非线性系统的线性方法
《自动控制原理》考点精讲(第8讲 非线性控制系统分析)

自动控制原理(自动控制理论)考点精讲
量外,还含有关于ω的高次谐波分量。使输出波形发生非线
性畸变。 正弦响应的复杂性:①跳跃谐振及多值响应;②倍频振荡与 分频振荡;③组合振荡(混沌);④频率捕捉。 混沌:
自动控制原理(自动控制理论)考点精讲
网学天地( )
e
x
x(t)
x(t)
x(t)
x(t)
ωt ωt
ωt ωt
自动控制原理(自动控制理论)考点精讲
自动控制原理(自动控制理论)考点精讲
网学天地( )
例:欠阻尼二阶系统的相平面描述——相轨迹
相轨迹在某些特定情况 下,也可以通过积分法, 直接由微分方程获得x和x 导数的解析关系式:
x dx = f (x, x) ⇒ g(x)dx = h(x)dx dx
自动控制原理(自动控制理论)考点精讲
α
=
dx dx
=
f (x, x) x
则与该曲线相交的任何相轨迹在交点处的切线斜率均为α,
该曲线称为等倾线。 注1:线性系统的等倾线为直线; 注2:非线性系统的等倾线为曲线或折线。
自动控制原理(自动控制理论)考点精讲
网学天地( )
由等倾线的概念知,当相轨迹经过该等倾线上任一点时,其 切线的斜率都相等,均为α。取α为若干不同的常数,即可 在相平面上绘制出若干条等倾线,在等倾线上各点处作斜率 为α的短直线,并以箭头表示切线方向,则构成相轨迹的切 线方向场。
非线性动力系统的连续线性化模型及其数值计算方法

垫拯生』选盆煎非线性动力系统的连续线性化模型及其数值计算方法。
苏志霄郑兆昌(清华大学工程力学系,北京,100084)谁≮'I广摘要秭4用Taylor级数展开导出了任意自治或非自治非线性动力系统的瞬时线性化方程,该线性方程的连续变化描述了系统的全部复杂动力行为。
进一步求解系统的线性化方程,得到一种非线性动力系统数值计算的新的递推格式,计算实例表明其精度高于传统的Houbolt、Wilson.o及Newmark-13等方法,且在计算时间步长较大时,仍然具有足够的计算精度3文末通过数值计算研究了Duffing方程和vanderPol方程的混沌及周期特性。
关键词非线性动力系统连续线性化模型Dumng方程vailderPol方程近年来,非线性动力系统的定性分析方法在低维系统中的应用已逐步完善。
然而。
由于非线性系统一般不存在解析解,因此通常利用逐步积分法、有限差分法[1,2]及其他方法,如Taylor变换法[3】等数值算法得到其数值解。
各种数值方法均是基于时间历程上的差分方法,也即通过各种形式的函数曲线来近似代替时间步长上振动系统的实际响应形式。
运动学研究历史上,静止被认为是运动的瞬时存在状态。
与此类似,线性结构可认为是非线性系统的瞬时表现形式,线性系统的连续变化反映了非线性动力系统的全部复杂行为。
非线性系统的瞬态响应依赖于该瞬时的线性结构,而该时刻线性结构的确定又依赖于上一连续瞬时非线性系统的响应。
因此,非线性系统的响应具有连续递推性。
由此观点可发展为非线性动力系统的连续线性模型理论。
本文即从此出发,推导了一般自治或非自治非线性动力系统的瞬态线性方程,精确求解该线性化方程得到非线性系统的一种新的数值算法。
该方法本质上以瞬态线性结构的精确响应来近似代替离散时间段内非线性系统的响应,区别于传统差分方法中以直线或各种曲线近似代替的思想。
计算实例表明该方法较传统方法相比,大大提高了计算精度。
文末计算了强迫Duffmg方程与强迫vallderP01方程的混沌及周期特性。
自动控制原理第八章非线性控制系统

如果一个非线性系统在初始扰动下偏离平衡状态,但在时间推移过程中能够恢复到平衡状态,则称该系统是稳定 的。
线性系统稳定的必要条件
系统矩阵A的所有特征值均具有负实 部。
系统矩阵A的所有特征值均具有非正实 部,且至少有一个特征值为0。
劳斯-赫尔维茨稳定判据
劳斯判据
通过计算系统矩阵A的三次或更高次特征多项式的根的实部来判断系统的稳定性。如果所有根的实部 均为负,则系统稳定;否则,系统不稳定。
输出反馈方法
通过输出反馈来改善非线性系统的性能,实 现系统的稳定性和跟踪性能。
自适应控制方法
通过在线调整控制器参数来适应非线性的变 化,提高系统的跟踪性能和稳定性。
非线性系统的设计方法
根轨迹法
通过绘制根轨迹图来分析系统的稳定性,并 设计适当的控制器。
相平面法
通过绘制相平面图来分析非线性系统的动态 行为,进行系统的分析和设计。
感谢您的观看
THANKS
自动控制原理第八章非线性 控制系统
目录
• 非线性系统的基本概念 • 非线性系统的分析方法 • 非线性系统的稳定性分析 • 非线性系统的校正与设计 • 非线性系统的应用实例
01
非线性系统的基本概念
非线性系统的定义
非线性系统的定义
非线性系统是指系统的输出与输入之 间不满足线性关系的系统。在自动控 制原理中,非线性系统是指系统的动 态特性不能用线性微分方程来描述的 系统。
02
它通过将非线性系统表示为一 个黑箱模型,通过测量系统的 输入输出信号来研究其动态特 性。
03
输入输出法适用于分析具有复 杂结构的非线性系统,通过实 验测量和数据分析,可以了解 系统的动态响应和稳定性。
03
微分方程的线性化

df ( x) 1 d 2 f ( x) 2 y f ( x) f ( x0 ) ( ) x0 ( x x0 ) ( ) ( x x ) x0 0 2 dx 2! dx
当增量(x- x0)很小时,略去其高次幂项,则
df ( x) y y0 f ( x) f ( x0 ) ( ) x0 ( x x0 ) dx
线性化总结
1) 线性化是相对某一工作点,工作点不同,线
性化方程的系数也不同; 2) 偏差愈小,线性化精度愈高; 3) 线性化适用于连续变化的单值函数。 4) 式中变量是增量,不是绝对量,公式称为增量 方程式 5) 额定工作点若是坐标原点,增量可以写成绝对 量。 6) 当增量并不是很小时,在进行线性化时,为了 验证容许的误差值,需要分析泰勒式中的余项。
df ( x) y ( ) x0 x k x dx
df ( x) k dx x0
是比例系数,它是函数f(x)在工作点 A点的切线斜率。
将线性增量方程代入系统微分方程,便可得系统线性化 方程。
y kx
同理可得,多变量非线性函数
y f ( x1 , x 2 , x n )
微分方程的线性化
然而严格地说,实际物理元件和系统都是非线性 的。 叠加原理不适用于非线性系统,这给求解非线性 系统带来不便,因此需要对所研究的系统作线性 化处理。
非线性系统的线性化
非线性系统进行线性化的条件: 非线性函数是连续函数;系统在预定工作点附近作小偏 差运行,即变量的变化范围很小。
图示为连续变化的非线性 函数 y=f(x) 线性化方法是:把非线性 函数在 工作点x0附近展成 泰勒级数,略 去高次项, 便得一个以增量为变量的 线性函数:
微分方程的线性化

微分方程的线性化
然而严格地说,实际物理元件和系统都是非线性 的。
叠加原理不适用于非线性系统,这给求解非线性 系统带来不便,因此需要对所研究的系统作线性 化处理。
xn
x10, x20, xn0
y k1x1 k2x2 knxn
线性化总结
1) 线性化是相对某一工作点,工作点不同,线 性化方程的系数也不同;
2) 偏差愈小,线性化精度愈高;
3) 线性化适用于连续变化的单值函数。
4) 式中变量是增量,不是绝对量,公式称为增量 方程式
5) 额定工作点若是坐标原点,增量可以写成绝对 量。
1 2!
(
d
2f( dቤተ መጻሕፍቲ ባይዱ2
x)
)
x0
(
x
x0
)
2
当增量(x- x0)很小时,略去其高次幂项,则
df (x) y y0 f (x) f (x0 ) ( dx )x0 (x x0 )
y
(
df (x) dx
)
x0
x
k
x
df (x) k
dx x0
是比例系数,它是函数f(x)在工作点 A点的切线斜率。
6) 当增量并不是很小时,在进行线性化时,为了 验证容许的误差值,需要分析泰勒式中的余项。
非线性系统的线性化
非线性系统进行线性化的条件: 非线性函数是连续函数;系统在预定工作点附近作小偏 差运行,即变量的变化范围很小。
图示为连续变化的非线性 函数
y=f(x)
线性化方法是:把非线性 函数在 工作点x0附近展成 泰勒级数,略 去高次项, 便得一个以增量为变量的 线性函数:
非线性系统分析方法

非线性系统分析方法8-1 概述一、教学目的和要求了解研究非线性系统的意义、方法,常见非线性特性种类。
二、重点内容非线性概念,常见非线性特性。
三、教学内容:1 非线性系统概述非线性系统运动的规律,其形式多样,线性系统只是一种近似描述。
(1)非线性系统特征—不满足迭加原理1)稳定性:平衡点可能不只一个,系统的稳定性与系统结构参数、初始条件及输入有关。
2)自由运动形式,与初条件,输入大小有关。
3)自振,自振是非线性系统特有的运动形式,它是在一定条件下,受初始扰动表现出的频率,振幅稳定的周期运动。
(2)非线性系统研究方法1)小扰动线性化处理(第二章介绍)2)相平面法-----分析二阶非线性系统运动形式3)描述函数法-----分析非线性系统的稳定性研究及自振。
2、常见非线性因素对系统运动特性的影响:1)死区:(如:水表,电表,肌肉电特性等等)饱和对系统运动特性的影响:进入饱和后等效K ↓⎪⎩⎪⎨⎧↓↑↓↓,快速性差限制跟踪速度,跟踪误统最多是等幅振荡)(原来不稳,非线性系振荡性统一定稳定)原来系统稳定,此时系(%σ死区对系统运动特性的影响:⎪⎩⎪⎨⎧↓↓↑↓动不大时)]此时可能稳定(初始扰[原来不稳定的系统,,振荡性声,提高抗干扰能力差),能滤去小幅值噪跟踪阶跃信号有稳态误等效%(e K ssσ 可见:非线性系统稳定性与自由响应和初始扰动的大小有关。
2) 饱和(如运算放大器,学习效率等等)3) 间隙:(如齿轮,磁性体的磁带特性等)间隙对系统影响:1) 间隙宽度有死区的特点----使ss e ↓2) 相当于一个延迟τ时间的延迟环节,%σ→↑ 振荡性减小间隙的因素的方法:(1)提高齿轮精度 ; (2)采用双片齿轮; (3)用校正装置补偿。
5) 摩擦(如手指擦纸) 摩擦引起慢爬现象的机理改善慢变化过程平稳性的方法1)2)3)⎧⎪⎨⎪⎩、良好润滑、采用干扰补偿、增加阻尼,减少脉冲,提高平衡性摩擦对系统运动的影响:影响系统慢速运动的平稳性6)继电特性:对系统运动的影响:1)K (2K %3)ss e σ⎧⎧⎪⎨⎩⎪⎪⎧↑⎪⎪⎪⎧↓⎨⎨⎪⎨⎪⎪↓⎪⎩⎩⎪⎪⎪⎪⎩一、二阶系统可以稳定、理想继电特性 等效: 一般地,很多情况下非线性系统会自振带死区))、带死区继电特性 等效: 快态影响(死区+饷)的综合效果振荡性、一般继电特性:除3、2中听情况外,多出一个延迟效果(对稳定性不利)8-2 相平面法一、教学目的和要求:掌握相平面概念及分析方法。
测试中非线性问题线性化处理的方法

测试中非线性问题线性化处理的方法摘要:检测系统的组建要考虑的一个问题就是线性化及处理。
基于此,浅析检测系统非线性产生的原因,介绍对检测系统和装置输出和输入量之间非线性关系进行处理的几种方法,以期在实际应用中优化检测系统的性能、减小测量误差。
关键词:检测系统;非线性;传感器在工程测试中,力求测试结果能定性定量地表示出被测量,为了方便地标定和数据处理,便于检测系统的制造、调校和使用,通常希望检测系统有线性输出。
但是实际的检测系统输入输出关系往往呈现出非线性特性,为了提高测量精度,增大测量范围,减小读数误差,则有必要对检测系统进行线性化处理。
1 传感器的非线性误差及其处理传感器是检测系统的最前沿装置,它的特性往往影响整个检测系统的性能优劣,理想的传感器输入输出关系是呈线性关系,但绝大部分传感器的输出量与被测量之间的关系是非线性的。
造成非线性的原因主要有:(1)传感器的转换原理为非线性,例如:热电偶测温,其热电势与温度之间的关系为非线性;热电阻输出的电阻变化量与温度之间的关系为非线性;在流量检测中,孔板输出的差压与流量之间也呈非线性。
(2)传感器结构参数等因素引起的非线性,例如:应变式传感器测压力时弹性元件的挠性模变引起的非线性;电感式传感器,磁性材料的磁化曲线呈非线性等。
(3)传感器的间隙、松动、摩擦、蠕变以及外界条件的影响造成非线性。
为了得到较好的输入—输出线性关系,在传感器的选用上应尽可能选取适合的转换原理呈线性关系的传感器。
适当减小测量范围以提高测量系统的线性度,很多传感器在全量程的测量中,输入输出特性曲线呈非线性,特别是在量程的较小和较大区域,非线性特性明显。
在情况允许的条件下,可取非线性曲线上线性比较好的一段,这种选取与检测系统测量精度的要求有关,当精度要求不太高的情况下,可以在相当宽的范围内都可近似为线性关系,精度要求越高,线性范围越窄。
当测量范围与精度要求不可取舍的情况下,则可利用多传感器进行非线性补偿,例如在进行湿度测量时,为了扩大湿度测量范围,将多个LiCl含量不同的湿敏电阻组合使用,将测量范围分别为(10%~20%)RH、(20%~40%)RH、(40%~70%)RH、(70%~90%)RH、(80%~99%)RH这五个器件配合使用,就可自动转换成整个湿度范围的湿度测量;如磁敏二极管,其输入输出特性曲线在磁场正向与反向时不对称,正向灵敏度大,反向时小,若采用特性相近的两只磁敏二极管按相反磁极性组合,或采用磁敏对管,则磁场正、反向时特性曲线对称,且在弱磁场下有较好的线性。
线性化理论

对于非线性特征明显的对象,需要先将非线性系统进行线性化,才能应用常见的线性分析方法。
IAS 系统中,空气弹簧的作用力与所施加激励之间存在明显的非线性关系,而减振器作用力与施加激励也存在非线性关系,所以IAS 系统是典型的非线性系统。
精确线性化方法通过恰当的非线性状态反馈和非线性坐标变换(或动态补偿),将一个非线性系统变换成(部分或全部地)线性系统。
精确线性化方法基于微分几何理论,通过对系统输入输出的解耦,实现非线性系统的线性化。
在非线性系统线性化后,可引入相关的控制理论实现对减振器阻尼的切换。
在介绍精确线性化方法前,先介绍两个概念:李导数、相对阶。
设如下n 阶非线性系统()()()x f x g x u y h x =+⎧⎨=⎩ 其中,状态量0x X ∈,,f g 为n 维光滑向量场h 为光滑函数。
n x ∈R ,系统的输入1u ∈R ,系统的输出1y ∈R 。
(1) 李导数(Lie Derivative )对系统(3.25)的输出方程求导数(()())()()f g dhdhy x f x g x u L h x L h x u dx dx ==+=+ (0.1)在式(3.17)中,定义()()f dh L h x f x dx ∆=,()()g dh L h x g x dx ∆=为李导数,f L 代表()h x 沿着系统的轨迹的导数。
(2) 相对阶(relative degree ) 定义3.2(相对阶): 0x X ∈,如果存在0x 的邻域V 及正整数r 使(3.16)满足以下两个条件:① ()0k g f L L h x =,x V ∀∈,01k r ≤<-;② 1()0r g f L L h x -≠, x V ∀∈;则称系统(3.16)的相对阶为r 。
以单输入单输出系统(SISO )为例,说明精确线性化原理:利用系统的输出方程得到所需要的坐标变化和状态反馈,实现系统的精确线性化【徐兴大论文,89-91】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性系统的线性方法
非线性系统表现出的动力学特性比线性系统要复杂,因此通常不能直接使用线性方法来分析或控制非线性系统。
然而,还有一些基于线性化的方法可以在一定程度上处理非线性系统,这些方法被称为线性方法。
其中最常用的线性方法包括:
1. 线性化方法:通过在某个工作点附近对非线性系统进行泰勒展开,得到一个线性模型,然后使用线性系统的理论和方法来分析和控制该线性模型。
这种方法适用于非线性系统在某个工作点附近的小扰动,且要求非线性系统在其他工作点上的行为与线性模型类似。
2. 线性误差反馈(LEF)方法:通过估计非线性系统与线性系统的误差,并利用误差来设计一个线性系统的反馈控制器。
该方法的关键是如何估计非线性系统与线性模型之间的误差,通常使用状态观测器或者误差动态模型来实现。
3. 线性拟合方法:通过在非线性系统的某个工作点上采集大量数据,并利用数据拟合技术(如最小二乘法)来得到一个线性模型。
然后使用线性系统的方法来分析和控制该线性模型。
这种方法适用于非线性系统在某个工作点附近的输入输出数据已知的情况。
需要注意的是,这些线性方法只是对非线性系统的一种简化处理,只能在一定程
度上解决非线性系统的分析和控制问题。
对于复杂的非线性系统,需要使用更加复杂和全面的非线性方法来分析和控制。