热电材料概述

合集下载

热电材料的分类

热电材料的分类

热电材料的分类热电材料是一类特殊的材料,具有独特的热电效应,即温差效应和塞贝克效应。

根据材料的热电性能和特点,可以将热电材料分为以下几类:1. 金属热电材料:金属热电材料是最早被发现和应用的热电材料之一。

金属通常具有良好的导电性和热导性,在一定温差下能产生较大的热电效应。

常见的金属热电材料有铜、铁、铅等。

金属热电材料的热电性能主要通过调控材料的电子结构和掺杂等方式进行改善。

2. 半导体热电材料:相比金属热电材料,半导体热电材料具有更高的热电效应和更广泛的应用前景。

半导体材料的热电效应主要由电子和晶格之间的相互作用所决定。

常见的半导体热电材料有硒化铋、硒化铋锗、硫化锡等。

通过控制半导体材料的载流子浓度、能带结构和晶格热导率等方面的性质,可以进一步提高材料的热电性能。

3. 有机热电材料:有机热电材料是近年来快速发展的一类新型热电材料。

与传统的金属和半导体材料相比,有机热电材料具有可塑性、可加工性和成本低廉等优势。

常见的有机热电材料有聚苯胺、聚噻吩等。

尽管有机热电材料的热电性能相对较低,但通过控制材料的分子结构和相互作用等方式,仍然可以提高其热电性能。

4. 纳米热电材料:纳米热电材料是近年来兴起的一种新型热电材料。

由于纳米材料具有较高的比表面积和尺寸效应,能够显著增强材料的热电性能。

常见的纳米热电材料有氧化物纳米颗粒、纳米线、纳米薄膜等。

通过控制纳米材料的形貌、尺寸和结构等方面的特征,可以进一步提高材料的热电性能。

5. 复合热电材料:复合热电材料是指由两种或多种不同类型的热电材料组成的复合体系。

通过合理设计和组合不同的热电材料,可以充分利用各材料的热电性能,实现热电性能的协同增强。

常见的复合热电材料有热电聚合物复合材料、金属-半导体复合材料等。

复合热电材料的热电性能可以通过控制材料的比例、界面特性和相互作用等方面进行调控。

热电材料的分类主要根据材料的性质和热电性能进行区分。

金属热电材料具有良好的导电性和热导性;半导体热电材料具有较高的热电效应;有机热电材料具有可塑性和可加工性等优势;纳米热电材料具有尺寸效应和较高的比表面积;复合热电材料可以实现热电性能的协同增强。

热电材料的性质及应用

热电材料的性质及应用

热电材料的性质及应用热电材料是一种能够将热能转化为电能,或者将电能转化为热能的材料。

这种材料具有非常重要的应用价值,可以在能源领域、电子技术领域、传感器领域等多个领域发挥作用。

本文将从热电材料的性质和应用两个方面进行介绍。

1. 热电材料的性质热电材料的热电效应可以分成两种类型:Seebeck效应和Peltier效应。

Seebeck效应是指在温度差的作用下,导体中的电子向低温区域不断扩散,从而形成了一种“热电势差”。

此时如果连接一个电阻,就可以利用热电效应来实现热电能的转化。

比较常见的热电材料有铜、铁、金、铂等。

在具体应用的过程中,需要根据具体的需求来选择材料。

Peltier效应则是指在电流的作用下,热电材料中的电子会不断地吸收和释放热能,从而形成热冷颠倒现象。

在实际应用中,可以将Peltier效应用于温度控制领域,在低温环境制冷,高温环境制热。

除了上述两种效应之外,热电材料还需要具备一些特殊的属性,比如较高的热电系数、较低的电性能量、充分的电子迁移性、良好的热传导性等等。

这些特殊的属性都是热电材料能够实现热电转换的重要基础。

2. 热电材料的应用由于热电材料的高效率转换,以及对环境友好的特点,热电材料可以应用于各种领域,包括能源、电子技术、传感器、航空航天领域等等。

在能源领域,热电技术可以将废热转化为电能,并为各种便携式设备提供能源支持,比如远程探测器,智能手表,以及GPS 导航仪等。

在电子技术领域,热电设备可以应用于半导体材料的温度控制,在芯片制造等领域起到了非常重要的作用。

同时,还可以利用热电设备来实现能量的回收,提高设备工作效率。

在传感器领域,热电技术可以应用于气体传感器、温度计、湿度计等等,还可以用于热成像等技术。

在航空航天领域,则可以利用热电材料来制造能够适应极端环境下电源的装置,比如航空器的火星探测车。

由于热电设备具有基本无噪音、无污染等特点,适用于太空环境和其他特定环境下的应用。

总之,热电材料是一种非常重要的材料,具有广泛的应用前景。

有机热电材料

有机热电材料

有机热电材料有机热电材料是一种具有独特热电性能的材料,能够将热能转化为电能,或者将电能转化为热能。

这种材料在能源转换和热管理领域有着广泛的应用前景。

有机热电材料通常由有机聚合物、有机小分子化合物或有机-无机杂化材料构成,具有柔韧性、可塑性和低成本等优点,因此备受关注。

有机热电材料的热电性能主要由其热导率、电导率和Seebeck系数等参数决定。

热导率决定了材料对热能的导热能力,电导率则决定了材料对电能的导电能力,而Seebeck系数则是衡量材料热电性能的重要参数。

为了提高有机热电材料的性能,研究人员通常会通过控制材料的分子结构、晶体结构和界面结构等方面来进行材料设计和合成。

近年来,研究人员在有机热电材料领域取得了一系列重要进展。

他们通过合成新型有机聚合物,设计有机小分子化合物的结构,以及构筑有机-无机杂化材料等方法,成功地提高了材料的热电性能。

例如,一些有机聚合物材料在室温下就具有较高的Seebeck系数,同时具有较低的热导率和较高的电导率,表现出良好的热电性能。

此外,一些有机-无机杂化材料也展现出了优异的热电性能,为有机热电材料的应用提供了新的可能性。

除了在基础研究方面取得的成果,有机热电材料在实际应用中也显示出了巨大的潜力。

例如,有机热电材料可以用于废热能的回收利用,将废热能转化为电能,从而提高能源利用效率。

此外,有机热电材料还可以应用于柔性电子设备、可穿戴设备、智能传感器等领域,实现能源的自给自足和热管理的智能化。

在未来,有机热电材料有望成为绿色能源和可穿戴电子设备领域的重要材料之一。

随着材料设计和合成技术的不断发展,相信有机热电材料的热电性能将会得到进一步提升,为能源转换和热管理领域带来更多的创新应用。

总之,有机热电材料作为一种具有独特热电性能的材料,在能源转换和热管理领域有着广泛的应用前景。

研究人员不断探索新的材料设计和合成方法,以提高材料的热电性能,同时也在实际应用中不断寻求新的突破。

热电材料分类

热电材料分类

热电材料分类热电材料是一种能够实现热能和电能相互转换的材料,广泛应用于能源转换、温度控制、热电制冷等领域。

根据不同的分类方式,热电材料可以分为以下几类:一、按材料体系分类1.金属热电材料:这类材料以金属为主,具有较高的热电势和较低的热导率。

常见的金属热电材料包括铜、镍、铬、铁、钴等。

2.半导体热电材料:这类材料以半导体为主,其热电势和热导率都较高。

常见的半导体热电材料包括硅、锗、砷化镓、碳化硅等。

3.陶瓷热电材料:这类材料以陶瓷为主,其热电势较低但热导率较高。

常见的陶瓷热电材料包括钛酸钡、锆钛酸铅等。

4.复合热电材料:这类材料由金属、半导体和陶瓷等多种材料组成,具有优异的热电性能。

常见的复合热电材料包括氧化锌掺杂铅铋合金、碳化硅基复合材料等。

二、按应用领域分类1.能源转换领域:这类材料主要用于将热能转换为电能,常用于热电发电和太阳能发电等领域。

常见的能源转换用热电材料包括铋掺杂的铅基合金、硅锗合金等。

2.温度控制领域:这类材料主要用于精确控制物体的温度,常用于电子器件的温度控制和微型制冷等领域。

常见的温度控制用热电材料包括钛酸钡、锆钛酸铅等。

3.热电制冷领域:这类材料主要用于制冷和温度控制,常用于微型制冷器、温差发电和红外探测器等领域。

常见的热电制冷用热电材料包括铅铋合金、铜基合金等。

4.其他领域:除了以上三个领域,热电材料还可以应用于其他领域,如热电偶、温度传感器等。

三、按制备方法分类1.机械合金法:通过机械合金化的方法制备出具有优异热电性能的合金材料。

该方法具有制备工艺简单、成本低等优点,但易引入杂质元素影响材料的性能。

2.真空熔炼法:通过在真空环境中将原料加热至熔点以上并缓慢冷却的方法制备出纯净的热电材料。

该方法可有效去除杂质元素的影响,提高材料的性能,但制备工艺复杂、成本较高。

3.化学气相沉积法:通过化学反应的方式在基底上生长出具有优异性能的热电材料。

该方法可实现大面积制备,同时可精确控制材料的成分和结构,但工艺复杂且成本较高。

热电材料入门知识点总结

热电材料入门知识点总结

热电材料入门知识点总结热电材料是一种能够将热能转化为电能或者将电能转化为热能的材料。

它们在能源转换和节能领域具有广泛的应用前景。

在热电材料领域,准确理解基本概念和原理对于进行相关研究和工程应用至关重要。

以下是热电材料入门知识点的总结。

1. 热电效应热电效应是指在某些材料中,当该材料的一侧温度高于另一侧时,会产生电压差,从而产生电流。

热电效应主要包括Seebeck效应、Peltier效应和Thomson效应。

Seebeck效应是指当两个不同温度的导体相接触时,会产生电压差。

这个电压差与两个导体的温度差成正比,称为Seebeck系数。

Seebeck系数越大,材料的热电性能就越好。

Peltier效应是指当电流从两个不同材料的交界处通过时,会在交界处释放或吸收热量。

这个效应可以用来制造热电制冷器或者热电发电机。

Thomson效应是指当电流通过具有温度梯度的导体时,导体会吸收或者释放热量。

Thomson系数是描述这种效应的参数。

2. 热电材料的分类热电材料可以根据其热电性能和应用领域进行分类。

根据热电性能,热电材料可以分为传统热电材料和新型热电材料。

传统热电材料包括铋锑系化合物、硫化物、氧化物和硒化物等。

它们具有良好的热电性能和稳定性,但是效率较低,制备工艺复杂。

新型热电材料包括纳米结构材料、低维材料、拓扑绝缘体和多铁性材料等。

这些材料具有新颖的物理特性,能够显著提高热电转换效率。

根据应用领域,热电材料可以分为室温热电材料和高温热电材料。

室温热电材料主要应用于低温热电发电和制冷领域,而高温热电材料则用于高温废热利用和核能热电转换。

3. 热电材料的性能参数热电材料的性能主要由热电系数、电阻率和热导率等参数决定。

热电系数是描述材料热电性能的重要参数,它与材料的载流子迁移率、载流子浓度和温度相关。

通常来说,热电系数越大,材料的热电性能就越好。

电阻率是描述材料导电性能的参数,它反映了材料对电流的阻碍程度。

电阻率越低,材料的导电性能就越好。

半导体热电材料前景

半导体热电材料前景

半导体热电材料前景
一、热电材料概述
热电材料是一类具有独特电热效应的材料,能够将热能转化为电能或对外提供
电能的材料。

热电材料可分为金属型热电材料和半导体型热电材料,其中半导体热电材料由于其效率高、体积小、成本较低等优点,在能源领域具有重要的应用前景。

二、半导体热电材料的优势
1.高效率:半导体热电材料能够将热能转化为电能的效率较高,可有效
提高能源利用效率。

2.小体积:半导体材料相对较小,可实现微型化、集成化设计,适用于
一些对体积要求较高的场景。

3.成本较低:相比于一些稀有金属材料,半导体热电材料的成本相对较
低,具有更广泛的应用前景。

三、半导体热电材料的发展现状
目前,半导体热电材料在汽车、航空航天、军事等领域得到了广泛应用,如汽
车尾气废热回收、航空航天能源管理系统等。

同时,随着科技的发展,半导体热电材料在新能源、新材料等领域也逐渐得到应用,预示着未来其发展前景十分广阔。

四、未来发展趋势
1.研发新型材料:未来需要不断研发新型半导体热电材料,以提高转换
效率、降低成本。

2.应用领域拓展:预计未来半导体热电材料将进一步拓展到家电、医疗、
智能穿戴等领域,为各行业提供可持续、高效的能源解决方案。

3.技术改进:随着技术的不断进步,半导体热电材料的性能和稳定性将
会得到进一步提升,为其应用带来更广阔的空间。

综上所述,半导体热电材料由于其高效率、小体积、成本较低等优势,未来在
能源领域以及其他领域都具有广阔的应用前景,发展潜力巨大。

我们有理由相信,在不久的将来,半导体热电材料将会成为能源转换领域的重要支柱之一。

热电材料主要材料体系

热电材料主要材料体系

热电材料主要材料体系热电材料主要材料体系一、介绍热电材料是一种能够将温度差异转化为电能的特殊材料。

它们广泛应用于能量转换、节能和环境保护等领域。

热电材料的性能主要取决于其材料体系。

本文将就热电材料主要材料体系进行全面评估和探讨,并分享个人观点和理解。

二、无机材料体系1. 碲化物体系碲化物体系作为热电材料的主要组成部分,具有良好的热电性能和稳定性。

它包括了复杂硫化碲和锗、碲化钡和碲化钡铍等。

这些材料具有较高的热导率和适度的电导率,因此在高温环境下表现出良好的热电性能。

2. 碲化铅体系碲化铅体系是另一种重要的无机材料体系。

碲化铅及其衍生物在高温下具有良好的热电性能和稳定性。

与碲化物体系相比,碲化铅体系具有更低的热导率和更高的电导率,因此在中高温环境下具有更好的热电性能。

三、有机材料体系1. 有机-无机杂化体系有机-无机杂化体系是近年来发展起来的一种新型热电材料体系。

它通过将有机聚合物和无机材料相结合,实现了良好的热电性能和柔韧性。

这种体系具有较低的热导率和适度的电导率,适用于低温和柔性电子设备。

2. 有机金属配合物体系有机金属配合物体系是另一种重要的有机材料体系。

这些材料由有机配体和金属离子组成,具有良好的电导率和热导率。

有机金属配合物体系在低温和高温环境中都表现出良好的热电性能,因此在广泛应用于能量转换和热电设备中。

四、总结与回顾热电材料的主要材料体系包括无机材料体系和有机材料体系。

无机材料体系包括碲化物体系和碲化铅体系,具有较高的热导率和适度的电导率。

有机材料体系包括有机-无机杂化体系和有机金属配合物体系,具有较低的热导率和良好的电导率。

这些材料体系在不同温度范围内表现出不同的热电性能,可以满足不同应用需求。

个人观点和理解:对于热电材料主要材料体系的研究,我认为在材料的选择和设计上有许多挑战和潜力。

随着科技的不断进步,我们将能够发现更多的材料体系,并改进其热电性能。

通过对材料的深入理解,我们也可以根据不同的应用需求进行精确的设计和合成,实现更高效、稳定和可持续的热电材料。

热电材料的性能和应用

热电材料的性能和应用

热电材料的性能和应用热电材料,是指能够将热能转化为电能或将电能转化为热能的材料。

它们具有独特的物理和化学性质,广泛应用于各种能源转换和热管理的领域。

本文将介绍热电材料的性能和应用。

一、热电效应热电效应是指在温差存在时,电子的热运动会导致电子在晶格中发生漂移,从而引起电势差的发生。

热电效应具有两种基本形式:Seebeck效应和Peltier效应。

Seebeck效应是指温差作用下,不同金属之间导电体系中的自由电子的运动由于热力学变化而产生的电势差。

Peltier效应是指二类不同金属之间导电体系,在交替通强通弱电流的作用下,会产生热量和冷量。

两种效应可以通过热电材料进行转换。

二、热电材料的性能热电材料的性能取决于热电系数、电导率和热导率。

热电系数是指材料在温差作用下,单位温差引起的电势差与温度差的比值。

高热电系数材料能够产生更高的电压。

电导率是指在单位长度下,单位时间内,材料内导电电子通过的电流量。

热导率是指单位时间内从单位面积内的材料中传导热量。

在热电材料中,要同时优化热电系数和电导率,以获得较高的热电性能。

三、热电材料的应用1.能源转换热电材料是一种重要的新能源转换材料。

随着能源的日益紧缺和对环境保护的要求,热电材料在利用自然界的低品位能源方面发挥着重要作用。

如太阳能发电系统,通过将光能转化为热能,在热电材料的作用下将其转化为电能。

另外,一些小型电子设备采用热电模块进行能量捕获,以延长电池寿命。

2.热管理随着电子设备尺寸不断缩小,散热问题越来越成为影响设备性能和寿命的瓶颈。

热电材料被广泛应用于热管理领域。

其原理是通过Peltier效应,将热量从热源处转移到冷源处,从而实现热管理。

热电制冷器件在微电子学、制冷设备等领域具有广泛应用。

3.环境探测热电材料广泛应用于环境探测领域。

热电传感器可以通过温度差变化,对空气中的有毒气体或者有害物质进行检测。

其原理是利用在局部产生的温度差引起的电压差变化,检测空气中的多种有害物质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热电材料早在1823年德国的物理学家Thomas Seebeck就在实验中上发现, 在具有温度梯度的样品两端会出现电压降, 这一效应成为制造热电偶测量温度和将热能直接转换为电能的理论基础, 称为Seebeck 效应.Seebeck提出了用热电材料制成热电发电器的设想. 1834年Heinrich Lens又发现将一滴水置于铋(Bi)和锑(Sb)的接点上, 通以正向电流, 水滴结成冰, 通以反向电流, 冰融化成水, 此效应称为制冷效应或Peltier效应.在此后的100多年, 热电材料的研究主要是围绕金属材料进行的, 由于热电转换效率低, 所以有关热电材料及热电转换装置的研究和应用一直进展缓慢. 在20世纪50年代, Abram Ioffe发现, 半导体材料的热电转换效应比金属材料有数量级上的增强, 利用半导体热电材料有望实现温差发电和制冷的设想, 从而在全世界范围内掀起了研究热电材料的热潮, 这种研究热潮持续了数年之久, 研究和评估了大量的半导体材料, 并发现Bi-Te Sb-Te系半导体材料具有良好的热电特性[1]. 在此后的几十年, 由于半导体热电材料仍难以满足现实应用过程对热电转换和制冷效率的要求, 研究工作又处于低潮阶段.直到90年代初期, 随着全世界环境污染和能源危机的日益严重, 对人类可持续发展广泛的关注, 导致发达国家对新环保能源替代材料开发研究的重视和巨额投入, 利用热电材料制成的制冷和发电系统体积小重量轻; 无任何机械转动部分, 工作中无噪音, 不造成任何环境污染; 使用寿命长, 且易于控制. 由于热电材料的这些特性使其再次成为材料科学的研究热点. 近十年来, 材料科学的新进展, 如材料制备工艺及分析手段的多样化, 计算机模拟在材料科学中的应用, 新型先进材料的不断出现, 使得设计和制备新型高性能高效率的热电材料的可能性逐渐增大. 目前, 围绕着一种称为声子玻璃电子晶体型热电材料(PGEC)的研究正在广泛展开[2]. 这类材料因具有晶体的导电性能和玻璃的导热性能而成为新一代前景广阔的热电材料. 从近年来在热电材料研究方面取得的进展, 美国科学家Terry. M. Tritt乐观地认为在未来几年内热电材料的研究将会有惊人的突破.§5.1热电效应和热电特性当两种不同的导体联接构成闭合回路,且接点两端处于不同温度时, 在接点两端出现电压降, 在回路中产生电流的现象称为塞贝克效应(Seebeck). 这一效应成为实现将热能直接转换为电能的理论基础. 图1 (a)为实现热电转化模式的简单示意图.当电流I通过由两种不同导体联结构成的回路时, 在两接点处吸收和放出热量的现象称为帕尔帖效应(Peltier). 这一效应成为实现新概念型制冷机械的理论基础. 图1(b)为实现制冷模式的简单示意图.图1 热电元件构成的简单发电模式(a)和制冷模式§5.2热电材料的新进展开发研究新热电材料的目标在于努力提高材料的电导率温差电势的同时, 降低热导率. 热电材料的性能取决于性能因子Z, Z通常表示为Z=a2 s/k, 式中a 称为Seebeck系数或温差电势, s为材料的导电率, k为导热率. a s和k参量取决于电子结构和载流子的散射, k=k L+k e, 降低k关键在于降低k L, 即增强晶格点阵对声子的散射从而降低热导率. 从理论上分析, 非晶态具有低的k值. Glem Slack提出一种新的概念材料称为声子玻璃电子晶体phonon glass electron crystal (PGEC), 也就是一种导电如晶体导热如玻璃的材料. Slack认为晶体结构中存在一种结合力弱的rattling 原子, 对载热声子有强的散射作用导致热导率急剧下降, 对导电不会有太大的影响.基于以上的讨论, 适合于做为热电材料的主要有两大类: 半导体材料和混合价化合物. 过去几十年对半导体类热电材料进行了较为系统深入的研究, 其中主要包括FeSi2 SiGe PbSnTe (Cu,Ag)2Se (Bi,Sb)Te3 (Bi,Sb)Se3等系列. 目前正在研究一种称为Skutterrudite结构的材料[5], 其分子式为AB3, 其中A=Co, Ir,Rh; B=P, As, Sb. 这类结构的重要特性是在晶胞单元中有两个较大的空隙, 这类结构材料的Seebeck系数可能达到较大数量级200 mVK-1, 然而, 热导率也会同时增大, 难以获得所希望的ZT值. 研究表明, 在晶格点阵中加入重原子可以显著地降低晶格导热率. 例如, Nolas等人在CoSb3中加入La, 使材料的室温导热率降低几个数量级, Nolas认为部分是由于质量亏损mass-defect 散射声子, 部分是由于键合力较弱的原子在它们的笼状结构cages 中发生rattling 运动. 在温度为700 , ZT值大于1的结果已经在实验中出现.另一类具有低温使用前景的材料是Clathrates型化合物[6]. 例如Ge型Clathrates化合物, 其分子式为A8Ge46, A代表Ge格子中占据空隙的原子. 又如具有Sr8Ga16Ge30分子式结构的Clathrates化合物, 其室温导热率比非晶态Ge低两倍. 类似的低导热性也出现在含Eu的Ge型Clathrates化合物及Sn型Clathrates化合物, 如Cs8Zn4Sn44和Cs8Sn44. 这些Clathrates型化合物具有获得热电应用所需的高Seebeck 系数的潜能, 在700 K下, ZT值接近1.以A2Q Bi2Q3 PbQ(A=碱金属; B=S, Se, Te)为三组元构成的三元系中的某些伪三元相也是具有开发前景的一类新型热电材料[7], 如K2Bi8Se13 K2Bi8S13 Rb2Bi8Se13 Ce2Bi8Se13 CsPb2Bi3Te7. 研究发现,这些化合物均具有相似的结构点阵, 对称性差属于单斜晶系, 晶胞体积大, 空隙中含有rattling 碱金属原子. 由于rattling 碱金属原子对声子的散射, 导致该类化合物导热率很低. 对这类材料的研究正在展开, 研究者认为有望获得较高的ZT值.Hicks和Dresselhaus提出如果用二维结构材料代替三维, ZT值将会得到改善[8]. 载流子在低维量子阱中受到的制约导致能态密度分布的改变, 在费密能一定的条件下, 有利于增加载流子数目提高导电率和ZT值.用分子束外延生长技术可以制备二维晶体. 一维结构可能会有更好的ZT值, 关键的问题是如何将一维晶体应用到实际的器件设备中. Venkatasubramanian 等人的研究证实量子阱能使体系的ZT值超过1[9].Tritt等人综合分析大量的研究结果, 提出理想的热电材料应具有的性能[10]:(1) 接近费密能级的电子带应具有许多远离Brillouin区界的能谷;(2) 原子序数大, 且具有大量的自旋轨道偶;(3) 成分由两种以上的元素组成;(4) 元素间的负电性差很低;(5) 晶胞尺寸大;(6) 能带间隙Eg等于10kBT, T是实际热电工作温度.室温下, 0<Eg<0.3 eV.假如满足条件(1) (4), 材料将具有高的载流子迁移率; 满足条件(2) (3) (5), 材料将有低的热导率; 满足条件(1) (6), 可以获得高的Seebeck系数或温差电势. 另外, 条件(6)也表明, 在温度较低的情况下(T<300K)热电材料应具有较低的能带间隙. 对于高温工作如发电模式下, 应使用高能带间隙的热电材料.§5.3热电材料的未来在生活四周有许多耗费能源所生成、却又被废弃的热能,例如:汽车尾气、工厂锅炉排放的气体等等。

如果能将这些热能善加利用,即可成为再次使用的能源,而热电材料与技术,就是利用温差来发电的关键。

电能是最广泛使用的最为便利的能源形式。

但是如今发电的主要形式还是化石能源,这些能源的使用在给我们带来了便利的同时,也带来了一个全球关注的环境问题。

环境问题是新世纪人类面临的最严峻的挑战之一。

现代制冷技术无疑给人们生活带来了很多便利,试想,如果现在没有了冰箱和空调,我们的生活将有多大的不便。

但是,从上个世纪八十年代以来,人们逐渐认识到氟里昂制冷剂所带来的环境问题,国际上普遍限制其的使用。

使用热电材料制冷就是一种很环保的方法。

热电材料的应用不需要使用传动部件,工作时无噪音、无排弃物,和太阳能、风能、水能等二次能源的应用一样,对环境没有污染,并且这种材料性能可靠,使用寿命长,是一种具有广泛应用前景的环保材料。

现在市面上有一种移动型冰箱,适用于旅行郊游时冰冻饮料及食品保存等。

这种冰箱的特色除了方便携带外,它并不使用压缩机,没有噪音,天气冷时还可摇身一变成为保温器。

隐身在这种冰箱后的核心技术,就是里面的热电材料。

热电材料的应用很神奇,它通入电流之后会产生冷热两端,故可以用来冷却也可以用来保温。

而如果同时在两端接触不同温度时,则会在内部回路形成电流,温差越大产生的电流越强,这就启发了一种新思维:用热电材料接收外界热源来产生电力。

这种概念并不是空中楼阁,目前日本和德国都已开发出利用人体体温与外界环境温度差异,进而产生电力来驱动手表。

近年来由于在技术上热电材料性能的不断提升,及环保等因素,利用热电转换技术,进一步将大量废热回收转为电能的方式,普遍得到日、美、欧等先进国家的重视。

低温余热、特别是140℃以下的废热再利用,增加了热电发电的竞争力,一些新兴应用研究诸如垃圾焚烧余热、炼钢广的余热、利用汽车以及发动机尾气的余热进行热电发电,为汽车提供辅助电源的研究也正在进行,并且有部分成果已实际应用,相信在不久的将来会广泛使用。

美国全球热电材料公司是全球最大的热电发电器供应商,他们开发过以天然气或丙烷为燃料之发电设备,并依产品尺寸可发出15-550W的电力,做为小型发电机及偏远地区电源使用。

此外美国国防部,还在喷射推进实验室从事多段功能热电材料研发。

在日本,新能源产业技术总合开发机构(NEDO)投入巨额资金研发各种高效热电材料做为各式排放热能发电利用。

另外,日本业界如久保田公司开发一种热电转换装置,能把300℃以下低废热转换为电能,是把垃圾燃烧时产生的废热通过热交换,将其做为高温部分,把工厂管道的冷却水做为低温部分,利用两者温差经热电转换装置即可进行发电,当温差为260℃时,发电功率可达640W。

在车辆排气发电方面,尼桑公司研发最为积极,预计利用占总废热30%之排气热能提供发动机辅助电源,每台车约能有 2OOW的电力回充电瓶,可减少5%之燃油支出。

在瑞典,其北部利用烧柴取暖炉所产生的热量,可用以发电并替代昂贵的汽油马达发电机。

相关文档
最新文档