理论力学达朗伯原理
理论力学达朗贝尔原理

理论力学达朗贝尔原理达朗贝尔原理(d'Alembert's principle)是理论力学中的一个重要原理,它为研究物体在平衡或运动状态下受力情况提供了重要的理论基础。
达朗贝尔原理的提出,极大地推动了理论力学的发展,对于解决复杂的力学问题具有重要意义。
达朗贝尔原理的核心思想是,在运动坐标系中,对于一个质点系的平衡或运动状态,可以把系统的动力学问题转化为静力学问题来处理。
这就是说,对于一个质点系,可以找到一个虚拟的平衡系统,使得外力在这个虚拟系统中所做的功等于零。
通过这个虚拟系统的构建,我们可以简化动力学问题的求解过程,使得复杂的运动问题变得更加清晰和直观。
达朗贝尔原理的应用范围非常广泛,不仅可以用于刚体的运动问题,还可以用于弹性体、流体等物体的运动问题。
在工程实践中,达朗贝尔原理被广泛应用于各种机械系统的设计与分析中,例如汽车、飞机、船舶等。
通过运用达朗贝尔原理,工程师可以更加准确地分析系统的受力情况,从而设计出更加安全可靠的机械系统。
除此之外,达朗贝尔原理还在理论物理学中有着重要的应用。
在量子力学和相对论物理中,达朗贝尔原理也被广泛地运用于分析粒子的运动规律和相互作用。
通过引入虚拟位移和虚拟功的概念,达朗贝尔原理为理论物理学提供了一种全新的研究方法,为科学家们深入探索微观世界提供了重要的理论工具。
总的来说,达朗贝尔原理作为理论力学中的重要原理,为研究物体的运动和受力问题提供了重要的理论基础。
它的提出和应用,极大地推动了理论力学和工程实践的发展,为科学家们和工程师们提供了重要的研究方法和设计工具。
在今后的研究和实践中,我们应该深入理解达朗贝尔原理的原理和应用,不断拓展其在理论力学和工程领域的应用范围,为人类的科学技术进步做出新的贡献。
《理论力学》第十四章达朗伯原理(动静法)

D d
C
mg FN
货物不滑的条件:F≤ f FN , a ≤ f g 货物不翻的条件:d ≤ b/2 , a ≤ bg/h
为了安全运送货物,应取两者中的小者作为小车的amax。
例 题7
已知:AB杆质量为m ,长为l=2r ,
r O
A
l
B
圆盘半径为r ,角速度为,角加速度为 。 求:A 端的约束反力。
FR
MIC
C
aC
FR maC M C J C
例 题5
已知:m , h , , l。
B
D
h
求:A、D处约束反力。
a
解: 取 AB 杆为研究对象
A
Fx 0 FAx F FN sin 0 Fy 0 FAy mg FN cos 0
C
n FR maC m(aC aC )
O
MIC
FR
M C J C
3、刚体作平面运动
具有质量对称平面的刚体作平面运动,并且运动平面与质量对 称平面互相平行。对于这种情形,先将刚体的空间惯性力系向质 量对称平面内简化,得到这一平面内的平面惯性力系,然后再对 平面惯性力系作进一步简化。
R
O
n FR
MIO
F R
(2)将惯性力系向质心C简化。
FR maC 2mr
n n FR maC 2mr 2
MA
A
FAy
MIC
C B
FAx
M C
1 2 J C mr 3
n FR
mg
FR
n Fx 0 FAx ( FR F ) cos 45 0 R n Fy 0 FAy mg ( FR FR ) cos 45 0 n M A( F ) 0 M A mgr ( FR F ) cos 45 r M C 0 R
达朗贝尔原理 理论力学

J z mi ri m
2
2 z
-刚体对z轴的转动惯量。
ρ:回转半径
J z J ZC md
2
J z mi ri m
2
2 z
-平行移轴公式
例1 求简单物体的转动惯量。(平行移轴)
解:由转动惯量的定义:
Jc
1 dx x x 3
2
l 2
l 2 l 2
a A R A R O
A O
A O 2( M P sinR )
(Q 3P ) R
2
FIA
g
FN
例6 在图示机构中,沿斜面向上作纯滚动的圆柱体和鼓轮O 均为均质物体,各重为P和Q,半径均为R,绳子不可伸长,其 质量不计,斜面倾角,如在鼓轮上作用一常力偶矩M,试求: 圆柱体A的角加速度。
(2)
FgC2 MgC2
A
FAX
C2 mg
B
4 均质圆柱体重为W,半径为R,沿倾斜平板从静止状 态开始,自固定端O处向下作纯滚动。平板相对水平线的倾 角为 ,忽略板的重量。试求: 固定端O处的约束力。
解题分析
以整体为研究对象,画受力图。
?确定惯性力大小
求解惯性力就是求解运动; 求解FN就是求解未知的约束力(包括动反力)
在已知运动求约束力的问题中,动静法往往十分方便
3.质点系的达朗伯原理
一 原理描述
质点i:
质点系的主动力系,约束力系和惯性力系组成平衡力系:
作用于质点系上的主动力系,约束力系和惯性力 系在形式上组成平衡力系。-质点系的达朗伯原理。
2 i i z
结论
平面刚体做定轴转动
如果刚体有质量对称面且该面与转轴z垂直; 向质量对称面进行简化,取转轴与该面交点为简化中心
理论力学精品课程 第十五章 达朗伯原理

YA
d
gl 2g 达 g 设力F 的作用点到点A的距离为 d , 朗 由合力矩定理,有 l 伯 g F (d cos ) ( cos )dF g 0 2 原 l P 2 sin d 0 gl 2 理 即 d l
0
P
g F
B
P l 2 sin 2g
二、质点系的达朗伯原理
因为质点系的内力总是成对出现,并且彼此等 i i 15.1 值反向,因此有 F 0和 m ( F ) 0 ;而剩下的 i O i 外力系又可分为作用在质点系上的主动力系和外约 达 束反力系。设 Fi 、 Ni 分别为作用在第 i 个质点上的 朗 主动力的合力和外约束反力的合力,于是的得
F Fi (mi ai ) mi ai
3
假想地加上惯性力,由质点系的达朗伯原理 l g mA (F ) 0 F d cos P sin 0 2
例2
15.1
g F 代入 的数值,有
达 朗 伯 原 理
Pl 2l 2 sin ( cos 1) 0 2 3g
故有
3g ) 0 或 arccos( 2 2l
一、质点的达朗伯原理
设质量为 m 的质点M,沿图示轨迹运动,在某瞬 15.1 时作用于质点M上的主动力为 F ,约束反力为 N ,其 g 加速度为 a 。 F 达 根据动力学基本方程有 ma F N M F 朗 将上式改写成 F N (ma )0 a
下面用静力学力系简化理论研究刚体运动时惯 性力系的简化结果。 15.2 首先研究惯性力系的主矢。设刚体内任一质 a i ,刚体的质量为M, 刚 点 M i的质量为mi ,加速度为 a 体 质心的加速度为 C,则惯性力系的主矢为
理论力学第12章 达朗贝尔原理

基础部分——动力学第12 章达朗贝尔原理惯性力Jean le Rond d’Alembert (1717-1783)达朗贝尔达朗贝尔原理达朗贝尔原理具体内容:a F F m −=−='惯性力定义:质点惯性力aF m −=I 一、惯性力的概念aF m −='2222d d d d z ty m t[注意]不是真实力直角坐标自然坐标aF m −=I−a m 质点的达朗贝尔原理二、质点的达朗贝尔原理合力:NF I FI N =++F F F 注意:◆◆优点:◆可以将动力学问题从形式上转化为静力学动静法◆给动力学问题提供了一种统一的解题格式。
如何测定车辆的加速度?虚加惯性力解:达朗贝尔原理[例12-1]IF 摆式加速计的原理⇒⇒构成形式上的平衡力系质点系的达朗贝尔原理内力外力表明:惯性力系外力平面任意力系实际应用时,同静力学问题一样,选取研究对象;刚体惯性力系的简化简化方法一、质点系惯性力系的主矢与主矩无关有关二、刚体惯性力系的简化◆质心C结论:1IF2IF3IF IRFCm aF−=IR⇒交点O简化tI iF nI iF αα特殊情形:●●αOz O J M −=I 作用在O 点C m a F −=IR t I iFn I iFn IRFt IRF OM I αt I iFn I iFα[思考]求:向交点O 简化的主矢?主矩?)(41t IR↑=L m F αOCαωL /4)(412n IR →=L m F ωα2I 487mL M O=(逆)①2IR ωme F =②αCz O J M −=I (与α反向)③0, 0I IR ==O M F (惯性力主矢、主矩均为零)IRF OM I α(作用于质心C )C m a F −=IR αCz C J M −=I 质心C IRF CM I α特殊情形:●●⇒[思考]εmr F =t IRrR r mF −=22n IRωε2I 21mr M C=求:惯性力系向质心C 简化的主矢?主矩?达朗贝尔原理上节课内容回顾(质点惯性力)或:质心C Cm a F −=IRαOz O J M −=I Cm a F −=IR 交点O t I iFn I iFn IRFt IRF OM I ααOz O J M −=I C m a F −=IR 交点O t I iFn I iFn IRFt IRF OM I αCm a F −=IR αCz C J M −=I质心C IRF CM I α质心C[思考]求:向交点O 简化的主矢?主矩?)(41t IR↑=L m F αOCαωL /4)(412n IR →=L m F ωα2I 487mL M O =问:若向质心C 简化,则主矢?e =−∑Cx xma F 平面运动微分方程0)( e=−∑αCz C J MF 0e =−∑Cy yma F IRF CM I α⇒⇒[例12-2]解:惯性力系αt RI Fn IRFn AFt A FAM I αtRI Fn IR F nA F t AF AM I α惯性力系)解题步骤及要点:注意:F IR = ma C M I O = J Oz αα思考:AC CθASO[例12-3]先解:惯性力系m gF IR M I C F sF NαR a C =CθASOm gF IRF OxF OyM I C再惯性力系M O[例12-4]解:惯性力系 1I F OM I 2I F α)(=∑F OMα11r a =2211 α22r a =1I F OM I 2I F α[思考题] A BCD E )(118↓=g a A mgF 113T =111≥f主动力系惯性力系RFIRF OMIRF IRF OM I tI iFn I iF∑∑==ii iyzi i i zx z y m J x z m J RF IRF OM I tI iFn I iFRF IRF OM Ill F M l F M y x y x /)]()[( 2I I 2R ⋅−+⋅−ll F M l F M x y x y /)]()[(2I I 2R ⋅++⋅+−ll F M l F M y x y x /)]()[(1I I 1R ⋅++⋅+−ll F M l F M x y x y /)]()[( 1I I 1R ⋅−+⋅−xF R −约束力静动主动力惯性力动约束力I x 02=ωJ 质心过)04222≠+=−ωααωωα惯性主轴z 轴为中心惯性主轴静平衡过质心⇒动平衡中心惯性主轴⇒[例12-5]静平衡动平衡爆破时烟囱怎样倒塌θOAωα解:m g)cos 1(3θ−lg F OxF OyMI On RI F t IRF 受力分析[例12-6])]([)(sin ⋅−−+−+⋅x x l l x x l mg ααθ1()(sin mgl −θB注意:求内力(矩)时惯性力的处理!xθxAB()ml x lα−m l lαBM BxF x mg lByF12-5-1 关于惯性力系的简化OA ωαMI OnR I FtIRFOAωαMI CnRIFtRIFC 思考思考12-5-2 刚体平面运动时有关动力学量的计算mv+C12-5-3 本章知识结构框图达朗贝尔原理惯性力系的简化质点系达朗贝尔原理定轴转动的约束力一般质点系刚体静、动约束力静、动平衡课后学习建议:◆。
理论力学14达朗贝尔原理

质点系惯性力系的主矢量和主矩分别为:
Qi
miaiMaCFra bibliotekd dt
(
mi
vi
)
dp dt
mO
(Qi
)
mO
(mi
ai
)
d dt
mO
(mi
vi
)
dLO dt
12
用动静法求解动力学问题时,
对平面任意力系:
X i(e) Qix 0 Yi(e) Qiy 0 mO (Fi(e) )mO (Qi )0
RQ Q ma MaC MQO mO (Q )
与简化中心无关 与简化中心有关
无论刚体作什么运动,惯性力系主矢都等于刚体质量与质 心加速度的乘积,方向与质心加速度方向相反。
15
一、刚体作平动
向质心C简化: RQ MaC
MQC mC (Qi )ri (miaC )miri aC 0
翻 页
刚体平动时惯性力系合成为一过质心的合惯性力。
Fi Ni Qi 0 mO (Fi )mO (Ni )mO (Qi )0
注意到
F (i) i
0
,
mO
( Fi (i )
)0
, 将质点系受力按内力、外力
划分, 则
Fi(e) Qi 0
mO (Fi(e) )mO (Qi )0
11
表明:对整个质点系来说,动静法给出的平衡方程,只 是质点系的惯性力系与其外力的平衡,而与内力无关。
厢的加速度 a 。
7
解: 选单摆的摆锤为研究对象 虚加惯性力 Q ma ( Q ma ) 由动静法, 有
X 0 , mg sin Qcos 0
解得
a g tg
角随着加速度 a 的变化而变化,当 a 不变时, 角也 不变。只要测出 角,就能知道列车的加速度 a 。摆式加速
第十六章达朗伯原理_理论力学

1.第十六章 达朗伯原理 质点的惯性力定义为2. 质点的达朗伯原理:质点上的主动力、约束力及假想的惯性力构成平衡力系。
如果在质系的每个质点上都加上假想的惯性力, 则质系处于平衡, 这就是质系的达朗伯原理。
3. 根据达朗伯原理,可通过加惯性力将动力学问题转化为静力学问题求解。
这就是动静法。
用这种方法解题的优点是可以充分利用静力学中的解题方法及技巧。
4. 刚体的惯性力是分布力系,向固定点 主矢 简化的结果是主矩 定轴转动时,惯性力对固定轴的力矩是平面运动时,惯性力向质心简化的结果是5. 刚体绕定轴等角速转动时,由于刚体质量分布不均衡,可以对轴承造成动压力。
轴承相 应有动反力,其值为使轴承动反力为零,转轴必须是刚体的一根中心惯性主轴,这时刚体是动平衡的。
达朗伯原理提供了研究动力学问题的新的普遍方法, 即用静力学中研究平衡问题的方法求解 动力学问题,此法又称动静法。
§16-1 质点的达朗伯原理 1. 叙述与证明 对非自由质点,主动力 ,约束力 ;由牛顿第二运动定律得 (16-1) 或引入记号 则有(16-2)(16-3)矢量有力的量纲,称为惯性力。
式(16-3)表明,如果在质点上除作用有主动力及约束力外,再假想地加上惯性力,则这些力构成平衡力系。
这就是质点的达朗伯原理。
2.关于惯性力对于质点本身,惯性力是假想的。
但确有方向与相反,大小等于 的力 存在,它作用在使质点运动状态(速度 )发生改变的物体上。
例如,人推车前进,这个力向后作用在人手上;链球运动员转动链球作圆周运动,球有向心 加速度,这个力向外作用在运动员手上(在物理课中常称为离心力) 。
正是通过这个力,我 们感到了物体运动的惯性,所以这个力就称为惯性力。
要注意区别惯性力 及科氏惯性力 3. 解决动力学问题的动静法与质点在相对非惯性系中运动的牵连惯性力 。
前面的 是质点的全加速度。
质点的达朗伯原理表明,如果在运动着的质点上加上 假想的惯性力,则质点处于平衡,因而可将动力学问题化成静力学问题。
理论力学:第12章 达朗伯原理

ai ri , ain ri2 , Qi miri , Qin miri2
向轴 O 点简化: (如图)
主矢——惯性力: Q
Qi
(miai )
MaC
MaC
MaCn
Q
Qn
主矩——惯性力偶: M gO mO (Qi ) mO (Qi ) (Qi ri ) (miri2 ) IO
l 2
cos 45
0
(2)
考虑(a)式,(1)(2)方程包含 4 个未知量:
aCx, aCy, , TB 。
选 A 为基点,C 为动点,画加速度图如图
aCx aCy a A aCA
考虑刚才的处理方式,列上式投影方程时 避开 aA,即在 NA 方向投影。
在 NA 方向投影: aCx cos 45 aCy sin 45 0 aC A sin(45 30 ) (3) 式中 aC A l
)Q 2
2
M IO
b
(Q sin FIC )(r 2 sin )
(6)
Lb
b
Q cos ( 2 2 cos ) M IC G 3 0
将前面结果代入以上三式,解得
Q(Q sin P)
XH
cos
P 2Q
(Q sin P)2 YH P 2Q G
提问:可以么?
ΣmA (F ) 0
TBl cos 30
mg
l cos 30 2
FIx
l sin 30 2
FIy
l cos 30 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向质心C点简化 ’
Fg' R FgR miai mac
M gC M gO M O (FgR )
M gO MO (FgR) J z (FgR rC )
ai ri
Jz mrC2 (Jz mrC2)
JC
J z miri2 Jz JC mrC2
结论:刚体绕与对称面垂直的定轴转动时,惯性力系可以简化为对称面内
质点系达朗伯原理
Fi FNi Fgi 0 i 1,2, ,n
对于所讨论的质点系,有n个形式如上式的平衡方程, 即有n个形式上的平衡力系。将其中任何几个平衡力系合在 一起,所构成的任意力系仍然是平衡力系。根据静力学中 空间任意力系的平衡条件,有
Fi FNi Fgi 0
MO (Fi ) MO (FNi ) MO (Fgi ) 0
A 2
Av2
惯性力
Fg F'
F
F
an
F Fg F man
动力学问题
F ma F Fg 0
形式上的静力平衡
Fg man —离心力作用在使叶片产生加速度的叶轮上
刚体惯性力系的简化
1.刚体作平动
Fgi miai miac
合力大小: FgR Fgi miaC maC
位置: MO (FgR ) MO (Fgi ) ri miaC
达朗贝尔原理提供了按静力学平衡方程的形式给出质点系动力学 方程的方法,这种方法称为动静法。这些方程也称为动态平衡方程。
例1:电机护环直径D,环截面面积A,材料密度 (kg/m3), 转子角速度=常数。
求:护环截面张力。
y
解:研究对象: 四分之一护环
F2
dFg
受力分析:如图示
d
运动分析:an
D 2
2
达朗贝尔原理
达朗贝尔原理又称为“动静法”
研究对象是动力学问题
所用的方法是静力学方法
引入惯性力
用达朗贝尔原理处理问题的关键:惯性力系的简化
达朗贝尔原理是在十八世纪随着机器动力学问题的发展而提出的,它
提供了有别于质心运动定理与转动方程的分析和解决动力学问题的一种新的 普遍方法,但却获得了与上述定理形式上等价的动力学方程,尤其适用于非 自由质点系统求解动约束力和弹性杆件动应力等问题。因此在工程技术中有 着广泛应用。
引入质点的惯性力Fg =-ma 这 一概念,于是上式可改写成
AF
F FN Fg 0
上式表明,在质点运动的每一瞬时,作用于质点的主动力、约束力和 质点的惯性力在形式上构成一平衡力系。这就是质点的达朗伯原理。
质点达朗伯原理
F FN Fg 0 质点达朗贝尔原理的投影形式
Fx FNx Fgx 0 Fy FNy Fgy 0 Fz FNz Fgz 0
达朗贝尔原理
第十四章 达朗贝尔原理
爆破时烟囱怎样倒塌
达朗贝尔原理
达朗贝尔原理 惯性力系简化 动静法应用举例 转子的静平衡与动平衡
一、质点达朗伯原理
设质量为m的非自由质点M,在主动
力F和约束力FN作用下沿曲线运动,
FN
该质点的动力学基本方程为
B
ma F FN
或
Fg M
ma a
F FN (ma) 0
向转轴O点简化 主矢:
FgR miai mac
FgR FgnR
主矩: M gO M O (Fgi ) [MO (Fgi) MO (Fgni)]
MO (Fgi) miai ri
miri2 Jo
’
ai ri
Jo miri2
Jo JC mrC2
2.刚体绕定轴转动
二、质点系达朗伯原理 上述质点的达朗贝尔原理可以直接推广到质点系。将
达朗贝尔原理应用于每个质点,得到n个矢量平衡方程。
Fi FNi Fgi 0 i 1,2, ,n
这表明,在质点系运动的任一瞬时,作用于每一质 点上的主动力、约束力和该质点的惯性力在形式上构成一 平衡力系。
这就是质点系的达朗贝尔原理。
miri ac
mrc ac
rc mac rc FgR
ri O rC
结论:平动刚体的惯性力系可以简化为通过质心的合力,其大小等于 刚体的质量与加速度的乘积,方向与加速度方向相反。
2.刚体绕定轴转动 刚体有对称面,且转轴与对称面垂直。
Fgi miai mi (ai ain )
质点系达朗伯原理
Fi FNi Fgi 0 MO (Fi ) MO (FNi ) MO (Fgi ) 0
上式表明,在任意瞬时,作用于质点系的主动力、约束力和该点 的惯性力所构成力系的主矢等于零,该力系对任一点O的主矩也等于 零。
考虑到上式中的求和可以对质点系中任何一部分进行,而不限于 对整个质点系,因此,该式并不表示仅有6个平衡方程,而是共有3n个 独立的平衡方程。同时注意,在求和过程中所有内力都将自动消去。
π dFg Ads an
D A 2ds
2
D2 4
A 2d
x F1
2
Fx 0 : dFg cos F2 0
0 π
F2
D2 4
A 2 sin
π 2
sin
0
D2 4
A 2
Av2
2
Fy 0 : dFg sin F1 0
0
F1
D2 4
A2 cos
π 2
cos 0
D2 4
主矩:
M gC M C (Fgi )
[MC (FgC ) MC (FgiC) MC (FgniC)]
MC (FgiC) miaiC riC miri2C JC
结论:刚体在与对称面平行的平面内运动时,惯性力系可以简化为对称面
的一个力和一个力偶。该力等于mac,方向与ac方向相反,作用在
轴(质心)上;该力偶的矩等于Jo (JC ),方向与相反。
例:图示均质杆AB质量为m,长为l, 绕O点作定轴转动,角速度为, 角加速度为,计算杆上惯性力 系向O点和质心C简化的结果。
解:运动分析
aC
l
2
aCn
l 2
2
aC
l 2
4 2
质心C简化
4 2
Fg' R
maC
ml 2
4 2
M gO
JO
1 ml2
3
M gC
JC
1 12
ml 2
3.刚体作平面运动
刚体有对称面,且平行与对称面运动
CC
Fgi miai mi (aC aiC ainC )
CC
miaC mi (aiC ainC)
向质心C点简化
主矢: FgR miai mac