离散数学论文
数学小论文范文

数学小论文范文随着课程改革的不断深入,新课程理念与课堂教学实践正在逐步融合,逐步改变了以教师、课堂或课本为中心的局面,促进了学生创新意识与实践能力的发展,学生的学习产生了实质性的变化。
那么,在课堂教学中如何使学生主动探索在课堂上显现呢?下面结合本人的教学实践,谈几点体会及做法。
一给学生提供可探索的材料和可探索的学习内容二给学生提供良好的学习背景和可探究的学习情境在课堂教学中,教师应结合教学内容为学生的学习,创设良好的学习背景和可探究的学习情境,让学生在数学知识的广阔背景中更好地建构知识的意义,并感受数学与生活实际的密切联系,体会数学的价值,让学生的数学学习活动真正变为学生自己探究的创新过程。
如,在教学“百分数的意义”时,可为学生创设这样的学习背景:“有甲乙丙三位工人师傅,甲每加工25个零件,有23个及格,乙加工20个零件,有19个及格,丙加工50个零件,有47个及格。
如果有一批零件要其中一位师傅加工,你会选择谁?”通过探究,使学生认识到这个现实问题实际上可转化成“求谁的合格率高”这一数学问题。
又如,教学“分数的基本性质”时,我有意识地给学生提供以下的可探究学习情境:上课开始,我拿着一捆36本课外书,从容地走进课堂。
同学们在猜想:这节课老师让我们看课外书了。
于是我指着这捆课外书说:“这36本课外书,我要分给你们三个小组,要求让第一组分得这捆书的三分之一,第二小组分得这捆书的六分之二,第三小组分得这捆书的九分之三,请同学们说一说,这样分法合理不合理,谁分得多?谁分得少?结果分完没有?”这样问题的创设,调动了学生思维的积极性,探究活动立即在课堂上显现,有的按照自己的思路去画线段图,有的一会儿测量,有的一会儿皱眉思索,兴趣盎然,学生会心地笑了,一样多。
这时,学生又产生困惑,为什么会一样多呢?最后经过引导探究,得出“分数的基本性质”。
三给学生主动学习,亲历知识的形成过程四关注课堂人文价值,体现人文精神在课堂教学中如何使学生主动探索在课堂上显现,它只有正确的理念,而没有固定的模式,更没有标准的答案。
关于离散数学应用课程论文

关于离散数学应用课程论文第1篇:离散数学课程教学新思考离散数学课程对培养学生的抽象思维、逻辑思维和计算思维能力有着重要意义。
从该课程的实用性出发,在分析课程定位的基础上,以网络化的形式构建知识单元之间的联系,引入任务驱动的实践教学环节以改变传统的教学模式,充分调动学生的学习积极性,大大提高了教学质量。
引言离散数学是计算机科学与技术专业一门核心基础课程[1],该课程不仅为数据结构、编译原理、操作系统、数据库原理、人工智能等专业课程提供必须的基础知识,而且对培养学生的抽象思维、逻辑思维和计算思维能力十分重要。
该课程有助于提高学生分析问题和解决问题的能力。
由于该课程具有内容多、概念多、理论性强、高度抽象等特点,很多高校教师常常采用“定义-定理-证明-习题”这样的传统数学理论课的教学模式讲授,而学生觉得枯燥、难学。
本文重新思考离散数学的课程定位;从知识的实用性出发,力求合理组织和安排教学内容;探讨任务驱动的实践教学模式以激发学生学习积极性,提高离散数学课程的教学效果,从而更好地培养学生的计算机专业能力。
1.从计算思维能力培养角度重新审视课程的定位计算思维是指对问题及其解决方案进行阐释,将解决方案表示成形式化的信息处理代理(information-processingagent)形式有效解决问题的思维过程,其本质是抽象和自动化[2-3]。
对于计算机专业学生而言,计算思维的能力具体体现为学生构建各种层次的计算环境以及在这种环境下进行问题求解的能力。
因此,从计算思维的角度重新审视离散数学课程定位十分必要。
在离散数学课程教学伊始就要明确告知学生:电子计算机本身是一个只能处理离散化了的数量关系的离散结构,计算机科学及其相关的科研领域,都面临着如何运用离散结构建立模型或者如何将已有连续数量关系建立起来的模型离散化,再由计算机处理和实现的问题[4]。
对计算思维能力的培养和训练是计算机专业教学的核心所在;学生在经过大学专业学习之后,不仅要掌握计算机专业的相关知识,更要能够应用这些知识构建出各种层次的计算环境实现问题求解,这也是对学生创新能力培养的一个重要途径。
金融市场收益率离散数学模型及其定性分析

models fdiscrete RRACF modell
are
built up under various different financial back—
grounds.More specifically,concerning the relatively closed
build up
a
financial
network,we
basic discrete RRACF model reflecting the law of instant rates of return
of each node in the financial network.Since every financial network is open,we
return—amount of circulating fund model in
an
open financial network.A necessary
US—
and snfficient condition is obtained for the stability of equilibrium solution by
we build up another equation concerning the rate of returns
circulating fund with impulsive terms. Chapter 3一Chapter 6 mainly deals with the detailed discussion
of the equilibrium solution and the existence of periodic solutions to the discrete delay RRACF equation.The last chapter mainly deals with the RRACF model with impulsive terms.It is shown that the average rate of return of the network
离散数学的数学论文范文3篇

离散数学的数学论文范文3篇第一篇离散数学研究的本质是围绕着由非负整数组成的集合来研究和思考,同时也包括证明数理逻辑、关系数学和图论的海量的数学理论和工具。
因为离散数学的建模思路更为简单和节省计算资源,使得现在已经成为几乎所有数学工作的基础和枢纽。
离散数学的研究范围很广泛,不仅可以从理论上解决具体的问题,而且可以应用于有限的数学模型,衍生出一系列微分方程、非线性方程式等数学工具,运用于数学建模、统计分析等多个领域。
比如,可以应用离散数学求得两个集合最大并减、有根树及半加法等重要结构、笛卡尔积、Hall定理、决策树构建、爱因斯坦桥解法等重要数学理论和工具。
另一方面,借助这些工具,离散数学还可以用于发现复杂的数学模型,以及通过设计合理的优化算法,改善现有的数学模型以求解问题。
并且,离散数学可以用于婚姻优化、安全网络运行、信息的编解码分析、发电机组安排调度等领域。
总而言之,离散数学涵盖面广泛,甚至可以应用于实际生活中的复杂场景,成为各种实际应用和数学统计分析不可分割的组成部分。
第二篇离散数学可以追溯到古希腊学者们的数学思想,它有着悠久的历史,并且发展变的越来越快,在许多领域都有着重要的应用。
从图论推出的现今常用的各种组合技术和算法,到关系数学及逻辑学中建立模型和形式化方法,它都为科学及技术提供了强有力的保证。
离散数学的应用可以说是广泛而多样,比如研究可计算性问题,这是我们当今非常关注和研究的一个热门话题。
例如,离散数学和数学逻辑的结合,实现了计算机能够执行海量数据的快速处理,从而解决了许多真实的问题。
另外,在计算机科学领域,离散数学是在复杂程序设计中以及程序实施中所不可或缺的核心,不仅在组合计算领域中广泛应用,而且在大多数其它数学领域中也重要起着指导作用。
最后,作为科学和技术发展的一部分,离散数学给人们带来了更多的可能,其中包括科技的进步、工程解决方案和数学思维方式的重新定义。
它不仅可以帮助解决计算机领域、生物学领域、生态学领域、经济学领域等多种领域的问题,而且可以将数据运算和复杂分析融入到我们的日常生活中。
2024年学习《离散数学》心得体会范文(三篇)

2024年学习《离散数学》心得体会范文____年学习《离散数学》心得体会离散数学是一门非常重要的数学学科,它主要研究离散结构和离散型对象的性质与关系。
在本学期的学习中,我深入学习了离散数学的基本概念、定理和证明方法,对于数理逻辑、集合论、图论和组合数学等方面有了更深入的理解和应用能力。
通过学习《离散数学》,我不仅提高了数学思维和逻辑推理能力,还加深了对数学学科的兴趣与热爱。
下面,我将对本学期学习《离散数学》的心得体会进行总结。
在学习《离散数学》的过程中,最基本的是理解和掌握数理逻辑的知识。
数理逻辑在我们日常生活中无处不在,它是一种研究形式语言的方法和规律的学科。
通过学习数理逻辑,我学会了把复杂的命题和推理过程进行抽象和形式化,达到准确的逻辑推理和推断的目的。
对于复杂的命题,我学会了如何使用命题逻辑和谓词逻辑进行分析,如何构造命题逻辑和谓词逻辑的公式,以及如何使用逻辑运算和证明方法来验证命题的真假与有效性。
通过数理逻辑的学习,我对于思维的准确性和严谨性要求有了更高的认识,学会了用逻辑的眼光来看待问题和解决问题。
在数理逻辑的基础上,我进一步学习了集合论的知识。
集合论是研究事物分类和分类操作的学科,它是离散数学的基础和核心之一。
通过学习集合论,我学会了如何使用集合的运算和运算法则来描述和操作事物的分类关系,如何构造和验证集合的证明和推理,以及如何使用集合的拓扑和图示来表示和分析集合和集合之间的关系。
集合论的学习让我对于事物分类和分类操作的抽象和形式化有了更深入的理解,也提高了我应用集合论解决实际问题的能力。
在掌握数理逻辑和集合论的基础上,我进一步学习了图论的知识。
图论是研究图和图中元素之间的关系和性质的学科,它在解决实际问题中有着广泛的应用。
通过学习图论,我学会了如何使用图的概念和图的表示方法来描述和分析实际问题,如何使用图的算法和图的性质来解决实际问题,以及如何使用图的应用和推广来扩展和应用图论的知识。
数学论文离散数学

数学论文离散数学离散数学是计算机科学的基础,我们研究离散数学是有其现实意义的,可以说它是构筑在数学和计算机科学之间的桥梁,下面店铺给你分享数学论文离散数学,欢迎阅读。
数学论文离散数学篇一摘要:以信息专业的离散数学教学实践为基础,分析了大学文科数学教学内容的不足,探讨了如何在实践中进行教学改革,提高教学质量。
关键词:离散数学;逻辑;可视化方法引言随着社会信息化的发展,《离散数学》逐渐成为信息学科的一门专业基础课。
《离散数学》是现代数学的一个重要分支,以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数个元素。
离散数学已经在数据结构、算法设计与分析、操作系统、编译系统、人工智能、软件工程、网络与分布式计算、计算机图形学、人机交互、数据库等领域都得到了广泛的应用。
除了作为多门课程必须的数学基础之外,离散数学中所体现的现代数学思想对加强学生的素质教育,培养学生的抽象思维和逻辑表达能力,提高发现问题,分析问题,解决问题,也有着不可替代的作用[1]。
但是通过近几年的教学实践,人们对《离散数学》的课程设置和教学效果还不是很满意[2]。
主要存在于教学内容取舍上和教学方法的应用上。
如果教学内容的选取不当或是教学方法的使用不当,都会使学生对学习《离散数学》产生畏惧或是抵触的情绪,以至不了解学习的目的。
如何提高学生对《离散数学》这一课程的认识,并学会用科学的思维方式思考问题,解决问题,进而提高自身的科学修养,这是我们每一个教育工作者应该关注的问题。
本文基于笔者自身的教学经历和调查研究,对教学与学习《离散数学》的内容和方法中存在的一些问题加以分析,并且提出了一些相应的解决方案。
1 不同专业课程内容的设置经典的离散数学内容一般包括数理逻辑、集合理论、图论基础、代数结构这四部分内容。
随着信息科学的发展《组合数学》这一学科也逐步的被添加到离散数学的课程之内。
但是因为不同专业培养学生的目标各异,所以对离散数学的课程要求也不一样,相应的课时分配亦不尽相同。
离散数学在计算机科学中的作用和应用论文
离散数学在计算机科学中的作用和应用论文离散数学在计算机科学中的作用和应用论文摘要:离散数学是计算机专业的一门专业基础课,在计算机科学中有重要而广泛的应用,是计算机专业课《数据结构》、《操作系统》、《编译原理》、《数据库系统原理》和《数字逻辑》等课的先导课程,因此离散数学是掌握计算机科学理论基础的重要数学工具。
本文介绍了离散数学在计算机科学中的重要应用和应用。
关键词:离散数学计算机科学数据结构离散数学是计算机应用必不可少的工具,例如数理逻辑在数据模型、计算机语义、人工智能等方面的应用,集合论在数据库技术中的应用,代数系统在信息安全中的密码学方面的应用,图论在信息检索、网络布线、指令系统优化等方面的应用。
1.离散数学与其他课程的关系1.1离散数学与数据结构的关系离散数学与数据结构的关系非常紧密,数据结构课程描述的对象有四种,分别是线形结构、集合、树形结构和图结构,这些对象都是离散数学研究的内容。
线形结构中的线形表、栈、队列等都是根据数据元素之间关系的不同而建立的对象,离散数学中的关系这一章就是研究有关元素之间的不同关系的内容;数据结构中的集合对象及集合的各种运算都是离散数学中集合论研究的内容;离散数学中的树和图论的内容为数据结构中的树形结构对象和图结构对象的研究提供很好的知识基础。
1.2离散数学与数据库原理的关系目前数据库原理主要研究的数据库类型是关系数据库。
关系数据库中的关系演算和关系模型需要用到离散数学中的谓词逻辑的知识;关系数据库的逻辑结构是由行和列构成的二维表,表之间的连接操作需要用到离散数学中的笛卡儿积的知识,表数据的查询、插入、删除和修改等操作都需要用到离散数学中的关系代数理论和数理逻辑中的知识。
1.3离散数学与数字逻辑的关系数字逻辑为计算机硬件中的电路设计提供了重要理论,而离散数学中的数理逻辑部分为数字逻辑提供了重要的`数学基础。
在离散数学中命题逻辑中的连结词运算可以解决电路设计中的由高低电平表示的各信号之间的运算以及二进制数的位运算等问题。
离散数学课程总结论文
离散数学课程总结论文一、课程的性质与任务离散数学是现代数学的一个重要分支,是计算科学专业的专业主干课之一, 课程结合计算科学的特点研究离散对象及相互关系, 对提高学生的抽象思维与逻辑推理能力有重要作用.它以研究离散量的结构和相互间的关系为主要目标,在计算科学中的数据结构、操作系统等有广泛的应用。
二、课程内容、基本要求(一)命题逻辑1.理解命题的概念, 掌握常用的命题联结词。
2.理解命题的合式公式概念, 会用真值表来判别公式的真假。
3.知道公式的等价关系和蕴含关系,会利用真值表和常用的基本等值式作等值演算。
4.会用真值表法及等值演算求合式公式的主析取范式和主合取范式。
5.知道命题演算的推理理论, 掌握直接证明、条件证明、反证法, 能进行一些简单推理。
重点: 求合式公式的主析取范式和主合取范式。
难点: 利用基本等值作等值演算。
(二)谓词逻辑1.熟悉一阶谓词逻辑的谓词、量词等概念。
知道谓词公式的概念。
2.知道谓词演算中关于量词的等值式。
3.熟悉常见谓词演算的基本规则;掌握谓词演算的推理理论。
重点: 谓词演算的基本规则。
难点: 谓词演算中关于量词的等值式。
(三)集合的基本概念1.理解集合的概念, 掌握集合和元素间的关系。
2.熟悉集合与集合之间的关系(相等、包含)。
3.熟练掌握集合之间的运算及基本运算规律。
4.掌握幂集及笛卡尔积的计算。
重点: 集合之间的运算及基本运算规律。
难点: 幂集及笛卡尔积的计算。
(四)关系与函数1.理解关系的基本概念, 掌握关系的图及其矩阵表示方法。
2.掌握关系的运算, 理解关系的几种特性。
3.掌握关系的闭包运算。
4.理解等价关系、等价类、商集、偏序关系的概念, 会用哈斯图表示偏序关系, 会根据等价关系求等价类,理解并掌握等价关系与集合划分之间的重要关系会求出等价关系所产生的一个集合的划分。
5.了解函数的基本概念, 掌握复合函数、逆函数的计算。
重点: 关系的几种特性、关系的闭包运算。
有关数学小论文范文
有关数学⼩论⽂范⽂“数学⼩论⽂”是让学⽣以⽇记的形式描述他们发现的数学问题及其解决,是学⽣数学学习经历的⼀种书⾯写作记录。
它可以是学⽣对某⼀个数学问题的理解、评价,可以是数学活动中的真实⼼态和想法,可以是进⾏数学综合实践活动遇到的问题,也可以是利⽤所学的数学知识解决⽣活中数学问题的经过等。
有关数学⼩论⽂范⽂1 离散数学课程论⽂ ⼀、对离散数学的理解 由于《离散数学》是⼀门数学课,且是由⼏个数学分⽀综合在⼀起的,内容繁多,⾮常抽象,因此即使是数学系的学⽣学起来都会倍感困难,对计算科学专业的学⽣来说就更是如此。
⼤家普遍反映这是⼤学四年最难学的⼀门课之⼀。
离散数学是计算机科学基础理论的核⼼课程之⼀,是计算机及应⽤、通信等专业的⼀门重要的基础课。
它以研究量的结构和相互关系为主要⽬标,其研究对象⼀般是有限个或可数个元素,充分体现了计算机科学离散性的特点。
学习离散数学的⽬的是为学习计算机、通信等专业各后续课程做好必要的知识准备,进⼀步提⾼抽象思维和逻辑推理的能⼒,为计算机的应⽤提供必要的描述⼯具和理论基础。
1.定义和定理多离散数学是建⽴在⼤量定义、定理之上的逻辑推理学科,因此对概念的理解是学习这门课程的核⼼。
在学习这些概念的基础上,要特别注意概念之间的联系,⽽描述这些联系的实体则是⼤量的定理和性质。
在考试中有⼀部分内容是考查学⽣对定义和定理的识记、理解和运⽤,因此要真正理解离散数学中所给出的每个基本概念的真正的含义。
⽐如,命题的定义、五个基本联结词、公式的主析取范式和主合取范式、三个推理规则以及反证法;集合的五种运算的定义;关系的定义和关系的四个性质;函数(映射)和⼏种特殊函数(映射)的定义;图、完全图、简单图、⼦图、补图的定义;图中简单路、基本路的定义以及两个图同构的定义; 树与最⼩⽣成树的定义。
掌握和理解这些概念对于学好离散数学是⾄关重要的。
2. ⽅法性强在离散数学的学习过程中,⼀定要注重和掌握离散数学处理问题的⽅法,在做题时,找到⼀个合适的解题思路和⽅法是极为重要的。
左孝凌 ,离散数学 pdf
左孝凌,离散数学pdf全文共四篇示例,供您参考第一篇示例:【左孝凌,离散数学pdf】是一本关于离散数学的PDF资料,本文将对该资料进行简要讨论和介绍。
离散数学是数学的一个分支,它研究的是离散的结构,而非连续的结构。
它在计算机科学、信息技术、通信工程和许多其他领域中有着广泛的应用。
【左孝凌,离散数学pdf】作为一本介绍离散数学的资料,对于学习者来说具有很高的参考价值。
【左孝凌,离散数学pdf】详细介绍了离散数学的基本概念和原理。
它包括了集合论、图论、逻辑、数论等内容,通过理论结合实际案例的方式进行讲解,使读者能够更好地理解离散数学的核心思想。
【左孝凌,离散数学pdf】还涉及了离散数学在计算机科学中的应用。
在当今信息化的社会中,计算机科学已经成为一门重要的学科,而离散数学正是其基础。
通过学习【左孝凌,离散数学pdf】,读者可以更好地理解计算机科学中的相关概念和原理,为其在这一领域的学习和研究打下坚实的基础。
【左孝凌,离散数学pdf】还介绍了离散数学在信息技术和通信工程中的应用。
信息技术和通信工程是现代社会中不可或缺的一部分,而离散数学的应用则是其发展的重要支撑。
通过学习【左孝凌,离散数学pdf】,读者可以更好地理解信息技术和通信工程中的相关原理和技术,为其在这些领域的发展和创新提供理论支持。
【左孝凌,离散数学pdf】是一本介绍离散数学的优秀资料,它的内容丰富全面,涵盖了离散数学的基本原理、计算机科学中的应用以及信息技术和通信工程中的应用。
通过学习这本资料,读者可以更好地理解离散数学的核心概念,为其在相关领域的学习和研究打下坚实的基础。
希望更多的读者能够通过【左孝凌,离散数学pdf】这本资料,进一步了解离散数学,并在相关领域中取得更大的成就。
第二篇示例:左孝凌是中国科学院数学与系统科学研究院教授、博士生导师,国家杰出青年科学基金获得者,享受国务院政府特殊津贴专家。
离散数学是数学中一个重要的分支,它研究离散对象和离散关系性质的数学理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学的应用
10级3班cheng
离散数学是现代数学的重要分支,是研究离散量的结构及相互关系的学科,作为一门重要的专业基础课,对于我们电子专业的同学来说,学习离散数学史有其重要现实意义:它不仅能为我们的专业课学习打下基础,也为我们今后将要从事的软、硬件开发和应用研究打下坚实的基础,同时也有助于培养我们的抽象思维、严格的逻辑推理和创新能力。
离散数学在各学科领域,特别在计算机科学(计算机科学研究计算机及其周围各种现象和规律的科学,亦即研究计算机系统结构、程序系统(即软件)、人工智能以及计算本身的性质和问题的学科。
计算机科学是一门包含各种各样与计算和信息处理相关主题的系统学科,从抽象的算法分析、形式化语法等等,到更具体的主题如编程语言、程序设计、软件和硬件等)与技术领域有着广泛的应用。
同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。
通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
1、数理逻辑在人工智能中的应用
人工智能是计算机学科中一个非常重要的方向,离散数学在人工智能中的应用主要是数理逻辑部分在人工智能中的应用。
数理逻辑包括命题逻辑和谓词逻辑,命题逻辑就是研究以命题为单位进行前提与结论之间的推理,而谓词逻辑就是研究句子内在的联系。
大家都知道,人工智能共有两个流派,连接主义流派和符号主义流派。
其中在符号主义流派里,他们认为现实世界的各种事物可以用符号的形式表示出来,其中最主要的就是人类的自然语言可以用符号进行表示。
语言的符号化就是数理逻辑研究的基本内容,计算机智能化的前提就是将人类的语言符号化成机器可以识别的符号,这样计算机才能进行推理,才能具有智能。
由此可见数理逻辑中重要的思想、方法及内容贯穿到人工智能的整个学科。
2、图论在数据结构中的应用
离散数学在数据结构中的应用主要是图论部分在数据结构中的应用,树在图论中占着重要的地位。
树是一种非线性数据结构,在现实生活中可以用树来表示某一家族的家谱或某公司的组织结构,也可以用它来表示计算机中文件的组织结构,树中二叉树在计算机科学中有着重要的应用。
二叉树共有三种遍历方法:前序遍历法、中序遍历法和后序遍历法。
前序遍历法:如果二叉树为空,则返回。
否则(1)访问根节点(2)前序遍历左子树(3)前序遍历右子树,得到前序序列。
中序遍历法:如果二叉树为空,则返回。
否则(1)中序遍历左子树(2)访问根节点(3)中序遍历右子树,得到中序序列。
后序遍历法:如果二叉树为空,则返回。
否则(1)后序遍历左子树(2)后序遍历右子树(3)访问根节点,得到后序序列。
通过访问不同的遍历序列,可以得到不同的节点序列,通常在计算机中利用不同的遍历方法读出代数表达式,以便在计算机中对代数表达式进行操作。
3、集合论在数据库系统理论中的应用
集合论是离散数学中极其重要的一部分,它在数据库中有着广泛的应用。
我们可以利用关系理论使数据库从网络型、层次型转变成关系型,这样使数据库中的数据容易表示,并且易于存储和处理,使逻辑结构简单、数据独立性强、数据共享、数据冗余可控和操作简单。
当数据库中记录较多时,集合中的笛卡儿积方便了记录的查询、插入、删除和修改。
4、代数系统在通信方面的应用
代数系统在计算机中的应用广泛,例如有限机,开关线路的计数等方面。
但最常用的是在纠错码方面的应用。
在计算机和数据通信中,经常需要将二进制数字信号进行传递,这种传递常常距离很远,所以难免会出现错误。
通常采用纠错码来避免这种错误的发生,而设计的这种纠错码的数学基础就是代数系统。
纠错码中的一致校验矩阵就是根据代数系统中的群概念来进行设计的,另外在群码的校正中,也用到了代数系统中的陪集。
这些应用,极大地促使我们学好离散数学,而作为基础课程,离散数学课程主要介绍离散数学的各个分支的基本概念、基本理论和基本方法。
这些概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中;同时,该课程所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于学生严谨、完整、规范的科学态度的培养。
离散数学课程的教学目的,不但作为计算机科学与技术及相关专业的理论基础及核心主干课,对后续课程提供必需的理论支持。
更重要的是旨在“通过加强数学推理,组合分析,离散结构,算法构思与设计,构建模型等方面专门与反复的研究、训练及应用,培养提高学生的数学思维能力和对实际问题的求解能力。
”
《离散数学》作为一个单独的分枝,在世界上出现的时间并不久,不过几十年,但它的各部分内容中有相当一部分却早已出现在数学中。
为什么将各个数学分支中的一些内容集中起来加以研究,并且冠上一个新的名称——离散数学呢?这主要是因为计算机科学的产生和发展。
正如恩格斯所说:“……科学的状况还更多的从属于技术的状况和需要。
倘若社会上有了一种技术上的需要,那就比十个大学还更能推动科学前进。
”
计算机的出现,在很大程度上影响到了人们的思想和生活,对社会生产起了重大作用。
为了研究计算机科学的理论基础,离散数学也就应运而生。
因此,如果我们不从纯数学的角度,而从应用数学的角度来考虑,也许给离散数学换一个名称一一计算机科学的数学基础——更能说明问题。
正是因为这个原因,在计算机科学系。
信息管理系都将离散数学作为必须学习的基础课程。
而实践证明这种做法是正确的。