数学八年级上册《 轴对称》讲义
人教版数学八年级上册说课稿13.1《轴对称》

人教版数学八年级上册说课稿13.1《轴对称》一. 教材分析《轴对称》是人教版数学八年级上册第13章第1节的内容。
本节主要让学生了解轴对称的概念,理解轴对称的性质,学会判断一个图形是否为轴对称图形,以及会画出一个图形的轴对称图形。
本节内容是学生进一步学习几何知识的基础,也是培养学生空间想象能力的重要环节。
二. 学情分析学生在学习本节内容前,已经学习了平面图形的性质,有一定的几何基础。
但是,对于轴对称的概念和性质,学生可能较为抽象,难以理解。
因此,在教学过程中,需要结合实例,让学生直观地感受轴对称的概念和性质,提高学生的空间想象能力。
三. 说教学目标1.知识与技能:理解轴对称的概念,掌握轴对称的性质,学会判断一个图形是否为轴对称图形,会画出一个图形的轴对称图形。
2.过程与方法:通过观察实例,培养学生的空间想象能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学的美。
四. 说教学重难点1.重点:轴对称的概念,轴对称的性质。
2.难点:判断一个图形是否为轴对称图形,画出一个图形的轴对称图形。
五. 说教学方法与手段1.教学方法:采用实例教学法、问题驱动法、合作学习法。
2.教学手段:利用多媒体课件,展示实例,引导学生观察、思考。
六. 说教学过程1.导入:通过展示一个实例,引导学生观察、思考,引出轴对称的概念。
2.新课导入:讲解轴对称的性质,让学生通过实例感受轴对称的性质。
3.学生活动:学生分组讨论,判断给出的图形是否为轴对称图形,并画出其轴对称图形。
4.总结提升:教师引导学生总结轴对称的概念和性质,让学生明白轴对称在实际生活中的应用。
5.课堂练习:布置一些有关轴对称的练习题,让学生巩固所学知识。
七. 说板书设计板书设计如下:1.概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴。
2.性质:轴对称图形的对称轴是图形的中心线,图形的每一部分关于对称轴都有对称性。
新人教版八年级数学上册《轴对称》课件

∵∠B=∠C(已知) ∴AB=AC(等角对等边) B
例 如图, △ABC中, ∠A=36°, ∠C=72°,BD平分∠ABC, 那么图中 共有几个等腰三角形?你能依次说明吗?
A C
A D
B
C
已知在△ABC中, AB=AC, BE、CD分别平分 ∠ABC、 ∠ACB,且相交于点O,试说明△BOC是等 腰三角形。
点P ,则点P即为所求.
3、能不能在三角形ABC内找 一点到A、B、C的距离相等
A
····
O C
B 4、角是轴对称图形,角平分线所在直线是它的对称轴. 性质:角平分线上的点到这个角的两边的距离相等.
如图:∵BD平分∠ABC, ED⊥AB于E,CD⊥BC于C,∴ED=CD
B
EA
D C
我来设计
如图,直线a,b,c表示三条相交叉的公路,A.B.C表示公 路的交叉点.若在△ABC内部修建一处加油站,使加油站 到三条公路a,b,c的距离相等,则加油站应建在何处.
2、底角是顶角一半的等腰三角形是____等_腰__直_角三角 形。
3、如果一个三角形三个外角的比是3:3:2,则这
是一个
()
A.等腰三角形
D B.等边三角形
C.直角三角形 D.等腰直角三角形
思考拓展
如图,⊿ABC中,BC=BA,∠A=600,BD是AC边的中线, 延长BC到E,使CE=CD,试说明:DE=DB
若DB是AC边上的高,上述结论还成立吗?
提示:
∵ BA=BC
∴∠BCA=∠A=600(等边对等角)
∵ CE=CD ∴∠E=∠CDE=300(三角形外角性质) ∵ BA=BC, BD是AC边的中线 ∴∠DBC=300(等腰三角形三线合一 )
轴对称(第一课时)(课件)人教版数学八年级上册

课堂小结
定义
1、轴对称图形 2、两个图形成轴对称
轴对称图形
区别和联
系
轴对称图形和两个图形成轴对称
应用
利用轴对称图形和两个图形成轴 对称的定义进行判断
课后作业
1.把一圆形纸片两次对折后,得到右图,然后 沿虚线剪开,得到两部分,其中一部分展开后 的平面图形是( B )
A
B
C
D
课后作业
2.如图,在3×3的正方形网格中,已有两个小正方形被 涂黑,再将图中其余小正方形任意涂黑一个,使整个图案 (包括网格)构成一个轴对称图形,则涂色的方法有( D )
追问: 你能再举出一些两个图形成轴对称的例子吗?
互动新授
A
B C
小试牛刀
1、分别观察以下每组图形,判断它们是否关于某条直线成轴对称?
E
E
E
EE
E
不是
不是
是
E
E
E E E
E
是
不是
是
互动新授 仔细观察,下列两个图形有什么区别?
它们之间有什么联 系和区别呢?
轴对称图形
两个图形成轴对称
总结归纳 轴对称图形和轴对称的区别与联系
A.2种 C.4种
B.3种 D.5种
1条
2条
4条
无数条
互动新授
观察下面每对图形(如图),你能类比前面的内容概括出 它们的共同特征吗?
互动新授 共同特征:每一对图形沿着虚线折叠,左边的图形都能与右
边的图形重合.
结论:把一个图形沿着某一条直线折叠,如果它能够与另一个图形 重合,那么就说这两个图形关于这条直线(成轴)对称,这 条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
人教版八年级数学上册13.1.1《轴对称》说课稿

人教版八年级数学上册13.1.1《轴对称》说课稿一. 教材分析《轴对称》是人教版八年级数学上册第13章第1节的内容。
这部分内容主要介绍了轴对称的概念、性质以及应用。
教材通过丰富的实例,引导学生探索轴对称图形的特征,从而培养学生的观察能力、操作能力和推理能力。
本节课的内容是学生进一步学习几何图形的基础,对学生的数学思维发展具有重要意义。
二. 学情分析八年级的学生已经具备了一定的空间想象能力和逻辑推理能力。
他们对生活中的对称现象有一定的了解,但可能没有系统地学习过轴对称的概念。
因此,在教学过程中,我需要关注学生的认知基础,通过引导他们观察、操作、交流,帮助他们建立轴对称的概念,并深入理解其性质。
三. 说教学目标1.知识与技能目标:使学生理解轴对称的概念,掌握轴对称图形的性质,能运用轴对称解决一些简单问题。
2.过程与方法目标:通过观察、操作、交流,培养学生的空间想象能力和逻辑推理能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.教学重点:轴对称的概念及其性质。
2.教学难点:轴对称性质的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法,引导学生主动探索、积极思考。
2.教学手段:利用多媒体课件、实物模型、几何画板等,辅助教学,提高学生的学习兴趣和效果。
六. 说教学过程1.导入新课:通过展示一些生活中的对称现象,如剪纸、建筑等,引导学生关注对称现象,激发学生的学习兴趣。
2.探索新知:学生进行观察、操作、交流,引导学生发现轴对称的性质。
3.归纳总结:教师引导学生总结轴对称的概念和性质。
4.巩固练习:设计一些具有针对性的练习题,让学生运用所学知识解决问题。
5.拓展延伸:引导学生思考轴对称在实际生活中的应用,激发学生的创新意识。
七. 说板书设计板书设计如下:•概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴。
人教版八年级数学上册《轴对称》PPT优秀课件

3.如图,已知△ABC中,AH⊥BC于H,∠C=35°, 且AB+BH=HC,求∠B的度数。
解:在CH上截取DH=BH,连接 AD,如图 ∵BH=DH,AH⊥BC,AH=AH ∴△ABH≌△ADH(SAS)∴AD=AB
D
∵AB+BH=HC,而BH=DH 又∵CD+DH=HC ∴AD=CD ∴∠C=∠DAC, 又∵∠C=35° ∴∠B=∠ADB=70°.
M
如果两个图形关于某条直线对称,那么 对称轴是任何一对对应点所连线段的垂 直平分线。
轴对称图形的对称轴,是任何一对对应 点所连直线的垂直平分线。
N
做一做 : 1.(1)图中三角形④与哪些三角形成轴对称?
(2)整个图形是轴对称图形吗?它们共有几 条对称轴?
12
43
(1)1和3 (2)是 2条
2.如图,△ABC是轴对称图形,且直线AD是 △ABC的对称轴,点E,F是线段AD上的任意两 点,若△ABC的面积为12,求图中阴影部分的 面积之和.
轴对称。
◆ 这条直线叫做对称轴。
◆ 折叠后重合的点叫对应点,也叫对称点。
对比:
定义 联系 区别 注意
轴对称图形
两个图形成轴对称
如果一个平面图形延一条直线折叠 ,直线两旁的部分可以相互重合,
这个图形就叫做轴对称图形
把一个图形沿着某一条直线折 叠,如果它能够与另一个图形 重合,那么称这两个图形关于
这条直线成轴对称
第13章 轴对称
轴对称
目录
01 观察发现 02 得出结论 03 产生思考 04 再得结论 05 练习巩固 06 头脑风暴
观察这些图像有什么共同特点?
结论:如果一个平面图形延 一条直线折叠,直线两旁的 部分可以相互重合,这个图
八年级数学上册《轴对称》讲义

轴对称知识点一、轴对称图形轴对称图形的定义:一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.知识点二、轴对称1.轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称图形与轴对称的区别:轴对称是指两个图形,而轴对称图形是一个图形.知识点三、轴对称与轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.知识点四、线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.类型一、轴对称变换1.如图,在平面直角坐标系中,ABC ∆三个顶点坐标分别为(1,6)A -,(5,3)B -,(3,1)C -.(1)ABC ∆关于y 轴对称的图形△111A B C (其中1A ,1B ,1C 分别是A ,B ,C 的对称点),请写出点1A ,1B ,1C 的坐标;(2)若直线l 过点(1,0),且直线//l y 轴,请在图中画出ABC ∆关于直线l 对称的图形△222A B C (其中2A ,2B ,2C 分别是A ,B ,C 的对称点,不写画法),并写出点2A ,2B ,2C 的坐标.类型二、线段垂直平分线知识点① 线段垂直平分线的性质2. 如图,已知ABC ∆,AB 、AC 的垂直平分线的交点D 恰好落在BC 边上.(1)判断ABC ∆的形状;(2)若点A 在线段DC 的垂直平分线上,求AC BC的值.知识点② 线段垂直平分线的判定3. 如图所示,在ABC ∆中,AB AC =,BE CD =,且BD 与CE 相交于点O ,求证:点O 在线段BC 的垂直平分线上.类型三、利用轴对称的性质求图形的面积4. 在ABC ∆中,90BAC ∠=︒,点A 关于BC 边的对称点为A ',点B 关于AC 边的对称点为B ',点C 关于AB 边的对称点为C ',若1ABC S ∆=,求A B C S '''.类型四、“将军饮马”问题5. 如图,点P、Q为MON内两点,分别在OM与ON上找点A、B,使四边形PABQ的周长最小.类型五、角平分线与线段垂直平分线的综合6. 如图,在△ABC中,AD是∠BAC平分线,线段AD的垂直平分线分别交AB于点F,交BC的延长线于E(1)在图①中,连接DF,证明DF//AC(2)在图①中,连接AE,证明∠EAC=∠B(3)如图②,若线段CD上存在一点M,使∠MPD=∠ACD,AM与EF交于点P,连接DP 并延长与AC交于点N,求证:AN=DM.①②【复习巩固】一.选择题(共7小题)1.如图,ABC ∆中,D 点在BC 上,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .根据图中标示的角度,求EAF ∠的度数为何?( )A .113︒B .124︒C .129︒D .134︒2.如图所示,在四边纸片ABCD 中,//AD BC ,//AB CD ,将纸片沿EF 折叠,点A ,D 分别落在A ',D '处,且A D ''经过点B ,FD '交BC 于点G ,连接EG ,若EG 平分FEB ∠,//EG A D '',80D FC '∠=︒,则A ∠的度数是( )A .65︒B .70︒C .75︒D .80︒3.如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是( )A .AM BM =B .AP BN =C .M AP M BP ∠=∠D .ANM BNM ∠=∠4.如图,在ABC ∆中,AB 边的中垂线DE ,分别与AB 边和AC 边交于点D 和点E ,BC 边的中垂线FG ,分别与BC 边和AC 边交于点F 和点G ,又BEG ∆周长为16,且1GE =,则AC 的长为( )A .13B .14C .15D .165.如图,50∠的平分线BE交AD于点E,连接∠=︒,AD垂直平分线段BC于点D,ABCABC∠的度数是()EC,则AECA.115︒B.75︒C.105︒D.50︒6.如图,四边形ABCD中,AB AD=,点B关于AC的对称点B'恰好落在CD上,若110∠=︒,BAD则ACB∠的度数为()A.40︒B.35︒C.60︒D.70︒7.如图,P是AOB∠两边上的点,点P关于OA的对称点Q恰∠外的一点,M,N分别是AOB好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若 2.5PN=,PM=,3 MR=,则线段QN的长为()7A.1 B.1.5 C.2 D.2.5二.解答题(共3小题)8如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得PA PB+的值最小,画出图形并证明.9.如图,OBC ∆中,BC 的垂直平分线DP 交BOC ∠的平分线于D ,垂足为P .(1)若60BOC ∠=︒,求BDC ∠的度数;(2)若BOC α∠=,则BDC ∠= (直接写出结果).10.如图,ABC ∆中,BD 平分ABC ∠,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .(1)若60A ∠=︒,24ABD ∠=︒,求ACF ∠的度数;(2)若5BC =,:5:3BF FD =,10BCF S ∆=,求点D 到AB 的距离.。
人教版八年级数学上册《轴对称》课件(共24张PPT)

You made my day!
我们,还在路上……
3、连接A′B′,B′C′,
如图,以树干为对称轴,画出树的另一半.
1.举出生活中一些轴对称图形的实例.
2.经过圆锥、圆柱、圆台中心轴的截面一定是轴对称图形吗?
今天我们学习了什么?
一、你能判断一个图形是不是轴对称 图形吗?
二、你能判断两个图形是否轴对称吗?
如果两个图形的对应点的连线段被同一条直线垂 直平分,那么这两个图形关于这条直线对称
数学语言:
轴对称图形的性质: 轴对称图形的判定:
∵⊿ABC与⊿A′B′C′ ∵PP′⊥l,
是轴对称图形
PD=P′D
∴PP′⊥l, PD=P′D
∴⊿ABC与⊿A′B′C′ 是轴对称图形
如图,已知直线l及直线外一点P,求作点P′是它 与点P关于直线l对称。
5.1轴对称图形与轴对称变换
预习:
一、你能判断一个图形是不是轴对称 图形吗?
二、你能判断两个图形是否轴对称吗?
三、你能画出或者制作出轴对称 图形吗?
三、你能说出轴对称图形和图形轴 对称的联系与区别吗?
情景创设
新知学习
如果一个图形沿着 一条直线折叠,直线两旁 的部分能够互相重合,那 么这个图形叫作轴对称图
形。
这条直线叫作它的对称轴。
知识应用
1.找出下列图形是否是轴对称图形?若是 请说出其对称轴的条数。
2
2
4 无数条
矩形 正方形
菱形 圆
13 6
任意平行四边形 正六边形
任意三角形
等腰三角形
等边三角形
剪纸欣赏
剪纸欣赏
剪纸欣赏
剪纸欣赏
剪纸欣赏
剪纸欣赏
初中数学八年级上册轴对称知识讲解

轴对称
图形
长方形 正方形 平行四边 形 梯形 圆形
形状
是否轴对称图形 对称轴的数 量(条)
是
2
是
4
不是
-----
是
1
是
无数
轴对称
对称轴问题 (1)有些轴对称图形的对称轴只有一条, 但有的轴对称图形的对称轴却不止一条,有的 轴对称图形的对称轴甚至有无数条。 (2)对称轴通常画成虚线,是直线,不能画 成线段。
练一练
下面各题的判断是否正确。
(1)轴对称图形必有对称轴 。
()
(2)轴对称图形至少有一条对称轴 。 ( )
(3)关于某直线成轴对称的两个图形必能互相重合。 ()
(4)两个完全互相重合的图形必是轴对称 。( )
思考 想一想:0-9十个数字中,哪些是
轴对称图形?(抢答)
01234
56789
思考 想一想:下面,哪些是轴对称图形?
轴对称的定义
1.把_______沿着某一条直线折叠,如果 它能够与_____图形____,那么就说这 两个图形______________或者说这两 个图形成轴对称。
2.同样,我们把这条直线叫做______. 3.折叠后重合的点是对应点,叫做______.
轴对称
பைடு நூலகம்
对称点
D
A A′ D′
B C
B′ C′
对称,点A′,B′,C′分别是点A,B,C 的对称点,线 段AA′,BB′,CC′与直线MN 有什么关系?
M
A
A′
追问1 你能说明其中
P
的道理吗?
B
B′
C
C′
N
轴对称
思考 想一想:找出三角形的对称轴?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学八年级上册《轴对称》学案
重难点易错点解析
题面:下列选项正确的是( )
A.轴对称图形和两个图形成轴对称的含义是一样的
B.若两个图形全等,则它们一定关于某条直线对称
C.两个成轴对称的图形对应点到对称轴的距离相等
D.等腰三角形只有一条对称轴
轴对称 vs. 成轴对称
两个成轴对称的图形对应点到对称轴的距离相等
几类典型问题:坐标系中的轴对称、将军饮马、折叠问题、设计图案
金题精讲
题一
题面:如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1、D1处.若∠C1BA=50°,则∠ABE的度数为 .
D1
D
A E
C1
B C
题二
题面:某学校要在校园内一块正方形的园地上种植四种不同的植物,对该正方形的设计要求如下:(1)四种植物各自所占的图形必须全等;(2)最终图形必须为轴对称图形.某同学按照要求设计出了如下两种方案,请你再设计两种不同的种植方案.
思维拓展
题面:小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是从左至右第_____个.
答案
重难点易错点解析答案:C
金题精讲
题一
答案:20°
题二
答案:略
思维拓展
答案:4。