概率积分表(误差函数表)
正态分布的分布函数公式推导

正态分布的分布函数公式推导正态分布是一种常见的概率分布,也称为高斯分布。
其概率密度函数为:$$f(x)=dfrac{1}{sigmasqrt{2pi}}e^{-frac{(x-mu)^2}{2sigma^2} }$$其中,$mu$是均值,$sigma$是标准差。
正态分布的分布函数可以通过积分得到,具体推导过程如下:$$F(x)=int_{-infty}^x f(t)dt$$将$f(t)$代入上式得到:$$F(x)=int_{-infty}^xdfrac{1}{sigmasqrt{2pi}}e^{-frac{(t-mu)^2}{2sigma^2}}dt$$ 对$t-mu$进行代换,令$u=dfrac{t-mu}{sigma}$,则有:$$F(x)=int_{-infty}^{frac{x-mu}{sigma}}dfrac{1}{sqrt{2pi}}e^{-frac{u^2}{2}}du$$注意到上式为正态分布的标准正态分布函数,即均值为0,标准差为1的正态分布。
标准正态分布的分布函数没有解析解,但是可以通过数值计算或查表得到。
因此,正态分布的分布函数可以通过标准正态分布的分布函数进行转换。
具体地,设$Z$为标准正态分布的随机变量,则有:$$F(x)=P(Xle x)=P(mu+sigma Zle x)=P(Zledfrac{x-mu}{sigma})=Phi(dfrac{x-mu}{sigma})$$其中,$Phi(z)$表示标准正态分布的分布函数,也称为累积分布函数。
因此,正态分布的分布函数可以表示为:$$F(x)=dfrac{1}{2}[1+mathrm{erf}(dfrac{x-mu}{sigmasqrt{2}}) ]$$其中,$mathrm{erf}(z)$为误差函数,定义为:$$mathrm{erf}(z)=dfrac{2}{sqrt{pi}}int_0^z e^{-t^2}dt$$ 综上所述,正态分布的分布函数可以通过标准正态分布的分布函数进行转换,最终得到误差函数的表达式。
随机误差的正态分布

1.3
0.3
0.1179
1.4
0.4
0.1554
1.5
0.5
0.1915
1.6
0.6
0.2258
1.7
0.7
0.2580
1.8
0.8
0.2881
1.9
0.9
0.3159
1.96
1.0
0.3413
2.0
1
u u2
e 2 du
2 0
面积
u
0.3643
2.1
0.3849
2.2
0.4032
2.3
0.4192
频率分布图
规律
1. 测量过程中随机误差的存在,使分析结 果高低不齐,即测量数据具有分散的特性。
第4讲高斯随机过程、高斯白噪声和带限白噪声

r(t) Acos (ct ) n(t)
其中:
(2.7.1)
Acos (ct )
---正弦载波:假定A、ωc为常数;θ为随机变量,其一维 pdf 均匀分布,即: f(θ)=1/(2π), 0≤θ≤2π
n(t) nc (t) cosct ns (t) sin ct (t) c (t) cosct s (t)sin ct
(x) 1
x
ez2 / 2dz
2
(2.5.9)
则正态分布函数可表示为:
F (x) ( x a )
(2.5.8)
通信原理
第2章 随机过程
xa
x
x
F(x) f (z)dz
1 exp[ (z a)2 ]dz 1
et2 / 2dt
2
2 2
2
(3) 用误差函数表示
正态分布函数更常表示成与误差函数相联系的形式。
通信原理
第2章 随机过程
2. 表达式--两种!
(t) a (t) cos ct (t) , a 0
c (t) cosct s (t)sinct
(2.6.1/2)
c (t)=a (t) cos (t) (t)的同相分量 s (t)=a (t) sin (t) (t)的正交分量
R c s (0)=0 , f (c ,s )=f (c ) f (s )
通信原理
第2章 随机过程
2.5.3 已知ξ(t)的统计特性,求 aξ(t)、φξ(t)的统计特性
结论2
(t) a (t) cos ct (t) , a 0
若ξ(t):均值为0、方差为δ2、窄带平稳高斯随机过程。
则:
(1)其包络aξ(t)的一维分布呈瑞利分布; (2)其相位φξ(t)的一维分布呈均匀分布; (3) aξ(t)与φξ(t)统计独立。
分析化学第三章 分析化学中的误差与数据处理_OK

分类
方法误差、仪器与试剂 环境的变化因素、主
误差、主观误差
观的变化因素等
性质
重现性、单向性(或周 服从概率统计规律、
期性)、可测性
不可测性
影响
准确度
精密度
消除或减 小的方法
校正
增加测定的次数 12
系统误差的校正
• 方法系统误差——方法校正 • 主观系统误差——对照实验校正(外检) • 仪器系统误差——对照实验校正 • 试剂系统误差——空白实验校正
误差
10
• 随机误差: • 由某些不固定偶然原因造成,使测定结果在一定范围内波动,大小、正负不定,难以
找到原因,无法测量。 • 特点:不确定性;不可避免性。 • 只能减小,不能消除。每次测定结果无规律性,多次测量符合统计规律。 • 过失、错误误差
11
系统误差与随机误差的比较
项目
系统误差
随机误差
产生原因 固定因素,有时不存在 不定因素,总是存在
相对误差: 绝对误差占真值的百分比,用Er表示
Er =E/xT = x - xT /xT×100%
2
相对误差反映误差在真值中所占的比例
误差以真值为标准
真值:某一物理量本身具有的客观存在的真实值。真值是
未知的、客观存在的量。在特定情况下认为 是已知的:
理论真值(如化合物的理论组成)(如,NaCl中Cl的 含量) 计量学约定真值(如国际计量大会确定的长度、质 量、物质的量单位等等) 相对真值(如高一级精度的测量值相对于低一级精 度的测量值)(例如,标准样品的标准值)
6 15.99 34 0.172
7 16.02 55 0.278
8 16.06 40 0.202
9 16.09 20 0.101
03第三讲:高斯过程、窄带过程

现在我们需要求 Zc(t)和Zs(t)的统计特性,即 f(Zc,Zs)=?
对于窄带高斯过程来说,同相分量和正交分量是不相关的,或 者也可以说是统计独立的,而对于正弦波+窄带高斯过程来说, 它仍然属于窄带的范畴,所以其同相分量和正交分量也是相互 独立的,而且也是高斯过程。
对于同相分量:
由此可得同相分量Zc(t)的概率密度函数,
(2)y1、y2是x1、x2的函数:y1=f1(x1,x2),y2=f2(x1,x2), 反函数:x1=g1(y1,y2), x2=g2(y1,y2),
如果已知x1,x2的pdf为f(x1,x2), 求:y1,y2的pdf,f(y1,y2)=? 解决此问题时,利用以下结论: f(y1,y2)=|J|f(x1,x2) |J|是Jacobi行列式,
窄带随机过程的带宽 固定不变,载波频率 变大时,频谱图向高 频处搬移,对应样函数的包络频率不变,但样函数波形的频率 变 大。载波频率 变小时,频谱图向低频处搬移,对应样函数的包络 频率不变,但样函数波形的频率 变小。
二、窄带过程的数学表示
1、用包络和相位的变化表示
窄带过程是功率谱限制在ωc附近的很窄范围内的一个随机过程, 过程中的
2
或erfc(x) 2 2( 2x)
2.6 窄带随机过程
一、引言
1.必要性:任何通信系统都有发送机和接收机,为了提高系 统的可靠性,即输出信噪比,通常在接收机的输入端接有一 个带通滤波器,信道内的噪声构成了一个随机过程,经过该 带通滤波器之后,则变成了窄带随机过程,因此,讨论窄带 随机过程的规律是重要的。
为了能够借助于数表(误差函数表,概率积分表) 来计算高斯分布 ,需要引入概率积分函数或者误 差函数(互补误差函数)
正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线正态曲线可用方程式表示。
当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程:f(x)= (6.16 )式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.1 4159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ ,但对某一定总体的μ 是一个常数;δ 也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ ,但对某一定总体的δ 是一个常数。
上述公式表示随机变数 x 的分布叫作正态分布,记作N( μ , δ2 ) ,读作“具平均数为μ,方差为δ2 的正态分布”。
正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。
(二)正态分布的特性1 、正态分布曲线是以x= μ 为对称轴,向左右两侧作对称分布。
因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ 的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。
在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。
2 、正态分布曲线有一个高峰。
随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ )正态曲线随 x 的增大而上升,;当 x= μ 时, f(x) 最大;在(μ ,+ ∞ )曲线随 x 的增大而下降。
3 、正态曲线在︱x-μ︱=1 δ 处有拐点。
曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。
正态分布求导

正态分布求导1.正态分布参考博客:概率密度函数的意义:若随机变量 X 服从一个位置参数为 \mu 、尺度参数为 \sigma 的概率分布,且其概率密度函数为:\mu :\mu是正态分布的位置参数,描述正态分布的集中趋势位置。
概率规律为取与\mu邻近的值的概率大,而取离\mu越远的值的概率越小。
正态分布以X=\mu为对称轴,左右完全对称。
正态分布的期望、均数、中位数、众数相同,均等于\mu。
位置(形状)参数控制分布函数形状的变化。
\sigma :σ是正态分布的尺度参数,描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。
也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
尺度参数控制分布函数在幅度上的变化。
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} (1)则这个随机变量就称为正态随机变量,正态随机变量服从的分布就称为正态分布,记作 X \sim N\left(\mu, \sigma^{2}\right) 。
随机变量:随机变量可以看做是关联了概率值的变量,即变量取每个值有一定的概率。
随机变量取每个具体的值的概率为0,但在落在每一点处的概率是有相对大小的,描述这个概念的,就是概率密度函数。
一般正态分布当\mu=0,\sigma=1时,称为标准正态分布。
X \sim N\left(0,1\right)f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} (2)标准整体分布2.正态分布的分布函数一般正态分布的分布函数F(x):F(x)=P(X \leqslant x)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^{2}}{2 \sigma^{2}}} d t (3)。
测量误差分析

定值可求得算术平均值及其均方根误差的估计值:
x
1 n
x n
xi
i 1
1
n(n 1)
n i 1
(xi
x)2
第三十七页
由于 (x ) / x 服从自由度v = n-1的t分布,所以 可用上式做以下的概率描述
x
或
P( t tp ) P(tp tp ) P x
P(x tpx x tpx ) P 测量结果可表示为:
第四页
对称性:绝对值相等而符号相反的随机误 差出现的概率相同,其分布呈对称性。
抵偿性:在等精度测量条件下,当测量次数不 断增加而趋于无穷时,全部随机误差的算术平 均值趋于零。
第五页
正态分布的分布密度函数为
f
1
e
2 2 2
2
式中, —— 标准误差(均方根误差);
e —— 自然对数的底。
间 x , x 内的置信概率。 危险率:P(x x ) 1
第二十三页
置信区间与置信概率共同表明了测量结果 的置信度,即测量结果的可信程度。
对于同一测量结果,置信区间不同,其置 信概率是不同的。
置信区间越宽,置信概率越大;反之亦然。
第二十四页
一列等精度测量的结果可以表达为在一定 的置信概率之下,以测定值子样平均值为 中心,以置信区间半长为误差限的量 测量结果=子样平均值±置信区间半长(置 信概率P=?)
得
Y y2 f X1, X2 ,
Xm
f ……x1
12
f x 2
22
f x m
m2
Y yn f X1, X2 ,
Xmf x11nf x 22n
f x m
mn
第四十六页