实验3—13电子束线的电偏转与磁偏转

合集下载

【2017年整理】电子束线的电偏转与磁偏转

【2017年整理】电子束线的电偏转与磁偏转

【2017年整理】电子束线的电偏转与磁偏转电子束线是一种用于聚焦和控制电子束的设备,它通常由许多电极和磁铁组成。

在电子束管中,我们可以通过作用于电子束上的磁场或电场来实现其偏转。

磁偏转和电偏转是电子束线中最基本的两种偏转方式。

电偏转电偏转是通过作用于电子束上的电场来实现的。

它是用一对偏转板(或偏转电极)来产生电场的方式。

当电子束通过偏转板时,其运动方向可能被偏转。

当偏转板的电场与电子束方向垂直时,电子束将被偏转90度。

偏转板的电场可以通过应用电压来控制,根据需要进行调整。

在电偏转器中,电子束的偏转是通过一对接地的金属板来实现的。

这些金属板周围的电场是可以控制的。

当电子束通过这个区域时,它将受到一个成比例的电场,这样它的方向就会发生改变。

因此,通过更改板的电场极性,可以控制电子束的偏转方向。

磁偏转是通过作用于电子束上的磁场来实现的。

这种改变是通过磁铁来实现的。

电子束通过的区域如果有一个磁场,则磁场方向垂直于电子束的运动方向时,电子束的运动方向将被弯曲。

如果想让电子束向一个特定的方向偏转,可以更改磁铁北极与南极的极性。

在磁偏转器中,通过一个或多个磁铁来产生相应的磁力场。

一般情况下,电子束经过了一个非常短暂的时间间隔,这个时间间隔远小于磁铁的反应时间,因此磁铁可以被当做一个静态的器件。

当电子束通过磁场以后,其轨迹会受到轻微的弯曲,从而实现了偏转。

比较电子束线的磁偏转和电偏转不同之处在于,电子束在经过磁场时,其轨迹不需要改变,只需要改变方向即可,而在电偏转器中,通过偏转板改变了电子束的运动方向,因此电子束轨迹也会发生质的变化。

此外,与电偏转相比,磁偏转具有比较大的特点,因为其制造成本要高得多。

在偏转器使用磁铁构成的情况下,将需要使用较大的磁体来产生足够的磁场强度,而这些造价昂贵的组件将会使整个偏转器的制造成本增加。

在电偏转器中,制造的成本相对较低,因此其成为许多电子设备中标配的选择。

结论总结来说,磁偏转和电偏转都是较为基本的电子束线偏转方式。

电子束的电偏转和磁偏转实验报告

电子束的电偏转和磁偏转实验报告

电子束的电偏转和磁偏转实验报告实验目的:通过电偏转和磁偏转实验,研究电子束在电场和磁场中的偏转规律,验证电子在电场和磁场中的运动轨迹。

实验原理:电子束在电场中受力为F=qE,方向与电场方向相同;在磁场中受力为F=qvBsinθ,其中v为电子速度,θ为速度方向与磁场方向之间的夹角。

实验仪器:电子枪、电子束偏转装置、电压源、电流源、磁铁、示波器等。

实验步骤:1. 将电子枪与示波器连接起来,将示波器置于适当的量程和灵敏度。

2. 打开电压源和电流源,根据实验需要设定适当的电压和电流。

3. 调整电子束偏转装置,使电子束偏转仪表的示数稳定在零点附近,并记录此时的偏转电压和偏转电流。

4. 同时改变电压和电流,记录不同条件下的偏转仪表示数与电压、电流之间的关系。

5. 启动磁铁,调节磁铁电流和位置,记录不同条件下的偏转仪表示数与磁铁电流之间的关系。

6. 根据实验数据,绘制电子束的偏转角度与电压、电流、磁场电流之间的关系曲线。

实验结果:根据实验数据绘制得到电子束的偏转角度与电压、电流、磁场电流之间的关系曲线。

由曲线可以得出电子在电场和磁场中的偏转规律。

实验讨论:1. 在实验中,我们需要注意调节电子束偏转装置和磁铁的参数,以使电子束的偏转仪表示数尽量稳定在零点附近,从而保证实验的准确性。

2. 实验中还可以改变电压和电流的大小,观察电子束的偏转角度随着电压和电流的变化情况,进一步研究电子在电场中的受力规律。

3. 在磁偏转实验中,应注意测量磁场电流和位置的准确性,以保证实验数据的可靠性。

4. 实验中还可以通过改变电子束的速度和磁场的方向,研究电子束在不同条件下的偏转规律。

实验结论:通过电偏转和磁偏转实验,我们验证了电子束在电场和磁场中的偏转规律。

实验结果表明,电子束的偏转角度与电压、电流以及磁场电流之间存在着一定的关系,进一步研究可以得到更详细的结论。

实验结果对于理解电子在电场和磁场中的运动轨迹具有重要意义。

电子束的电偏转和磁偏转实验报告

电子束的电偏转和磁偏转实验报告

电子束的电偏转和磁偏转实验报告篇一:电子束的电偏转和磁偏转电子束的电偏转和磁偏转 ? 实验目的: 1.掌握电子束在外加电场和磁场作用下的偏转的原理和方式。

2.观察电子束的电偏转和磁偏转现象,测定电偏转灵敏度、磁偏转灵敏度、截止栅偏压。

? 实验原理: 1.电偏转的观测电子束电偏转原理图如图(1)所示。

当加速后的电子以速度V沿X方向进入电场时,将受到电场力作用,作加速运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上。

其电偏转的距离D与偏转电压V,加速电压VA及示波管结构有关。

图(1)电子束电偏转原理为了反应电偏转的灵敏程度,定义 ?e? D (1) V ?e称为电偏转灵敏度,用mm/V为单位。

?e越大,电偏转的灵敏度越高。

实验中D从荧光屏上读出,记下V,就可验证D与V的线性关系。

2.磁偏转原理电子束磁偏转原理如图(2)所示。

当加速后的电子以速度V沿X方向垂直射入磁场时,将会受到洛伦磁力作用,在均匀磁场B内作匀速圆周运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上。

为了反映磁偏转的灵敏程度,定义 ?m?SlI (2) ?m称为磁偏转灵敏,用mm/A为单位。

?m越大,表示磁偏转系统灵敏度越高。

实验中S从荧屏上读出,测出I,就可验证S与I 的线性关系。

3.截止栅偏压原理示波管的电子束流通常通过调节负栅压UGK来控制的,调节UGK即调节“辉度调节”电位器,可调节荧光屏上光点的辉度。

UGK是一个负电压,通常在-35~45之间。

负栅压越大,电子束电流越小,光点的辉度越暗。

使电子束流截止的负栅压UGK0称为截止栅偏压。

? 实验仪器: TH-EB型电子束实验仪,示波管组件,0~30V可调直流电源,多用表 ? 实验步骤: 1. 准备工作。

2. 电偏转灵敏度的测定。

3. 磁偏转灵敏度的测定。

4. 测定截止栅偏压。

? 数据记录及实验数据处理: 1.电偏转(vA?800伏)水平电偏转灵敏度D-V曲线:垂直电偏转灵敏度D-V曲线:电偏转(VA?1000伏)垂直电偏转:2. 2.磁偏转(vA?800伏)磁场励磁线圈电阻R=210欧姆磁偏转(vA?1000伏)注:偏移量D或S等于加电压时的光点坐标与0伏电压的光点坐标的差值。

实验十三 电子束线的电偏转与磁偏转

实验十三 电子束线的电偏转与磁偏转

实验十三电子束线的电偏转与磁偏转一、实验目的1.了解电子束线的产生、调节和偏转原理。

3.了解磁场对电子运动的影响。

二、实验原理电子束线是一束加速的电子流,是通过电子枪中的热阴极发射大量的电子,通过电子加速管的阳极电压加速,并通过管中一些特定的结构,如聚焦器,透镜,偏转板等来调节。

在热阴极上施加较高电压,热阴极表面极易发射电子,使电子从热阴极射出,在加速管中通过阳极电压加速。

加速度与阳极电压成正比,电流与电子流密度成正比。

2.电子束线的电偏转电偏转是指通过电场对电子束线中的电子进行偏转。

当电子束通过一个带电和平板时,电子束中的电子会受到力的作用,在水平方向受到电场力F=E×q,其中 E 为电场强度,q 为电子所带电荷量。

力的方向始终垂直于电子运动的方向,所以电子束线将被打向与电场垂直的方向。

三、实验器材与装置万用电表、电子学实验箱、电子束线管、CRO 示波器等。

四、实验步骤1.检查实验仪器和所需的全部元器件,按照电路接线图连接好实验电路,并保证电子枪稳定工作。

2.将电子束管放在实验台上,调节相应的管电压并调整其成一个垂直的红色线,以便后续实验调整方便。

3.接通电路电源,在电子束线管中加入直流电压,使电子流从阳极发射管流经偏转器以及磁偏转器,最后击中荧光屏上。

4.打开示波器,调整亮度,聚焦和辉度,直到荧光屏上显示出一个明亮的光点。

5.调整偏转电压和磁场的大小,使电子流在荧光屏上绘制出一个稳定的图形,记录下相应偏转电压和磁场强度。

6.通过更改偏转器的输出信号并记录不同输入电压下电子束的偏转量,记录实验数据并计算出电偏转的比率。

7.更改磁偏转器的输入电流并记录荧光屏上的偏转量,计算出该磁场的磁感应强度。

五、实验注意事项1.注意安全,使用仪器前应检查仪器是否运行正常。

2.要经常检查电子束线管的压力,确保其正常工作。

3.调节偏转电压和磁场强度时,一定要谨慎,防止电子束过大而烧毁设备。

4.记录每次实验的数据,做好实验报告。

实验电子束的电偏转

实验电子束的电偏转

实验电子束的电偏转篇一:实验十三电子束线的电偏转与磁偏转实验十三电子束线的电偏转与磁偏转实验目的1.研究带电粒子在电场和磁场中偏转的规律。

2.了解电子束线管的结构和原理。

实验仪器SJ—SS—2型电子束实验仪。

实验原理在大多数电子束线管中,电子束都在互相垂直的两个方向上偏移,以使电子束能够到达电子接受器的任何位置,通常运用外加电场和磁场的方法实现,显像管等器件就是在这个基础上运用相同的原理制成的。

1.电偏转原理电偏转原理如图4-17-1所示。

通常在示波管(又称电子束线管)的偏转板上加上偏转电压V,当加速后的电子以速度v沿Z方向进入偏转板后,受到偏转电场E (Y轴方向)的作用,使电子的运动轨道发生偏移。

假定偏转电场在偏转板l范围内是均匀的,电子作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。

在偏转板之内Y?1at2?1eE(Z)2 (4-17-1)22mv式中v为电子初速度,Y为电子束在Y方向的偏转。

电子在加速电压VA的作用下,加速电压对电子所做的1功全部转为电子动能,则mv2?eVA。

2将E=V/d和v2代入(4-17-1)式,得2Y?VZ4VAd电子离开偏转系统时,电子运动的轨道与Z轴所成的偏转角?的正切为tg??dY?Vl(4-17-2)dZx?l2VAd设偏转板的中心至荧光屏的距离为L,电子在荧光屏上的偏离为S,则Stg??L代入(4-17-2)式,得S?VlL (4-17-3)2VAd由上式可知,荧光屏上电子束的偏转距离S与偏转电压V成正比,与加速电压VA成反比,由于上式中的其它量是与示波管结构有关的常数故可写成S?keV(4-17-4)VAke为电偏常数。

可见,当加速电压VA一定时,偏转距离与偏转电压呈线性关系。

为了反映电偏转的灵敏程度,定义?电?S?ke(1)(4-17-5)VVA?电称为电偏转灵敏度,单位为毫米/伏。

?电越大,表示电偏转系统的灵敏度越高。

2.磁偏转原理磁偏转原理如图4-17-2所示。

实验3—13电子束线的电偏转与磁偏转

实验3—13电子束线的电偏转与磁偏转

实验3—13电子束线的电偏转与磁偏转【实验目的】1.研究带电粒子在电场和磁场中偏转的规律。

2.了解电子束线管的结构和原理。

【实验仪器】1-e EB 型电子束实验仪。

【实验原理】在大多数电子束线管中,电子束都在互相垂直的两个方向上偏移,以使电子束能够到达电子同意器的任何位置,通常运用外加电场和磁场的方法实现,显像管等器件确实是根基在那个根底上运用相同的原理制成的。

1.电偏转原理电偏转原理如图3-13-1所示。

通常在示波管〔又称电子束线管〕的偏转板上加上偏转电压V ,当加速后的电子以速度v 沿x 方向进进偏转板后,受到偏转电场E 〔y 轴方向〕的作用,使电子的运动轨道发生偏移。

假定偏转电场在偏转板l 范围内是均匀的,电子作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。

在偏转板之内 22)(2121v x m eE at y ==〔3-13-1〕 式中v 为电子初速度,y 为电子束在y 方向的偏转。

电子在加速电压a U 的作用下,加速电压对电子所做的功全部转为电子动能,因此:AeU mv =221,m eU v a 22= 将E =V /D 和v 2代进〔3-13-1〕式,得电子离开偏转系统时,电子运动的轨道与x 轴所成的偏转角ϕ的正切为l dU Vdxdy tg a lx 2===ϕ〔3-13-2〕 设偏转板的中心至荧光屏的距离为L ,电子在荧光屏上的偏离为S ,那么 代进〔3-13-2〕式,得DU VlL S a 2=〔3-13-3〕 由上式可知,荧光屏上电子束的偏转距离S 与偏转电压V 成正比,与加速电压a U 成反比,由于上式中的其它量是与示波管结构有关的常数故可写成aeU Vk S =〔3-13-4〕 k e 为电偏常数。

可见,当加速电压a U 一定时,偏转距离与偏转电压呈线性关系。

为了反映电偏转的灵敏程度,定义)1(ae U k V S ==电δ〔3-13-5〕电δ称为电偏转灵敏度,单位为毫米/伏。

电子束的电偏转和磁偏转[1]

电子束的电偏转和磁偏转[1]

电子束的电偏转和磁偏转Electrostatic Deflection of Electron Beam示波器中用来显示电信号波形的示波管和电视机、摄像机里显示图像的显像管、摄像管都属于电子束线管,虽然它们的型号和结构不完全相同,但都有产生电子束的系统和电子加速系统,为了使电子束在荧光屏上清晰的成像,还要设聚焦、偏转和强度控制系统。

对电子束的聚焦和偏转,可以利用电极形成的静电场实现,也可以用电流形成的恒磁场实现。

前者称为电聚焦或电偏转。

随着科技的发展,利用静电场或恒磁场使电子束偏转、聚焦的原理和方法还被广泛地用于扫描电子显微镜、回旋加速器、质谱仪等许多仪器设备的研制之中。

本实验在了解电子束线管的结构基础上,先讨论电子束的偏转特性及其测量方法。

【一】目的1.了解示波管的基本结构和原理。

2.研究带电粒子在电场和磁场中偏转的规律。

【二】仪器电子束实验仪、稳压电源、MF-47万用表、数字万用表【三】原理(一)示波管的基本结构如图3-18-1所示,示波管由电子枪、偏转板和荧光屏三部分组成。

其中电子枪是示波管图1 示波管的基本结构H 、H —钨丝加热电极;A F —聚焦电极;C —阴极;1A —第一加速阳极; 2A —第二加速阳极;G —控制栅极; 1X 、2X —水平偏转板; 1Y 、2Y —垂直偏转板电子枪由阴极C 、栅极G 、第一加速阳极1A 、聚焦电极A F 和第二加速电极2A 等同轴金属圆筒(筒内膜片的中心有限制小孔)组成。

当加热电流从H 、H 通过钨丝,阴极C 被加热后,筒端的钡与锶氧化物涂层内的自由电子获得较高的动能,从表面逸出。

因为第一加速阳极1A 具有(相对于阴极C )很高的电压(例如1500伏),在1A G C --之间形成强电场,故从阴极逸出的电子在电场中被电力加速,穿过 G 的小孔(直径约 l mm),以高速度(数量级710米/秒)穿过1A 、2A F A 及筒内的限制孔,形成一束电子射线。

实验—电子束线的电偏转与磁偏转

实验—电子束线的电偏转与磁偏转

实验—电子束线的电偏转与磁偏转实验—电子束线的电偏转与磁偏转实验目的本次实验旨在掌握电子束线的电偏转与磁偏转的基本知识,了解电子束线的基本特性和实验过程中的注意事项。

实验器材电子束管、电源、偏转板、磁场装置、示波器、直尺、刻度尺、通用电表等。

实验原理电子束线是一种通过高速电子流进行成像和精确定位的技术,电子束线通过粒子的电荷与电磁场之间的相互作用实现运动和成像。

在电子束线中,电偏转与磁偏转是重要的物理现象,它们分别可以用电场和磁场控制电子束的方向和位置。

电偏转是利用电场对电子束进行转向的原理。

将带有电荷的物体置于电场中,电场力作用于物体的电荷,使其受到力的作用,并向电场较强的地方运动。

在电子束线中,同样可以通过电场的作用控制电子流的方向和位置。

电子束管内的电子在经过偏转板后,会发生偏转,根据电压和偏转板的位置可以控制电子束的偏转程度和方向。

磁偏转则是利用磁场对电子束进行转向的原理。

当电子被置于具有磁性的物质中时,它们会受到磁力的作用,这是一种自然现象。

在电子束线中,利用此特性可以实现磁偏转,控制电子束的方向和位置。

在电子束管内加入垂直于电子束方向的磁场,可以使电子受到力的作用,并偏转到一个方向。

因此,电偏转和磁偏转是电子束线中非常重要的现象,能够促进成像技术的进步和增强成像的精度。

在实验过程中,掌握电偏转和磁偏转的基本知识是非常有必要的,这样才能充分理解实验的目的和过程,以及使用正确的实验器材和控制方法。

实验步骤1. 准备实验器材。

将电子束管插在底座上,并连接电源和示波器等设备。

将偏转板和磁场装置放在电子束管的前面,将它们与电源链接。

2. 使用电偏转。

对电源进行调节,使得偏转板上的电压逐渐增大,然后缓慢调整偏转板的位置,观察电子束的偏移程度和方向是否与预期相同。

如果发现电子束的偏转方向相反,则应将偏转板朝相反方向移动,直到电子束偏向我们所需的方向。

3. 使用磁偏转。

对电源进行调节,增大磁场的强度,观察电子束是否发生偏转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验3—13 电子束线的电偏转与磁偏转
【实验目的】
1.研究带电粒子在电场和磁场中偏转的规律。

2.了解电子束线管的结构和原理。

【实验仪器】
1-e EB 型电子束实验仪。

【实验原理】
在大多数电子束线管中,电子束都在互相垂直的两个方向上偏移,以使电子束能够到达电子接受器的任何位置,通常运用外加电场和磁场的方法实现,如示波管、显像管等器件就是在这个基础上运用相同的原理制成的。

1.电偏转原理
电偏转原理如图3-13-1所示。

通常在示波管(又称电子束线管)的偏转板
上加上偏转电压V ,当加速后的电子以速度v 沿x 方向进入偏转板后,受到偏转电场E(y 轴方向)的作用,使电子的运动轨道发生偏移。

假定偏转电场在偏转板l 范围内是均匀的,电子作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。

在偏转板之内
2
2)(2121v x m eE at y == (3-13-1)
式中v 为电子初速度,y 为电子束在y方向的偏转。

电子在加速电压a U 的作用下,加速电压对电子所做的功全部转为电子动能,所以:
A
eU mv =2
2
1,m eU v a 22= 将E =V /D 和v 2
代入(3-13-1)式,得
24x D
U V
y a =
电子离开偏转系统时,电子运动的轨道与x 轴所成的偏转角ϕ的正切为
l d
U V
dx
dy tg a l
x 2=
=
=ϕ (3-13-2)
设偏转板的中心至荧光屏的距离为L ,电子在荧光屏上的偏离为S,则
L
S tg =ϕ
代入(3-13-2)式,得
D
U VlL S a 2=
(3-13-3)
由上式可知,荧光屏上电子束的偏转距离S 与偏转电压V 成正比,与加速电压a U 成反比,由于上式中的其它量是与示波管结构有关的常数故可写成
a
e
U V k S = (3-13-4)
k e为电偏常数。

可见,当加速电压a U 一定时,偏转距离与偏转电压呈线性关系。

为了反映电偏转的灵敏程度,定义
)1
(a
e U k V S ==
电δ (3-13-5)
电δ称为电偏转灵敏度,单位为毫米/伏。

电δ越大,表示电偏转系统的灵敏度越高。

2.磁偏转原理
磁偏转原理如图3-13-2所示。

通常在示波管的电子枪和荧光屏之间加上一均匀横向偏转磁场,假定在l 范围内是均匀的,在其它范围都为零。

当电子以速度v 沿x 方向垂直射入磁场B 时,将受到洛仑磁力的作用在均匀磁场B 内电子作匀速圆周运动,轨道半径为R ,电子穿出磁场后,将沿切线方向作匀速直线运动,最后打在荧光屏上,由牛顿第二定律得
R v m evB f 2
==
或 eB
mv R =
电子离开磁场区域与Z轴偏斜了θ角度,由图3-13-2中的几何关系得
mv leB R l =
=
θsin
电子束离开磁场区域时,距离x轴的大小α是
)cos 1()cos 1(cos θθθα-=-=-=eB mv R R R
电子束在荧光屏上离开x 轴的距离为 αθ+⋅=tg L S 如果偏转角度足够小,则可取下列近似
θθθ==tg sin 和 2
1cos 2
θθ-=
则总偏转距离
)2
(2)
(212
2
)
2
11(222
2
2
l
L mv leB mv eB l mv leB L mv leB eB mv mv leB L eB mv L R L R L S +=
+=⋅+⋅=⋅
+⋅=+
⋅=+-+⋅=θθθθθθ
)2
(l
L mv leB +=
(3—13—6)
又因为电子在加速电压a U 的作用下,加速场对电子所做的功全部转变为电子的动能,则
m eU v eU mv a
a 2212=
=即 代入(3-13-6)式,得
)21
(2l L meV leB S A
+=
(3-13-7)
上式说明,磁偏转的距离与所加磁感应强度B 成正比,与加速电压的平方根成反比。

由于偏转磁场是由一对平行线圈产生的,所以有
KI B =
式中I 是励磁电流,K 是与线圈结构和匝数有关的常数。

代入(3-13-7)式,得
)21(2l L meU KIel S a += (3
-13-8)
由于式中其它量都是常数,故可写成
a
m U I k S ⋅
=
(3-13-9)
k m为磁偏常数。

可见,当加速电压一定时,位移与电流呈线性关系。

为了描述磁偏转的灵敏程度,定义
A
m V k I S 1==
磁δ (3-13-10)
磁δ称为磁偏转灵敏度,单位为毫米/安培。

同样,磁δ越大,磁偏转的灵敏度越高。

【实验内容】
1. 测试X 、Y偏转板的偏转线性关系
对于1-e EB 型电子束实验仪,电偏转时电子在荧光屏上的偏离S 为:
a
U V K K S )
(21+=,即 [][])(5
.194.1)68.24(46.1)0.48(5.2mm U V
l l S a
=
-⨯-⨯+-⨯= (3—13—11)
其中l 为示波管控制极到荧光屏的距离,具体数据见仪器管脚处。

实验步骤与要求:
(1)按实物插入好联接线。

(2)接通“电源开”调节“高压调节”、“辅助聚焦V 2”,将V 2调到最大值,辉度保持适中,调节V1聚焦。

(3)调节“X位移”、“Y 位移”,使光点移至坐标原点。

(此时加速极电压a U 取850V,电偏电压为0V)
(4)调节“电偏电压”,使光点朝Y(或X)方向偏转,每偏转5mm ,读取相应的电偏电压测V ,填入“电偏测试表”。

(5)计算此时电偏转灵敏度电δ=
V
S
= (m m/V)。

(6)将Y偏转板结构参数l代入公式(3—13—11)计算不同的S 所需的偏转电压计V ,与测试值测V 比较,以验证公式(3—13—11)的准确性。

对于1-e EB 型电子束实验仪,磁偏转距离S ,即(3-13-8)式,为如下关系式:
m e l x D l x l x D l x n L D S 2)2(2)2(222220⋅⎥⎥⎦

⎢⎢⎣⎡-+--+++⋅⋅=μ (3—13—12)
其中:偏转线圈平均直径D (与(3-13-8)式l 同)=0.0915m ; L=m L =+
'2
144
.0;L '由仪器实测;l为偏转线圈长度=0.02m;l '为二线圈之间的距离,由仪器实测(米)。

2
l
l x +'=
(见仪器使用说明书),n为偏转线圈单位长度匝数02.0N n =,N 为偏转线圈匝数(见仪器);270/104安培牛顿-⨯=πμ。

实验步骤与要求: (1)、按实物插入好联接线。

(2)接通电源开关,将V 2调至最大,调节V 1,使光点聚焦,保持辉度适中,电偏电压降到0,调节X Y位移,使光点位于坐标原点。

(仪器应南北方向放置) (3)接通“直流电源”,顺时针方向调节“直流电源”,使光点偏转。

读取不同偏转量S 及其对应的I 值,填入“磁偏测试表”,并按公式(3-13-8)、(3—13—12)计算出偏转量S所对应需要的励磁电流I (mA )。

(4)根据测量数据,绘出S—I 图应为正比直线。

(5)按转向开关改变偏转线圈电源极性,观察磁场方向改变后光点向相反方向偏转,以验证洛仑兹力B v ⨯=e F 的矢量关系。

根据仪器结构参数,代入公式(3—13—2)和(3-13-8)求出偏转量S 所需的励磁电流
I ,与实际测量值作一比较,以验证公式的准确性。

(6)计算磁偏灵敏度磁δ=I
S
(mm/A)
【注意事项】
1.由于偏转量的大小和亮度有关,因此测量时将亮度旋钮调节适中,测量过程中应保持不变。

2.偏转量大小改变时,聚焦也会改变,所以要不断地调节,使之有良好的聚焦。

3.注意高压,切勿触电。

【思考题与习题】
1. 电子束偏转的方法有几种?它们的规律是什么?
2.观察偏转量的大小改变时,光点的聚焦是否改变?为什么? 3.偏转量的大小与光点的亮度是否有关?为什么? 4.在偏转板上加交流信号时,会观察到什么现象?。

相关文档
最新文档