测q 应是 A.5 B.51 C.-51D.-53.若多项式(x+p)(x-3)的积中不含x 的一次项,则p= .4.已知三角形的底边是(6a+2b) cm ,高是(2b-6a) cm,则这个三角形的面积是 .5.计算m 2-(m+1)(m -5)的结果正确的是( )A.-4m -5B.4m+5C.m 2-4m+5D.m 2+4m -56.(1+x)(2x 2+ax+1)的结果中x 2项的系数为-2,则a 的值为( )A.-2B.1C.-4D.以上都不对7.计算:①)1(4)m 2(322+--mn mn n ; ②22232)(4)2(a 3b a a a b a ---③(x 2 -1)(x +1)-(x 2-2)(x -4); ④解方程:8)3(3)43(x +-=-x x x8.先化简再求值:)2102(1)x x 2x 2322x x x x +--+-(,其中x=- 9. 先化简,再求值: (2x-1)(4x 2+2x+1),其中 10.先化简,再求值:(x -y)(x -2y)-21(2x -3y)(x+2y),其中x=-2,y=52. 11.已知(2x-a)(5x+2)=10x 2-6x+b,求a,b 的值。

2121-=x。

相关文档
最新文档