《点集拓扑学》第7章§7.1紧致空间

合集下载

《点集拓扑》课件

《点集拓扑》课件

点集拓扑的基本性质
01
02
03
04
性质1
任意两个不同的点不能是等价 的。
性质2
有限多个开集的并集仍然是开 集。
性质3
闭集的补集是开集。
性质4
连续映射下的开集和闭集保持 不变。
点集拓扑的重要性
应用广泛
点集拓扑在数学、物理学、工程 学等领域都有广泛应用,如微分 几何、代数几何、微分方程等领
域。
基础学科
点集拓扑是数学的一门基础学科, 为其他学科提供了数学工具和语言 ,促进了数学的发展。
理论意义
点集拓扑的研究有助于深入探讨数 学中的一些基本问题,如连续性、 连通性、紧致性等,推动了数学理 论的发展。
02
拓扑空间与基
拓扑空间的定义
总结词
抽象的空间
详细描述
拓扑空间是一个由点集构成的空间,这些点集通过集合的并、交、补等运算形 成。它是一个抽象的概念,不依赖于度量或连续性的具体性质。
连通性与道路连通性
连通性的定义与分类
总结词
连通性是描述点集拓扑空间中点之间的相互关系的重要概念,它分为三种类型:强连通 、弱连通和道路连通。
详细描述
连通性定义为一个点集拓扑空间中任意两点可以通过一系列连续变换(如移动、旋转、 缩放等)相互到达。根据连通性的不同性质,可以分为强连通、弱连通和道路连通三种 类型。强连通是指任意两点都相互可达;弱连通是指任意两点至少有一个可达;道路连
基的定义与性质
总结词
定义与性质
详细描述
基是拓扑空间中一个特殊的子集系统,它具有一些重要的性质,如基的任意并仍 属于基,基的有限交仍属于基等。基是定义拓扑空间的重要工具。
基在拓扑空间中的应用

《点集拓扑学》课件

《点集拓扑学》课件

映射度定理
要点一
总结词
该定理给出了一个映射在两个拓扑空间之间保持某些性质 的条件。
要点二
详细描述
映射度定理是点集拓扑学中的一个重要定理,它提供了一 个映射在两个拓扑空间之间保持某些性质的条件。具体来 说,如果一个映射在两个拓扑空间之间是同胚的,那么这 个映射将一个空间的开集映射到另一个空间的开集,或者 将一个空间的闭集映射到另一个空间的闭集。这个定理在 研究拓扑空间的性质和映射的性质时非常有用。
02
紧致性
如果一个拓扑空间中的任意开覆 盖都有有限子覆盖,则称该空间 是紧致的分离公理可以推导出紧致性,反 之则不成立。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
重要的拓扑结构
欧几里得空间
欧几里得空间是点集拓扑学中最 基础的空间,它由满足距离公理
在物理学中的应用
量子力学
在量子力学中,波函数是一种定义在 点集上的复值函数。点集拓扑学为理 解波函数的性质和行为提供了重要的 理论支持。
流体动力学
流体动力学中的某些问题,如涡旋的 形成和演化,需要用到点集拓扑的知 识来描述和解释。
在计算机科学中的应用
计算几何
计算几何是计算机科学中一门研究几何对象离散表示和计算的学科。点集拓扑学为计算几何提供了基础理论和方 法。
莫尔斯-斯梅尔定理
总结词
该定理表明,对于一个可微分的闭曲面,其上的任何连续映射都可以被提升为同 胚的映射。
详细描述
莫尔斯-斯梅尔定理是点集拓扑学中的一个重要定理,它指出对于一个可微分的 闭曲面,其上的任何连续映射都可以被提升为同胚的映射。这个定理在研究连续 映射和同胚映射的性质时非常有用,特别是在处理一些复杂的几何问题时。

《点集拓扑学》第7章§7.1紧致空间

《点集拓扑学》第7章§7.1紧致空间

第7章紧致性§7.1紧致空间本节重点:掌握紧致子集的定义及判断一个子集是紧致子集的方法.(这些方法哪些是充要条件);掌握紧致性是否是连续映射可保留的,是否是可遗传的、有限可积的.在§5.3中,我们用关于开覆盖和子覆盖的术语刻画了一类拓扑空间,即Lindeloff空间.现在来仿照这种做法,即将Lindeloff空间定义中的“可数子覆盖”换成“有限子覆盖”,以定义紧致空间.读者在数学分析中早已见过的Heine-Borel定理断言:实数空间R的任何一个子集为有界闭集的充分必要条件是它的每一个开覆盖都有一个有限子覆盖.(在§7.3中我们将要推广这个定理.)因此我们现在作的事也应当在意料之中.定义7.1.1设X是一个拓扑空间.如果X的每一个开覆盖有一个有限子覆盖,则称拓扑空间X是一个紧致空间.明显地,每一个紧致空间都是Lindeloff空间.但反之不然,例如包含着无限但可数个点的离散空间是一个Lindeloff空间,但它不是一个紧致空间.例7.1.1实数空间R不是一个紧致空间.这是因为如果我们设A={(-n,n)R|b∈Z+},则A的任何一个有限子族{ },由于它的并为(-max{},max{})所以不是R的一个子覆盖.因此R的开覆盖A没有任何一个有限子覆盖.定义7.1.2设X是一个拓扑空间,Y是X中的一个子集,如果Y作为X的子空间是一个紧致空间,则称Y是拓扑空间X的一个紧致子集.根据定义,拓扑空间X中的一个子集Y是X的紧致子集意味着每一个由子空间Y中的开集构成的Y的开覆盖有一个有限子覆盖,这并不明显地意味着由X中的开集构成的每一个Y 的覆盖都有有限子覆盖.所以陈述以下定理是必要的.定理7.1.1设X是一个拓扑空间,Y是X中的一个子集.则Y是X的一个紧致子集当且仅当每一个由X中的开集构成的Y的覆盖都有有限子覆盖.(此定理表明开覆盖中的开子集可以是X的,也可以是Y的)证明必要性设Y是拓扑空间X中的一个紧致子集,A是Y的一个覆盖,它由X中的开集构成.则容易验证集族A}也是Y的一个覆盖,它由Y中的开集构成.因此A有一个有限子覆盖,设为{},于是A的有限子族覆盖Y.充分性,假定每一个由X的开集构成的Y的覆盖都有一个有限子覆盖.设A是Y的一个覆盖,它由Y中的开集构成.则对于每一个A∈A存在X中的一个开集使得A=∩Y.因此A}是由X中的开集构成的Y的一个覆盖,所以有一个有限子覆盖,设为{}此时易见A的子族{}覆盖Y.这证明Y是X的一个紧致子集.下面介绍关于紧致性的一个等价说法.定义7.1.3设A是一个集族.如果A的每一个有限子族都有非空的交(即如果是A的一个有限子族,则),则称A是一个具有有限交性质的集族.定理7.1.2设X是一个拓扑空间.则X是一个紧致空间当且仅当X中的每一个具有有限交性质的闭集族都有非空的交.证明:设X是一个紧致空间.用反证法.设F是X中的一个具有有限交性质的闭集族.设F≠.如果,则令A={∈F}.由于所以A是X的一个开覆盖.于是A有一个有限子覆盖,设为{}.从而这说明F 不具有有限交性质.矛盾.“”,设X中的每一个具有有限交性质的闭集族都有非空的交.为证明X是一个紧致空间,设A是X的一个开覆盖.我们需要证明A有一个有限子覆盖.如果A=,则,这蕴涵X=以及A的每一个子族都是X的覆盖.以下假定A≠.此时F={|A∈A}便是X中的一个非空闭集族,并且因此,它不具有有限交性质.也就是说,它有一个有限子族其交为空集.设F的这个有限子族为{},则是X的一个有限子覆盖.如果B是紧致空间X的一个基,那么由B中的元素构成的X的一个覆盖当然是一个开覆盖,因此有有限子覆盖.下述定理指出,为验证拓扑空间的紧致性,只要验证由它的某一个基中的元素组成的覆盖有有限子覆盖.定理7.1.3设B*是拓扑空间X的一个基,并且X的由B*中的元素构成的每一个覆盖有一个有限子覆盖.则X是一个紧致空间.证明A* 设是X的一个开覆盖.对于每一个A∈A*存在B*的一个子族使得令由于故是一个由B*的元素构成的X的一个覆盖,所以有一个有限子覆盖,设为,对于每一个,i=1,2,…,n,于是对于A*的有限于族{}有也就是说A*有一个有限子覆盖{ }.这证明X是一个紧致空间.定理7.1.4设X和Y是两个拓扑空间,f:X→Y是一个连续映射.如果A是X的一个紧致子集,则f(A)是Y的一个紧致子集.证明设C*是f(A)的一个覆盖,它由Y中的开集组成.对于每一个C∈C*,由于f 是一个连续映射,(C)是X中的一个开集所以A={(C)|C∈C*}是A的一个开覆盖.由于A是X的一个紧致子集,所以A有一个有限子族,设为{},覆盖A即{}是C*的一个子族并且覆盖f(A).这证明f(A)是Y的一个紧致子集.由上述定理可见,拓扑空间的紧致性是连续映射所保持的性质,因此是拓扑不变性质,也是一个可商性质.由此可见,由于实数空间R不是紧致空间,而每一个开区间都是与它同胚的,所以每一个开区间(作为子空间)都不是紧致空间.定理7.1.5紧致空间中的每一个闭子集都是紧致子集.证明设Y是紧致空间X中的一个闭子集.如果A是Y的一个覆盖,它由X中的开集构成.则是X的一个开覆盖.设B1是B的一个有限子族并且覆盖X.则B1-{ }便是A的一个有限子族并且覆盖Y.这证明Y是X的一个紧致子集.定理7.1.6每一个拓扑空间必定是某一个紧致空间的开子空间.证明:设(X,T)是一个拓扑空间.令∞为任何一个不属于X的元素.令X*=X∪{∞}T*=T∪∪{X*}其中={EX*|X*-E是拓扑空间(X,T)中的一个紧致闭集}首先验证T*是集合X*的一个拓扑.(略)其次.证明(X*,T*)是一个紧致空间:设C*是X*的一个开覆盖.则存在C∈C*使得∞∈C.于是C∈,因此X*-C是紧致的,并且C*-{C}是它的一个开覆盖.于是C*-{C}有一个有限子族,设为C1,覆盖X*-C.易见C1∪{C}是C*的一个有限子族,并且覆盖X*.最后,我们指出拓扑空间(X,T)是拓扑空间(X*,T*)的一个开子空间.这是因为T =及X是X*的一个开集.在以上定理的证明中由拓扑空间(X,T)构造出来的紧致空间(X*,T*),通常称为拓扑空间(X,T)的一点紧化.由于非紧致空间(它是存在的)是它的一点紧化的一个子空间,因此紧致性不是可遗传的性质.但由定理7.1.5可知紧致性是闭遗传的.以下定理表明紧致性是可积性质.定理7.1.7设是n≥1个紧致空间.则积空间是一个紧致空间.证明(略)作业:P1881.4.5.。

点集拓扑学期末复习材料

点集拓扑学期末复习材料

第五章 有关可数性的公理① 几种可数性的关系定理 5.1.3 每一个满足第二可数性公理的空间都满足第一可数性公理。

证明:设X 是一个满足第二可数性公理的空间,Β是它的一个可数基。

对于每一个x ∈X ,根据定理2.6.7,x B ={B ∈B | x ∈B}是点x 处的一个邻域基,它是B 的一个子族所以是可数族.于是 X 在点x 处有可数邻域基x B . 定理5.2.2 每一个满足第二可数性公理的空间都是可分空间.证明:设X 是一个满足第二可数性公理的空间,B 是它的一个可数基.在B 中的每一个非空元素B 中任意取定一个点B x B ∈. 令D={∈B x B | B |}φ≠B这是一个可数集.由于X 中的每一个非空开集都能够表示为B 中若干个元素(其中当然至少会有一个不是空集)之并,因此这个非空开集一定与D 有非空的交,所以可数集D 是X 的一个稠密子集.定理 5.3.l (Lindelöff 定理)任何一个满足第二可数性公理的空间都是 Lindelöff 空间.② 可数性的定义定义5.1.1 一个拓扑空间如果有一个可数基,则称这个拓扑空间是一个满足第二可数性公理的空间,或简称为2A 空间。

定义5.1.2 一个拓扑空间如果在它的每一点处有一个可数邻域基,则称这个拓扑空间是一个满足第一可数性公理的空间或简称为1A 空间。

定义5.2.1 设X 是一个拓扑空间,X D ⊂.如果X D =,则称D 是X 的一个稠密子集. 定义5.2.2 设X 是一个拓扑空间,如果X 中有一个可数的稠密子集,则称X 是一个可分空间.定义5.3.1 设A 是一个集族,B 是一个集合.如果B A A ⊃⋃A∈则称集族A 是集合B的一个覆并且当A 是可数族或有限族时,分别称集族A 是集合B 的一个可数覆盖或有限覆盖.设集族A 是集合B 的一个覆盖.如果集族A 的一个子族A1也是集合B 的覆盖,则称集族A1是覆盖A (关于集合B )的一个子覆盖.设X 是一个拓扑空间.如果由X 中开(闭)子集构成的集族A 是X 的子集B的一个覆盖,则称集族A 是集合B 的一个开(闭)覆盖.定义5.3.2 设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个可数子覆盖,则称拓扑空间X 是一个Lindel öff 空间.③ 可数性与序列定理5.1.8 设X 是一个拓扑空间.如果在x ∈X 处有一个可数邻域基,则在点x 处有一个可数邻域基{}+∈Zi i U 使得对于任何+∈Z i 有1+⊃i i U U ,即.........21⊃⊃⊃⊃i U U U 定理5.1.9 设X 是一个满足第一可数性公理的空间,X A ⊂.则点x ∈X 是集合A 的一个凝聚点的充分必要条件是在集合A -{x}中有一个序列收敛于x .④ 性质 Ⅰ. 拓扑不变性定理5.1.4 设X 和Y 是两个拓扑空间,f: X →Y 是一个满的连续开映射.如果X 满足第二可数性公理(满足第一可数性公理),则y 也满足第二可数性公理(满足第一可数性公理).Ⅱ. 遗传性定理5.1.5 满足第二可数性公理(满足第一可数性公理)的空间的任何一个子空间是满足第二可数性公理(满足第一可数性公理)的空间.定理 5.3.4 Lindeloff 空间的每一个闭子空间都是Lindeloff 空间。

《点集拓扑学》第7章 §7.2 紧致性与分离性公理

《点集拓扑学》第7章 §7.2 紧致性与分离性公理

§7.2紧致性与分离性公理本节重点:掌握紧致空间中各分离性公理的关系;掌握Hausdorff空间中紧致子集的性质.在本节中我们把第六章中研究的诸分离性公理和紧致性放在一起进行考察、我们将会发现在紧致空间中分离性公理变得十分简单了.此外在本节的后半部分,我们给出从紧致空间到Hausdorff空间的连续映射的一个十分重要的性质.定理7.2.1 设X是一个Hausdorff空间.如果A是X的一个不包含点x∈X的紧致子集,则点x和紧致子集A分别有开邻域U和V使得U∩V=.证明设A是一个紧致子集,x∈.对于每一个y∈A,由于X是一个Hausdorff空间,故存在x的一个开邻域和y的一个开邻域.集族{|y∈A}明显是紧致子集A的一个开覆盖,它有一个有限子族,设为 {},覆盖A.令,它们分别是点x和集合A的开邻域.此外,由于对于每一个i=1,2,…,n有:所以推论7.2.2 Hausdorff空间中的每一个紧致子集都是闭集.证明设A是Hausdorff空间X的一个紧致子集.对于任何x∈X,如果x A,则根据定理7.2.1可见x不是A的凝聚点.因此凡A的凝聚点都在A中,从而A是一个闭集.推论7.2.2 结合定理7.1.5可见:推论7.2.3 在一个紧致的Hausdorff空间中,一个集合是闭集的充分必要条件是它是一个紧致子集.为了加强读者对定理7.1.5,推论7.2.2和推论7.2.3中的几个简单而常用的结论的印象,重新简明地列举如下:紧致空间:闭集紧致子集Hausdorff空间:闭集紧致子集紧致的hausdorff空间:闭集紧致子集推论7.2.4 每一个紧致的Haudorff空间都是正则空间.证明设A是紧致的Hausdorff空间X的一个闭子集,x是X中的一个不属于集合A的点.由于紧致空间中的闭子集是紧致的(参见定理7.1.5),所以A是一个紧致子集.又根据定理7.2.1,点x和集合A分别有开邻域U和V使得U∩V=.这就证明了X是一个正则空间.定理7.2.5 设X是一个Hausdorff空间.如果A和B是X的两个无交的紧致子集,则它们分别有开邻域U和V使得U∩V=.证明设A和B是X的两个无交的紧致子集.对于任何x∈A,根据定理7.2.1,点x和集合B分别有开邻域.集族{|x∈A}是紧致子集A的一个开覆盖,它有一个有限子族,设为{ },覆盖A.令由于对于每一个i=1,2,…,n有∩V=,所以U∩V=.由于Hausdorff空间的每一个闭子集都是紧致子集,所以根据定理7.2.5立即有:推论7.2.6 每一个紧致的Hausdorff空间都是的,这个结论也可以根据推论7.2.4和定理6.4.3直接推出.根据这个推论联系着表6.1并且留意到每一个紧致空间都是Lindeloff空间这一事实,我们可有图表7.1.从这个图表中可以看出,在紧致空间中分离性公理显得特别简单.图表7.1:紧致空间中的分离性公理定理7.2.7 设X是一个正则空间.如果A是X中的一个紧致子集,U是A的一个开邻域,则存在A的一个开邻域V使得.证明设A是正则空间X中的一个紧致子集,U是A的一个开邻域.对于任何x∈A,点x有一个开邻域使得集族{|x∈A}是紧致子集A的一个开覆盖,它有有限子族,设为{ },覆盖A.令,它是A的一个开邻域,并且根据这个定理立即可见,每一个紧致的正则空间都是正规空间.然而这并不是什么新结论,因为每一个紧致空间都是Lindeloff空间,所以它明显地蕴涵于定理6.4.3中.然而紧致的正规空间可以不是正则空间.例子见于例6.2.3.在那个正规而非正则空间的例子中的拓扑空间只含有有限多个点,当然会是紧致的.定理7.2.8 从紧致空间到Hausdorff空间的任何一个连续映射都是闭映射.证明设X是一个紧致空间,Y是一个Hausdorff空间,f:X→Y是一个连续映射.如果A是紧致空间X中的一个闭子集.则它是紧致的(参见定理 7.1.5),因此它的象集f(A)是Hausdorff空间Y中的一个紧致子集(参见定理7.1.4),所以又是闭集(参见推论7.2.2).这证明f是一个闭映射.因为一个既单且满的开(或闭)的连续映射即是一个同胚,所以我们有:推论7.2.9 从紧致空间到Hausdorff空间的任何一个既单且满的(即—一的)连续映射都是同胚.作业:P192 1.2.。

拓扑学中的紧致空间判定准则

拓扑学中的紧致空间判定准则

拓扑学中的紧致空间判定准则拓扑学是研究空间及其性质的数学学科,其中一个重要的概念是紧致空间。

紧致空间在数学和物理学中有广泛的应用,因此判定一个空间是否紧致是非常重要的。

本文将介绍拓扑学中的紧致空间判定准则,重点讨论Tychonoff定理和Heine-Borel定理。

1. Tychonoff定理Tychonoff定理是基于直积拓扑空间的一个重要定理,它提供了一种判定紧致空间的方法。

给定一族拓扑空间{X_i},其中每个空间X_i都是紧致的,那么它们的直积空间X = ∏(X_i)也是紧致的。

Tychonoff定理的证明可以通过Zorn引理和紧致性的等价性来完成,但由于篇幅的限制,详细的证明过程在此不再展开。

2. Heine-Borel定理Heine-Borel定理是拓扑学中判定实数空间上紧致性的重要定理。

这个定理提供了一种判定有界闭集合的紧致性的准则。

对于实数空间R^n中的子集A,它是紧致的当且仅当A是有界的和闭的。

也就是说,如果集合A在R^n中既有界又闭,那么A是一个紧致集合。

Heine-Borel定理的证明可以利用覆盖定理和有限子覆盖的概念,但在这里我们不再详细阐述具体的证明过程。

3. 紧致空间判定准则在拓扑学中,我们可以利用Tychonoff定理和Heine-Borel定理来判定紧致空间。

具体步骤如下:步骤1:对于给定的拓扑空间,判断它是否可以表示为一族拓扑空间的直积。

如果能够表示为直积空间,那么应用Tychonoff定理,得出该空间是紧致的。

步骤2:对于实数空间R^n中的子集,判断该子集是否同时满足有界性和闭性。

如果满足条件,应用Heine-Borel定理,得出该子集是紧致的。

通过上述两个判定准则,我们可以判断一个空间或者子集是否是紧致的。

这些定理为拓扑学的研究提供了有力的工具和方法。

结论拓扑学中的紧致空间判定准则对于研究空间的性质及其应用具有重要意义。

Tychonoff定理和Heine-Borel定理为我们提供了判定紧致空间的有效准则,为解决实际问题提供了数学上的支持。

《点集拓扑学教案》

《点集拓扑学教案》

《点集拓扑学教案》word版教案章节一:引言1.1 课程介绍本课程旨在帮助学生理解点集拓扑学的基本概念和性质,掌握基本的拓扑空间及其性质,了解拓扑学在数学和物理学中的应用。

1.2 知识点1.2.1 拓扑空间的定义与性质1.2.2 开集、闭集和边界1.2.3 拓扑关系的传递性1.3 教学目标通过本章的学习,使学生了解拓扑空间的基本概念,掌握开集、闭集和边界的定义及其性质,理解拓扑关系的传递性。

教案章节二:拓扑空间2.1 基本概念2.1.1 拓扑空间的定义2.1.2 拓扑空间的性质2.1.3 常见的拓扑空间2.2 拓扑关系2.2.1 拓扑关系的定义2.2.2 拓扑关系的性质2.2.3 拓扑关系的传递性2.3 教学目标通过本章的学习,使学生掌握拓扑空间的基本概念和性质,理解拓扑关系的定义及其性质,掌握拓扑关系的传递性。

教案章节三:开集与闭集3.1 开集与闭集的定义3.1.1 开集的定义3.1.2 闭集的定义3.2 开集与闭集的性质3.2.1 开集与闭集的举例3.2.2 开集与闭集的关系3.2.3 开集与闭集的运算3.3 教学目标通过本章的学习,使学生理解开集与闭集的定义及其性质,掌握开集与闭集的举例和运算。

教案章节四:边界4.1 边界概念4.1.1 边界的定义4.1.2 边界的性质4.2 边界定理4.2.1 边界定理的定义4.2.2 边界定理的证明4.3 教学目标通过本章的学习,使学生了解边界的定义及其性质,掌握边界定理及其证明。

教案章节五:拓扑关系与边界关系5.1 拓扑关系与边界关系的联系5.1.1 拓扑关系与边界关系的定义5.1.2 拓扑关系与边界关系的性质5.2 拓扑关系与边界关系的应用5.2.1 拓扑关系与边界关系在几何学中的应用5.2.2 拓扑关系与边界关系在物理学中的应用5.3 教学目标通过本章的学习,使学生理解拓扑关系与边界关系的联系及其性质,掌握拓扑关系与边界关系在数学和物理学中的应用。

拓扑学中的紧致空间判定准则

拓扑学中的紧致空间判定准则

拓扑学中的紧致空间判定准则拓扑学是数学中研究空间性质和结构的学科,而其中的一个重要概念就是紧致空间。

紧致空间指的是满足一定紧致性质的拓扑空间。

在拓扑学中,判定一个空间是否紧致的问题一直备受关注,并且有多种不同的准则可以用来判定紧致性。

本文将介绍拓扑学中的三个主要紧致空间判定准则。

一、序列紧致性在拓扑学中,一种常见的判定紧致性的方法是利用序列。

考虑一个拓扑空间X,如果对于X中的任意序列{xi}都存在一个收敛子序列{xi_k},使得该子序列的极限点落在X中,那么X就是一个序列紧致空间。

例如,对于实数集R上的序列{xn},如果该序列有一个收敛子序列,且极限点也属于实数集R,那么实数集R是一个序列紧致空间。

同样地,如果对于n维欧几里得空间R^n上的序列{xn},存在一个收敛子序列,其极限点也属于R^n,那么R^n也是一个序列紧致空间。

二、覆盖紧致性覆盖紧致性是另一个常用的紧致性判定准则。

一个拓扑空间X被称为覆盖紧致的,如果对于X的任意开覆盖{Ui},存在有限个开集{U1,U2, ..., Un},使得X可以被这个有限开集合所覆盖。

换句话说,X的任意开覆盖都有有限子覆盖。

以实数集R为例,考虑一组开区间{(-n, n)},其中n为正整数。

可以发现对于R而言,该开覆盖是一个覆盖紧致的,因为任意的开订集都可以被有限个这样的开区间所覆盖。

三、有限交性有限交性也是判定紧致性的一个准则。

一个拓扑空间X被称为有限交紧致的,如果X中的任意开集族{Vi}的有限交集为非空集合,则X 是有限交紧致的。

举个例子,考虑实数集R上的开区间{(a, b)},其中a和b为任意实数。

可以验证,这个开集族的有限交集为空集,因此实数集R不是有限交紧致的。

需要注意的是,序列紧致性、覆盖紧致性和有限交性是拓扑学中常用的几个紧致空间判定准则,并不是相互等价的。

也就是说,一个空间满足其中一个准则,并不意味着它同时满足其他准则。

总结起来,序列紧致性、覆盖紧致性和有限交性是用来判定拓扑空间是否紧致的几个基本准则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章 紧致性
§7.1 紧致空间
本节重点:
掌握紧致子集的定义及判断一个子集是紧致子集的方法.(这些方法哪些是充要条件);
掌握紧致性是否是连续映射可保留的,是否是可遗传的、有限可积的.
在§5.3中,我们用关于开覆盖和子覆盖的术语刻画了一类拓扑空间,即Lindeloff空间.现在来仿照这种做法,即将Lindeloff空间定义中的“可数子覆盖”换成“有限子覆盖”,以定义紧致空间.读者在数学分析中早已见过的Heine-Borel定理断言:实数空间R的任何一个子集为有界闭集的充分必要条件是它的每一个开覆盖都有一个有限子覆盖.(在§7.3中我们将要推广这个定理.)因此我们现在作的事也应当在意料之中.
定义7.1.1 设X是一个拓扑空间.如果X的每一个开覆盖有一个有限子覆盖,则称拓扑空间X是一个紧致空间.
明显地,每一个紧致空间都是Lindeloff空间.但反之不然,例如包含着无限但可数个点的离散空间是一个Lindeloff空间,但它不是一个紧致空间.
例7.1.1 实数空间R不是一个紧致空间.这是因为如果我们设
A={(-n,n)R|b∈Z+},则A的任何一个有限子族
{ },由于它的并为
(-max{},max{})
所以不是R的一个子覆盖.因此R的开覆盖A没有任何一个有限子覆盖.
定义7.1.2 设X是一个拓扑空间,Y是X中的一个子集,如果Y作为X的子空间是一个紧致空间,则称Y是拓扑空间X的一个紧致子集.
根据定义,拓扑空间X中的一个子集Y是X的紧致子集意味着每一个由子空间Y中的开集构成的Y的开覆盖有一个有限子覆盖,这并不明显地意味着由X中的开集构成的每一个Y的覆盖都有有限子覆盖.所以陈述以下定理是必要的.
定理7.1.1 设X是一个拓扑空间,Y是X中的一个子集.则Y是X的一个紧致子集当且仅当每一个由X中的开集构成的Y的覆盖都有有限子覆盖.(此定理表明开覆盖中的开子集可以是X的,也可以是Y的)
证明 必要性设Y是拓扑空间X中的一个紧致子集,A是Y的一个覆盖,它由X中的开集构成.则容易验证集族A}也是Y的一个覆盖,它由Y 中的开集构成.因此A有一个有限子覆盖,设为
{},于是A的有限子族覆盖Y.
充分性,假定每一个由X的开集构成的Y的覆盖都有一个有限子覆盖.设A是Y的一个覆盖,它由Y中的开集构成.则对于每一个A∈A存在X中的一个开集使得A=∩Y.因此A}是由X中的开集构成的Y的一个覆盖,所以有一个有限子覆盖,设为
{}
此时易见A的子族{}覆盖Y.这证明Y是X的一个紧致子集.
下面介绍关于紧致性的一个等价说法.
定义7.1.3 设A是一个集族.如果A的每一个有限子族都有非空的交(即如果是A的一个有限子族,则),则称A是一个具有有限交性质的集族.
定理7.1.2 设X是一个拓扑空间.则X是一个紧致空间当且仅当X中的每一个具有有限交性质的闭集族都有非空的交.
证明 :设X是一个紧致空间.用反证法.设F是X中的一个具有有限交性质的闭集族.设F≠.如果
,则令A={∈F}.由于
所以A是X的一个开覆盖.于是A有一个有限子覆盖,设为{}.从而
这说明F 不具有有限交性质.矛盾.
“”,设X中的每一个具有有限交性质的闭集族都有非空的交.为证明X是一个紧致空间,设A是X的一个开覆盖.我们需要证明A有一个有限子覆盖.如果A=,则,这蕴涵X=以及A的每一个子族都是X的覆盖.以下假定A≠.此时F={|A∈A}便是X中的一个非空闭集族,并且
因此,它不具有有限交性质.也就是说,它有一个有限子族其交为空集.设F的这个有限子族为{},则
是X的一个有限子覆盖.
如果B是紧致空间X的一个基,那么由B中的元素构成的X的一个覆盖当然是一个开覆盖,因此有有限子覆盖.下述定理指出,为验证拓扑空间的紧致性,只要验证由它的某一个基中的元素组成的覆盖有有限子覆盖.
定理7.1.3 设B*是拓扑空间X的一个基,并且X的由B*中的元素构成的每一个覆盖有一个有限子覆盖.则X是一个紧致空间.
证明 A* 设是X的一个开覆盖.对于每一个A∈A*存在B*的一个子族使得
令由于
故是一个由B*的元素构成的X的一个覆盖,所以有一个有限子覆盖,设为 ,对于每一个,i=1,2,…,n,
于是对于A*的有限于族{}有
也就是说A*有一个有限子覆盖{ }.这证明X是一个紧致空间.
定理7.1.4 设X和Y是两个拓扑空间,f:X→Y是一个连续映射.如果A 是X的一个紧致子集,则f(A)是Y的一个紧致子集.
证明 设C*是f(A)的一个覆盖,它由Y中的开集组成.对于每一个C∈C*,由于f是一个连续映射,(C)是X中的一个开集
所以A={(C)|C∈C*}是A的一个开覆盖.由于A是X的一个紧致子集,所以A有一个有限子族,设为{},覆盖A
即{}是C*的一个子族并且覆盖f(A).这证明f(A)是Y的一个紧致子集.
由上述定理可见,拓扑空间的紧致性是连续映射所保持的性质,因此是拓扑不变性质,也是一个可商性质.
由此可见,由于实数空间R不是紧致空间,而每一个开区间都是与它同胚的,所以每一个开区间(作为子空间)都不是紧致空间.
定理7.1.5 紧致空间中的每一个闭子集都是紧致子集.
证明 设Y是紧致空间X中的一个闭子集.如果A是Y的一个覆盖,它由X中的开集构成.则是X的一个开覆盖.设B1是B的一个有限子族并且覆盖X.则B1-{ }便是A的一个有限子族并且覆盖Y.这证明Y是X的一个紧致子集.
定理7.1.6 每一个拓扑空间必定是某一个紧致空间的开子空间.
证明:设(X,T)是一个拓扑空间.令∞为任何一个不属于X的元素.令 X*=X∪{∞}
T*=T∪∪{X*}
其中={EX*|X*-E是拓扑空间(X,T)中的一个紧致闭集}
首先验证T*是集合X*的一个拓扑.(略)
其次.证明(X*,T*)是一个紧致空间:
设C*是X*的一个开覆盖.则存在C∈C*使得∞∈C.于是C∈,因此X*-C是紧致的,并且C*-{C}是它的一个开覆盖.于是C*-{C}有一个有限子族,设为C1,覆盖X*-C.易见C1∪{C}是C*的一个有限子族,并且覆盖X*.
最后,我们指出拓扑空间(X,T)是拓扑空间(X*,T*)的一个开子空间.这是因为T =及X是X*的一个开集.
在以上定理的证明中由拓扑空间(X,T)构造出来的紧致空间(X*,T*),通常称为拓扑空间(X,T)的一点紧化.
由于非紧致空间(它是存在的)是它的一点紧化的一个子空间,因此紧致性不是可遗传的性质.但由定理7.1.5可知紧致性是闭遗传的. 以下定理表明紧致性是可积性质.
定理7.1.7 设是n≥1个紧致空间.则积空间是一个紧致空间.
证明(略)
作业:
P188 1.4.5.。

相关文档
最新文档