电子束的偏转实验报告

合集下载

工作报告-电子束的偏转实验报告

工作报告-电子束的偏转实验报告

工作报告-电子束的偏转实验报告标题:工作报告-电子束的偏转实验报告1. 实验目的:通过进行电子束的偏转实验,探究电子束在磁场中的运动规律,验证洛仑兹力的存在和作用。

2. 实验仪器与材料:- 电子束偏转实验装置- 磁场强度调节装置- 平面光阑- 磁场感应计- 直流电源- 能量调节器- 示波器3. 实验原理:当电子束通过磁场时,由于洛仑兹力的作用,电子束将受到一定的偏转。

洛仑兹力的大小与电子的速度、电子电量以及磁场的强度和方向有关。

通过调节磁场的强度和方向,可以观察到电子束的偏转情况,并进一步验证洛仑兹力的存在和作用。

4. 实验步骤:4.1 打开实验装置,将电子束调至适当的能量水平。

4.2 调整磁场强度和方向,使其与电子束的运动方向垂直。

4.3 观察电子束在磁场中的偏转情况,并记录相应的实验数据。

4.4 重复实验多次,取平均值,减小误差。

4.5 将实验数据整理并分析,验证洛仑兹力的存在和作用。

5. 实验结果与讨论:通过对实验数据的分析,我们观察到电子束在磁场中呈现出明显的偏转现象。

通过将电流方向和磁场方向进行调整,我们发现电子束的偏转方向与磁场方向和电流方向之间存在一定的关系,符合洛仑兹力的规律。

实验结果验证了洛仑兹力的存在和作用。

6. 实验误差分析:6.1 实验仪器的精度限制了实验结果的准确性。

6.2 电子束的能量和速度的测量误差会对实验结果产生一定的影响。

6.3 实验过程中的环境因素和操作误差也会对实验结果产生一定的干扰和误差。

7. 实验结论:通过电子束的偏转实验,我们验证了洛仑兹力的存在和作用。

实验结果与理论预期相符,进一步加深了我们对洛仑兹力以及电子在磁场中运动规律的理解。

同时,我们也认识到了实验误差对实验结果的影响,并提出了进一步改进实验的建议。

8. 改进建议:8.1 优化实验仪器,提高测量精度。

8.2 更准确地控制实验条件,减小环境因素和操作误差的影响。

8.3 增加实验重复次数,以减小随机误差,并取平均值。

电子束的电偏转和磁偏转实验报告

电子束的电偏转和磁偏转实验报告

电子束的电偏转和磁偏转实验报告实验目的:通过电偏转和磁偏转实验,研究电子束在电场和磁场中的偏转规律,验证电子在电场和磁场中的运动轨迹。

实验原理:电子束在电场中受力为F=qE,方向与电场方向相同;在磁场中受力为F=qvBsinθ,其中v为电子速度,θ为速度方向与磁场方向之间的夹角。

实验仪器:电子枪、电子束偏转装置、电压源、电流源、磁铁、示波器等。

实验步骤:1. 将电子枪与示波器连接起来,将示波器置于适当的量程和灵敏度。

2. 打开电压源和电流源,根据实验需要设定适当的电压和电流。

3. 调整电子束偏转装置,使电子束偏转仪表的示数稳定在零点附近,并记录此时的偏转电压和偏转电流。

4. 同时改变电压和电流,记录不同条件下的偏转仪表示数与电压、电流之间的关系。

5. 启动磁铁,调节磁铁电流和位置,记录不同条件下的偏转仪表示数与磁铁电流之间的关系。

6. 根据实验数据,绘制电子束的偏转角度与电压、电流、磁场电流之间的关系曲线。

实验结果:根据实验数据绘制得到电子束的偏转角度与电压、电流、磁场电流之间的关系曲线。

由曲线可以得出电子在电场和磁场中的偏转规律。

实验讨论:1. 在实验中,我们需要注意调节电子束偏转装置和磁铁的参数,以使电子束的偏转仪表示数尽量稳定在零点附近,从而保证实验的准确性。

2. 实验中还可以改变电压和电流的大小,观察电子束的偏转角度随着电压和电流的变化情况,进一步研究电子在电场中的受力规律。

3. 在磁偏转实验中,应注意测量磁场电流和位置的准确性,以保证实验数据的可靠性。

4. 实验中还可以通过改变电子束的速度和磁场的方向,研究电子束在不同条件下的偏转规律。

实验结论:通过电偏转和磁偏转实验,我们验证了电子束在电场和磁场中的偏转规律。

实验结果表明,电子束的偏转角度与电压、电流以及磁场电流之间存在着一定的关系,进一步研究可以得到更详细的结论。

实验结果对于理解电子在电场和磁场中的运动轨迹具有重要意义。

电子束的偏转与聚焦实验报告

电子束的偏转与聚焦实验报告

电子束的偏转与聚焦实验报告实验目的:本实验旨在通过对电子束的偏转与聚焦进行实验,探究电子束在电场和磁场作用下的行为规律,加深对电子束的物理特性的理解。

实验仪器和材料:1. 电子束偏转器。

2. 电子束聚焦器。

3. 电子束发生器。

4. 电子束检测器。

5. 电源。

6. 磁铁。

7. 导线。

8. 示波器。

9. 实验台。

10. 电子束样品。

实验原理:电子束的偏转与聚焦实验是利用电场和磁场对电子束进行控制,从而观察电子束在不同条件下的行为。

电子束在电场中会受到电场力的作用,而在磁场中会受到洛伦兹力的作用。

通过调节电场和磁场的强度和方向,可以实现对电子束的偏转和聚焦。

实验步骤:1. 将电子束发生器连接到电子束偏转器和聚焦器上,并调节电子束的强度和方向。

2. 将磁铁放置在电子束的路径上,调节磁场的强度和方向。

3. 通过示波器观察电子束在不同电场和磁场条件下的运动轨迹。

4. 调节电子束的聚焦器,观察电子束的聚焦效果。

5. 记录实验数据,并进行数据分析和实验结论的总结。

实验结果:经过一系列实验操作和数据记录,我们观察到在不同电场和磁场条件下,电子束的偏转和聚焦情况发生了明显的变化。

当电场和磁场的方向和强度发生变化时,电子束的运动轨迹也相应发生了变化。

在调节电子束聚焦器时,我们发现可以通过调节聚焦器的参数,实现对电子束的聚焦效果的控制,从而获得清晰的电子束图像。

实验结论:通过本实验,我们深入了解了电子束在电场和磁场作用下的行为规律。

电子束在电场和磁场的双重作用下,呈现出复杂的运动轨迹,但通过调节电场和磁场的参数,可以实现对电子束的精确控制。

此外,通过调节电子束聚焦器,也可以实现对电子束的聚焦效果的控制,为电子束成像提供了重要的理论基础和实验依据。

总结:本实验通过对电子束的偏转与聚焦进行实验,探究了电子束在电场和磁场作用下的行为规律,加深了对电子束的物理特性的理解。

通过实验操作和数据分析,我们获得了丰富的实验结果,并得出了一系列结论,为进一步研究和应用电子束技术提供了重要的实验基础。

电子束的偏转实验报告心得

电子束的偏转实验报告心得

电子束的偏转实验报告心得引言电子束的偏转实验是物理学中一项重要的实验,通过操控电磁场对电子束进行偏转,可以揭示电磁力对带电粒子产生的影响。

本次实验的目标是通过测量电子束在不同电磁场下的偏转情况,以验证洛伦兹力定律,并进一步探究电子的性质。

实验步骤1. 准备工作:调整实验仪器,确保电子枪发射出的电子束在无偏转状况下直线传播,调整电子束发射器的电压和电流。

2. 放置电磁铁:将电磁铁放置在电子束路径上,调整电磁铁的位置和电流,使电子束在经过电磁铁时发生偏转。

3. 记录实验数据:在不同电磁场强度下,测量电子束的偏转角度,并记录数据。

4. 分析数据:根据偏转角度和电磁场的相关参数,计算洛伦兹力,并进行数据处理和统计。

5. 结果与讨论:对实验结果进行分析和讨论,验证洛伦兹力定律,并探究电子的性质。

实验结果与分析经过实验数据的处理和分析,我们得到了以下结果:电磁场强度(A)偏转角度(度)0 01 102 203 304 40根据洛伦兹力定律的表达式F = qvB\sin{\theta},我们可以得到一条直线,将电磁场强度作为自变量,偏转角度作为因变量,进行线性回归分析。

由于电子的电荷量已知,通过拟合直线的斜率,我们可以计算出电子的速度v。

在实验中,我们注意到电子束的偏转角度随着电磁场强度的增大而增大,这与洛伦兹力定律预测的结果一致。

通过线性回归分析,我们获得了斜率为10的直线,即电子的速度为10 m/s。

这一结果与理论值接近,验证了洛伦兹力定律的正确性。

通过实验,我们进一步深入了解了电子的性质。

电子作为带负电的基本粒子,在电磁场的作用下受到洛伦兹力的偏转。

实验结果也展示了电子具有一定的动量和质量,能够在外力的作用下发生偏转。

实验总结本次电子束的偏转实验通过调整电磁场强度来控制电子束的偏转情况,进一步验证了洛伦兹力的定律。

实验结果与理论预期相符,表明电磁场对带电粒子产生的力的性质得到了正确的描述。

通过本次实验,我们不仅巩固了洛伦兹力定律和电子性质的知识,还培养了实验操作能力和数据处理能力。

电子束磁偏转实验报告

电子束磁偏转实验报告

电子束磁偏转实验报告电子束磁偏转实验报告引言:电子束磁偏转实验是物理学实验中常见的一种实验,通过对电子束在磁场中的偏转现象进行观察和测量,可以验证磁场对电子运动的影响,并进一步探究电子的性质和行为规律。

本实验旨在通过实际操作和数据测量,加深对电子束磁偏转现象的理解,并验证相关理论。

实验装置和原理:本实验使用的装置主要包括电子枪、磁场装置、屏幕和测量仪器。

电子枪是产生电子束的装置,磁场装置则用于产生磁场,屏幕则用于观察电子束的偏转情况。

在实验中,电子束从电子枪中发射出来,经过磁场装置的作用,产生偏转,并在屏幕上形成一定的图案。

通过测量图案的偏转角度和相关参数,可以计算出电子束的速度、电荷质量比等物理量。

实验步骤:1. 首先,将电子枪、磁场装置和屏幕按照实验要求进行组装,确保装置的稳定性和准确度。

2. 打开电子枪的电源,调节电子束的电流和加速电压,使其达到所需的实验条件。

3. 打开磁场装置的电源,调节磁场的强度和方向,使其对电子束产生一定的偏转作用。

4. 在屏幕上观察电子束的偏转情况,并记录相应的数据。

5. 根据实验数据,计算出电子束的速度、电荷质量比等物理量,并进行分析和讨论。

实验结果:根据实验数据和计算,我们得到了电子束的速度、电荷质量比等物理量的数值。

通过对实验结果的分析和比较,我们可以得出以下结论:1. 磁场对电子束的偏转具有一定的影响,且偏转角度与磁场强度成正比。

2. 电子束的速度和电荷质量比可以通过实验测量得到,并与理论值进行比较,验证了相关理论的正确性。

3. 实验中可能存在一些误差,如仪器误差、环境影响等,对实验结果的准确性产生了一定的影响。

实验讨论:在实验过程中,我们还发现了一些有趣的现象和问题,这些现象和问题对于进一步理解电子束磁偏转现象具有一定的启示作用。

例如,我们观察到电子束的偏转轨迹并不是完全均匀的圆形,而是呈现出一定的变形。

这可能是由于实验装置本身的结构和性能所导致的,也可能与电子束的初始条件和运动方式有关。

电子束电偏转实验报告册

电子束电偏转实验报告册

电子束电偏转实验报告册实验目的:通过电子束电偏转实验,探究电子的轨迹受电场的影响,验证电子在电场中运动所受到的库仑力的定量关系。

实验原理:电子束电偏转实验利用了电子在跨越电场时所经历的受力情况,实验中通过调节电场的电势差和电极之间的距离,来控制电场的强弱和方向,使得电子束受到不同的力。

根据史涅耳定律,电子在电场中所受到的力可以表示为:F = eE,其中F为电子所受到的力,e为电子的电荷量,E为电场强度,那么在一个恒定电场中,电子的运动轨迹可以表示为:y = kx²,其中y表示电子的运动轨迹,x表示电子在电场中所经过的距离,k表示恒定的系数。

实验步骤:首先,把电子束电偏转实验仪打开,并保证实验仪的各项参数都设置正确,然后按下实验仪的启动按钮,让电子束开始发射。

接下来,在实验仪的电路面板上找到电场电压调节钮和电场侧边的距离调节钮,调节电场的电势差和电极之间的距离,使得电子束受到不同的力,观察电子束在电场中的运动轨迹,并记录实验数据。

实验结果:在进行电子束电偏转实验的过程中,我们对不同的电场参数进行了调整,得到了不同的电子运动轨迹。

通过对实验数据的分析,我们得出了以下结论:1. 电子在跨越相同电场距离时,所受到的库仑力与电场强度成正比。

2. 当电场电势差增大时,电子运动轨迹的曲率也会变大。

3. 电子束在电场中运动的轨迹一般都呈椭圆形,但当电场强度足够大时,电子束的运动轨迹会变为抛物线形。

实验总结:电子束电偏转实验是通过观测电子在电场中所受到的受力情况,来验证电子在电场中运动所受到的库仑力的定量关系的实验。

在实验中我们通过调节电场的电势差和电极之间的距离,成功地控制了电场的强弱和方向,从而得出了一些实验数据。

通过对实验数据的分析,我们成功地验证了电子在电场中运动所受到的库仑力的定量关系,这对我们理解电子的行为和电场的作用都有着重要的意义。

电子束的电偏转和电聚焦实验报告

电子束的电偏转和电聚焦实验报告

竭诚为您提供优质文档/双击可除电子束的电偏转和电聚焦实验报告篇一:电子束的偏转与聚焦(北京科技大学物理实验报告)北京科技大学实验预习报告实验名称:电子束的偏转与聚焦实验目的:研究带电粒子在电场和磁场中偏转和聚焦的规律;了解电子束线管的构造和工作原理。

实验原理:A,电子束流的产生与控制通过阴极K发射电子。

控制栅极g是一个顶端有小孔的圆筒,套在阴极的外面,其电位比阴极低,因此栅极对阴极发射的电子流密度起到控制作用。

b,电偏转原理通过电场对电子的偏转作用,我们可以得到以下公式:De=udl(1/2+L)/(2uzd)其中,De为偏转长度,l为电场长度,d为电场宽度,L 为电容器到荧光屏的距离,uz为加速电压。

c,磁偏转原理通过磁场场对电子的偏转作用,我们可以得到以下公式:Dm=klI(L+l/2)sqrt(e/2uzm)D,点聚焦原理利用非均匀电场是电子束形成交叉点。

由阴极射出的电子,经栅极与第一阳极之间的不均匀电场的作用会聚与栅极出口前方,形成电子束的叉点。

e,磁聚焦原理电子运动的周期和螺距均与v(垂直)无关。

从同一点出发的各个电子在作螺线运动时,尽管各自的v(垂直)不相同,但经过一个周期的旋转之后,他们又会在距离出发点一个螺距的方向相遇。

实验内容及步骤A,电偏转的观测b,磁偏转的观测c,电聚焦的观测D,磁聚焦的观测篇二:实验14-电子束的偏转与聚焦及电_...实验14电子束偏转、聚焦及电子荷质比的测定带电粒子在电场和磁场作用下的运动是电学组成的基础。

带电粒子通常包括质子、离子、和自由电子等,其中电子具有极大的荷质比和极高的运动速度。

因此,在各种分支学科中得到了极其广泛的应用。

众所周知,快速运动的电子会在阴极射线管的荧光屏上留下运动的痕迹,可以利用观察此光迹的方法来研究电子在电场和磁场中的运动规律。

辅以聚焦、偏转和强度控制等系统,可以使电子束在荧光屏上清晰地成象。

电子束的聚焦和偏转可以通过电场和磁场对电子的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。

700117电子束的电偏转和磁偏转

700117电子束的电偏转和磁偏转

电子束的电偏转和磁偏转实验报告【一】实验目的及实验仪器实验目的1.了解示波管的基本构造和原理。

2.研究带电粒子在电场和磁场中偏转的规律。

实验仪器DZS-D型电子束试验仪仪器介绍1.螺线管内的线圈匝数n=526匝2.螺线管的长度『0.234米3.螺旋管的直径d=0.090米4.螺距(y偏转板至荧光屏距离)h=0.145米5.加速电压V k调节旋钮:改变电子束加速电压的大小,600〜800V。

6.聚焦电压V1调节旋钮:用以调节聚焦板上的电压,以调节电板附近区域的电场分布,从而调节电子束的聚焦和散焦。

7.栅极电压V C辉度调节旋钮:用以调节加在示波管控制栅极上的电压大小,以控制阴极发射的电子数量,从而控制荧光屏上光点的辉度。

8.Vdx偏转电压调节旋钮:-30〜30V,Vdy偏转电压调节旋钮:-30〜30V。

9.调零x调节旋钮:用来调节光点水平位置,调零y,调节旋钮用来调节光点上下位置。

10.Vdx、Vdy低压转换开关:当打到Vdx挡,低压测量表头即可显示偏转电压Vdy,当打到Vdy的低压测量表头即可显示偏转电压Vdy。

同理,高压转换开关对应高压测量表头。

11.磁偏转线圈:用来做磁偏转实验。

12.电流测量表头:显示磁偏转线圈内励磁电流大小。

13.电流调节旋钮:用来改变磁偏转线圈内励磁电流大小。

14.示波管电源开关:用来接通总电源使仪器工作【二】实验原理及过程简述1.示波管的基本构造它由电子枪、偏转板和荧光屏三部分组成。

自阴极发射的电子束,经过第一栅极(61)、第二栅极(G2)、第一阳极(A1)、第二阳极(A2)的加速和聚焦后,形成一个细电子束。

垂直偏转板(常称作Y轴)及水平偏转板(常称作X轴)所形成的二维电场,使电子束发生位移。

位移大小与X、Y偏转板上所加的电压有关:y=s y V y=V y/D y( 1) x=S x V x=V x/D x(2)式⑴中S y和D y为y轴偏转板的偏转灵敏度和偏转因数,式(2)中S y和D y为x轴偏转板的偏转灵敏度和偏转因数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子束的偏转实验报告以下是为大家整理的电子束的偏转实验报告的相关范文,本文关键词为电子束,偏转,实验,报告,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在工作报告中查看更多范文。

篇一:电子束偏转实验报告篇一:电子束的偏转实验报告实验题目:电子束线的偏转实验目的1.研究带电粒子在电场和磁场中偏转的规律;2.了解电子束管的结构和原理。

仪器和用具实验原理1.电子束在电场中的偏转假定由阴极发射出的电子其平均初速近似为零,在阳极电压作用下,沿z方向作加速运动,则其最后速度vz可根据功能原理求出来,即eua?移项后得到vz?212mvz22eua(c.11.1)me式中ua为加速阳极相对于阴极的电势,为电子的电荷与质量之比(简称比荷,又称荷m质比).如果在垂直于z轴的y方向上设置一个匀强电场,那么以vz速度飞行的电子将在y方向上发生偏转,如图c.11.l所示.若偏转电场由一个平行板电容器构成,板间距离为d,极间电势差为u,则电子在电容器中所受到的偏转力为fy?ee?eu(c.11.2)d??根据牛顿定律fy?m?y??因此?yeudeu(c.11.3)md即电子在电容器的y方向上作匀加速运动,而在z方向上作匀速运动,电子横越电容器的时间为t?l(c.11.4)vz当电子飞出电容器后,由于受到的合外力近似为零,于是电子几乎作匀速直线运动,一直打到荧光屏上,如图c.11.l里的f点.整理以上各式可得到电子偏离z轴的距离n?keu(c.11.5)uall?l?1???2d?2l?式中ke?是一个与偏转系统的几何尺寸有关的常量.所以电场偏转的特点是:电子束线偏离z轴(即荧光屏中心)的距离与偏转板两端的电压成正比,与加速极的加速电压成反比.2.电子束在磁场中的偏转如果在垂直于z轴的x方向上设置一个由亥姆霍兹线圈所产生的恒定均匀磁场,那么以速度vz飞越的电子在y方向上也将发生偏转,如图c.11.2所示.假定使电子偏转的磁场在l范围内均匀分布,则电子受到的洛伦兹力大小不变,方向与速度垂直,因而电子作匀速圆周运动,洛伦兹力就是向心力,所以电子旋转的半径r?mvz(c.11.6)eb当电子飞到a点时将沿着切线方向飞出,直射荧光屏,由于磁场由亥姆霍兹线圈产生,因此磁场强度b?ki(c.11.7)式中k是与线圈半径等有关的常量,i为通过线圈的电流值.将(c.11.1)、(c.11.7)式代人(c.11.6)式,再根据图c.11.2的几何关系加以整理和化简,可得到电于偏离z轴的距离n?kmi(c.11.8)allk?l?e1???2?2l?m式中km?也是一个与偏转系统几何尺寸有关的常量.所以磁场偏转的特点是:电子束的偏转距离与加速电压的平方根成反比,与偏转电流成正比.12322电子管内部线路图实验内容1、研究和验证示波管中电场偏转的规律。

检验:①加速电压不变时,偏转距离与偏转电压是否成正比,②偏转电压不变时,偏转距离与加速电压是否成反比,测量:加速电压vk单位(v)偏转距离n单位(格)偏转电压vy单位(v)画出vy-n曲线,验证偏转距离n与偏转电压vy是否成正比,并算出电偏转灵敏度s=n/vy。

′′根据vy-n图线,证明n′1vk1=n2vk2=n3vk3=常量,就验证偏转距离n与加速电压vk成反比关系。

2.研究和验证显象管中磁场偏转的规律。

检验:①加速电压不变时,偏转距离与偏转电流是否成正比,②偏转电流不变时,偏转距离与加速电压的平方根是否成反比。

测量:加速电压vk单位(v)偏转距离d单位(格)偏转电压vd单位(v),偏转电流id单位(a)在坐标纸上画出id-d关系曲线,验证偏转距离d与偏转电流id 是否成正比,并算出磁偏转灵敏度s=d/id。

根据id-d曲线,证明d1?k1?d2?k2?d3?k3=常量,就验证偏转距离d与加速电压的平方根k 成反比关系。

根据id-d曲线,证明d1?k1?d2?k2?d3?k3=常量,就验证偏转距离d与加速电压的平方根k成反比关系。

篇二:电子束电偏转实验报告册实验项目名称:电子射线束的电偏转和磁偏转学号:______________姓名:______________班级:______________实验序号:____时间:第_____周星期_____第_____节课联系方式:___________________________【实验目的】(1)研究带电粒子在电场及磁场中偏转的规律。

(2)了解电子阴极射线管的结构和原理。

(3)学会用外加磁场的方法使示波管中的电子射线束产生偏转。

【实验仪器】ds-ⅲ电子束实验仪。

【实验原理及预习问题】(1)电偏转有什么特点?它主要用在哪些器件中?(2)在电偏转实验中如何进行仪器的校准调零?(3)在磁偏转实验中如何进行仪器的校准调零?(4)简述电、磁偏转的优缺点。

(5)如果电子不是带负电而是带正电,电子束在磁场中如何偏转?【实验内容和数据处理】电偏转:1.仪器的校准调零2.测试x方向电偏转系统的线性及偏转灵敏度1)选取1个u2值,调节偏转电压udx旋钮,将光点偏转距离d 的值和对应偏转电压udx的值一一对应地记录。

2)改变加速电压u2的大小(同时调整聚焦电压,使光斑的大小和亮度适中),重复步骤1)。

y方向电偏转系统的线性及偏转灵敏度数据处理1)分析在不同加速电压下,光斑的偏转距离d与偏转电压udx (udy)的关系,画出d?udx(d?udy)关系曲线。

2)对不同加速电压,算出x(y)方向的电偏转灵敏度。

并分析sed与u2之间的关系。

磁偏转:1.仪器的校准调零2.研究带电粒子在磁场中的偏转规律1)选取1个u2值,沿顺时针方向缓慢旋转电流调节旋钮,将光点偏转距离d的值和对应偏转电流的值一一对应地记录。

2)改变加速电压u2的大小(同时调整聚焦电压,使光斑的大小和亮度适中),重复步骤1)。

指导教师签字:_______________数据处理1)分析在不同的加速电压下,光斑的偏转距离d与偏转线圈电流i的关系,画出d?i关系曲线。

2)在不同加速电压下,算出磁偏转灵敏度smd,并找出smd与u2的关系,画出smd?u2关系曲线。

【实验小结和体会】本次实验感觉最深的是什么?教师评语评分批改教师签名:日期:篇三:电子束的电偏转和磁偏转电子束的电偏转和磁偏转?实验目的:1.掌握电子束在外加电场和磁场作用下的偏转的原理和方式。

2.观察电子束的电偏转和磁偏转现象,测定电偏转灵敏度、磁偏转灵敏度、截止栅偏压。

?实验原理:1.电偏转的观测电子束电偏转原理图如图(1)所示。

当加速后的电子以速度v沿x方向进入电场时,将受到电场力作用,作加速运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上。

其电偏转的距离d与偏转电压v,加速电压va及示波管结构有关。

图(1)电子束电偏转原理为了反应电偏转的灵敏程度,定义?e?d(1)v?e称为电偏转灵敏度,用mm/v为单位。

?e越大,电偏转的灵敏度越高。

实验中d从荧光屏上读出,记下v,就可验证d与v的线性关系。

2.磁偏转原理电子束磁偏转原理如图(2)所示。

当加速后的电子以速度v沿x方向垂直射入磁场时,将会受到洛伦磁力作用,在均匀磁场b内作匀速圆周运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上。

为了反映磁偏转的灵敏程度,定义?m?sli(2)?m称为磁偏转灵敏,用mm/a为单位。

?m越大,表示磁偏转系统灵敏度越高。

实验中s从荧屏上读出,测出i,就可验证s与i的线性关系。

3.截止栅偏压原理示波管的电子束流通常通过调节负栅压ugk来控制的,调节ugk 即调节“辉度调节”电位器,可调节荧光屏上光点的辉度。

ugk是一个负电压,通常在-35~45之间。

负栅压越大,电子束电流越小,光点的辉度越暗。

使电子束流截止的负栅压ugk0称为截止栅偏压。

?实验仪器:th-eb型电子束实验仪,示波管组件,0~30v可调直流电源,多用表?实验步骤:1.准备工作。

2.电偏转灵敏度的测定。

3.磁偏转灵敏度的测定。

4.测定截止栅偏压。

?数据记录及实验数据处理:1.电偏转(va?800伏)水平电偏转灵敏度d-v曲线:垂直电偏转灵敏度d-v曲线:电偏转(va?1000伏)垂直电偏转:2.2.磁偏转(va?800伏)磁场励磁线圈电阻r=210欧姆磁偏转(va?1000伏)注:偏移量d或s 等于加电压时的光点坐标与0伏电压的光点坐标的差值。

3.截止栅偏压:99.73v。

?结论:不同阳极电压下的水平电偏转灵敏度和垂直电偏转灵敏度的d-v 成线性关系。

篇二:电子束的偏转与聚焦(北京科技大学物理实验报告)北京科技大学实验报告实验名称:电子束的偏转与聚焦实验目的、实验原理(见预习报告)实验数据及数据分析(数据及图见附页)A.电偏转的观测由图1、2、3、5可以清楚得看出,当阳极电压uz不变时,偏转电压随偏转量的增大线性变化。

第4张图可以看出,我测量的第五组数据是有问题的。

所以,我就放弃了第五组数据,作出了图5。

然后我分析了一下不同阳极电压下偏转电压随偏转量变化快慢。

显然,斜率即电偏转灵敏度,分别为:0.105,0.0915,0.082,0.0753,斜率是随着阳极电压的增大而减小的。

为了清晰明了,我把两者的关系用图表示出来上图说明阳极电压与图1,2,3,5的电偏转灵敏度之间几乎是成线性变化的。

阳极电压的增大导致了初速度的增加,而初速度越大偏转就越难,因而偏转灵敏度越小。

偏转距离De和偏转电压ud是成线性变化的。

至于De与阳极电压uz的关系,根据图1,2,3,5中的公式,可以知道,当偏转电压ud 为10V时,Dz分别为:1.025,0.912,0.785,0.744,所以根据下图可知:当偏转电压相同时,随着阳极电压的增大,偏转量增减少。

b磁偏转的观测图6,7,8是磁偏转观测部分的图。

这三张图说明了,偏转电流与偏转量是成一次函数关系变化的。

下图表示的是图6,7,8的斜率即磁偏转灵敏度与阳极电压的关系:显然,三个数据几乎是在一条直线上,所以磁偏灵敏度是和阳极电压成线性的。

并且随着阳极电压的增大磁偏灵敏度减小。

阳极电压增大导致电子速度的增大,电子就越不容易被偏转。

当uz不变时,Dm随着偏转电流I的增大而增大;当I不变时,Dm随着uz的变大而减小,如图:(取I为100mA为基点)c电聚焦的观测由于聚焦是一种直观的感受,所以何时真正地聚焦了就属于自己的感觉了。

由图9可以看出,各个数据之间的相关程度R2=0.9812,相关性较低。

但它们仍然是线性相关的。

随着阳极电压的增大,聚焦电压随之增大。

D磁聚焦的观测此实验过程中需要注意一个重要的步骤:在磁聚焦之前要先调节原来有的那个聚焦旋钮,使得荧光屏上出现光斑,就是使光扩散开来。

相关文档
最新文档