圆的方程与专题复习(直线与圆圆与圆的位置关系轨迹问题)

合集下载

圆的方程、直线和圆、圆和圆的位置关系高考题和详解

圆的方程、直线和圆、圆和圆的位置关系高考题和详解

圆的方程、直线与圆、圆与圆的位置关系一、选择题1. (2013·重庆高考文科·T4)设P 是圆22(3)(1)4x y -++=上的动点,Q 是直线3x =-上的动点,则PQ 的最小值为 ( )A. 6B.4C. 3D. 2 【解题指南】PQ 的最小值为圆心到直线的距离减去圆的半径.【解析】 选B. PQ 的最小值为圆心到直线的距离减去圆的半径.圆心)1,3(-到直线3-=x 的距离为6,半径为2,所以PQ 的最小值为426=-.2.(2013·天津高考文科·T5)已知过点P(2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a = ( ) A.12- B. 1 C. 2 D.12【解题指南】根据圆的切线的性质确定切线的斜率,再由两直线垂直求a 的值. 【解析】选C.因为点P(2,2)为圆(x -1)2+y 2=5上的点,由圆的切线性质可知,圆心(1,0)与点P(2,2)的连线与过点P(2,2)的切线垂直.因为圆心(1,0)与点P(2,2)的连线的斜率k=2,故过点P(2,2)的切线斜率为-1,所以直线ax-y+1=0的斜率为2,因此a =2.A.1B.2C.4D.【解题指南】 由圆的半径、圆心距、半弦长组成直角三角形,利用勾股定理即可求得半弦长。

【解析】选 C.由22(1)(2)5x y -+-=得圆心(1,2),半径r =,圆心到直线的距离1d =,在半径、圆心距、半弦长组成的直角三角形中,弦长4l ===。

4. (2013·重庆高考理科·T7)已知圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-=,M 、N 分别是圆1C 、2C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( )A.425-B.117-C.226-D.17【解题指南】根据圆的定义可知421-+=+PC PC PN PM ,然后利用对称性求解. 【解析】选A.由题意知,圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-= 的圆心分别为)4,3(),3,2(21C C ,且421-+=+PC PC PN PM ,点)3,2(1C 关于x 轴的对称点为)3,2(-C ,所以252221=≥+=+CC PC PC PC PC , 即425421-≥-+=+PC PC PN PM .5.(2013·广东高考文科·T7)垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是( )A .0x y +-=B .10x y ++=C .10x y +-=D .0x y ++=【解析】选A. 由题意知直线方程可设为0x y c +-=(0c >),则圆心到直线的距离等于半径11=,c =0x y +=.6. (2013·陕西高考文科·T8)已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1与圆O 的位置关系是 ( ) A. 相切B. 相交C. 相离D. 不确定【解题指南】 利用点与圆的位置关系,直线与圆的位置关系中的半径与距离,列出关系式,解之即可判断直线ax + by = 1与圆O 的位置关系. 【解析】选B.点M(a, b)在圆.112222>+⇒=+b a y x 外O(00)ax by 1d 1圆心,到直线距离+==<=圆的半径,故直线与圆相交.7. (2013·江西高考理科·T9),0)引直线l 与曲线y =交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )B.C. ±D.【解题指南】圆心到直线的距离与直线的斜率有关,△AOB 为等腰三角形,所以AB 的长度也可用圆心到直线的距离表示,进而△AOB 的面积可表示为圆心到直线的距离d 的函数,借助二次函数思想可以求解出当△AOB 的面积取最大值时的d 值,进而可以求出直线的斜率.【解析】选B. 曲线y =(0,0)为圆心,以1为半径的上半圆.设直线l的方程为y k(x =,即kx y 0-=,若直线与半圆相交,则k 0<,圆心到直线的距离为d =(d 1<),弦长为AB =,△AOB 的面积为1s A B d 2===21d 2=时s最大,解212=得21k 3=,故k 3=-. 8. (2013·山东高考理科·T9)过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( )A.2x+y-3=0B.2x-y-3=0C.4x-y-3=0D.4x+y-3=0 【解题指南】本题考查了直线与圆的位置关系,利用圆的几何性质解题即可. 【解析】选A. 由图象可知,(1,1)A 是一个切点,根据切线的特点可知过点 A.B的直线与过点(3,1)、(1、0)的直线互相垂直,213011-=---=AB k ,所以直线AB 的方程为()121--=-x y ,即2x+y-3=0. 二、填空题9. (2013·山东高考文科·T13)过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为__________【解题指南】过圆内一点的弦,最长的为直径,最短的为垂直于直径的弦.这样圆心到点()1,3的距离,与弦长的一半,半径长构成一个直角三角形.【解析】 半径为2=r ,圆心为()2,2,圆心到点()1,3的距离()()2212322=-+-=d ,所求最短弦长为()2222222=-【答案】22 .10.(2013·浙江高考文科·T13)直线y=2x+3被圆x 2+y 2-6x-8y=0所截得的弦长等于 .【解题指南】由直线方程与圆的方程联立方程组,求两个交点的坐标,再求弦长. 【解析】由2223,680,=+⎧⎨+--=⎩y x x y x y ,解得11x y =-⎧⎨=⎩或39x y =⎧⎨=⎩,所以两交点坐标为()1,1- 和()3,9,所以弦长l ==. 【答案】11. (2013·江西高考文科·T14)若圆C 经过坐标原点和点(4,0),且与直线y=1相切,则圆C 的方程是 .【解题指南】设出圆的标准方程,得出圆心坐标和半径的关系,再代入已知点. 【解析】设圆的方程为222(x a)(y b)r -+-=,因为圆C 经过点(0,0)和点(4,0),所以a =2,又圆与直线y=1相切,可得1b r -=,故圆的方程为222(x 2)(y b)(1b)-+-=-,将(0,0)代入解得3b 2=-,5r 2=,所以圆的方程为22325(x 2)(y )24-++=. 【答案】22325(x 2)(y )24-++=.12. (2013·湖北高考文科·T14)已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .【解题指南】根据直线与圆的位置关系,求圆心到直线的距离,同半径的一半相比较.【解析】半径为圆心到直线l 的距离1=<故数形结合k=4. 【答案】4. 三、解答题13.(2013·江苏高考数学科·T17) 如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l 。

圆的方程、直线与圆的位置关系题型归纳学生版

圆的方程、直线与圆的位置关系题型归纳学生版

圆的方程、直线与圆的关系题型归纳一、学法指导与考点梳理1.圆的方程 (1)圆的方程①标准方程:(x -a )2+(y -b )2=r 2,圆心坐标为(a ,b ),半径为r . ②一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心坐标为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.(2)点与圆的位置关系①几何法:利用点到圆心的距离d 与半径r 的关系判断:d >r ⇔点在圆外,d =r ⇔点在圆上;d <r ⇔点在圆内.②代数法:将点的坐标代入圆的标准(或一般)方程的左边,将所得值与r 2(或0)作比较,大于r 2(或0)时,点在圆外;等于r 2(或0)时,点在圆上;小于r 2(或0)时,点在圆内. 2.直线与圆的位置关系直线l :Ax +By +C =0(A 2+B 2≠0)与圆:(x -a )2+(y -b )2=r 2(r >0)的位置关系如下表.3.圆与圆的位置关系二、重难点题型突破重难点1 圆的方程求圆的标准方程的常用方法包括几何法和待定系数法.(1)由圆的几何性质易得圆心坐标和半径长时,用几何法可以简化运算.对于几何法,常用到圆的以下几何性质:①圆中任意弦的垂直平分线必过圆心;②圆内的任意两条弦的垂直平分线的交点一定是圆心. (2)由于圆的标准方程中含有三个参数a ,b ,r ,运用待定系数法时,必须具备三个独立的条件才能确定圆的方程.这三个参数反映了圆的几何性质,其中圆心(a ,b )是圆的定位条件,半径r 是圆的定形条件.例1.(1)当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0(2)已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( ) A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13【变式训练1】.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=5【变式训练2】.在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切. (1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程.重难点2 直线与圆的位置关系 判定直线与圆位置关系的常用方法:(1)几何法:根据圆心到直线的距离d 与圆半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组的解的个数判断.(3)直线系法:若动直线过定点P ,则点P 在圆内时,直线与圆相交;当P 在圆上时,直线与圆相切或相交;当P 在圆外时,直线与圆位置关系不确定.例2.(1)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]【变式训练1】.若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( ) A .1 B .-3 C .1或-3D .2【变式训练2】.已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________.【变式训练3】.在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为(I )求圆心的轨迹方程;(II )若点到直线,求圆的方程. 重难点3 直线、圆方程的综合应用(1)判断或处理直线和圆的位置的问题,一般有两种方法,一是几何法,利用圆的几何性质解题,二是代xOy P x y P P y x P数法,联立圆与直线的方程,利用判别式,根与系数关系来处理,在做题时要用心作图,很多题目要用到数形结合的思想.(2)若,()P x y 是定圆222()()C x a y b r -+-=:上的一动点,则mx ny +和yx这两种形式的最值,一般都有两种求法,分别是几何法和代数法.①几何法.mx ny +的最值:设mx ny t +=,圆心(,)C a b 到直线mx ny t +=的距离为22d m n=+,由d r =即可解得两个t 值,一个为最大值,一个为最小值.y x 的最值:yx即点P 与原点连线的斜率,数形结合可求得斜率的最大值和最小值. ②代数法.mx ny +的最值:设mx ny t +=,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.y x 的最值:设yt x=,则y tx =,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.例3.(1)已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6 D .2(2)著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为________.【变式训练1】.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S .【变式训练2】.在平面直角坐标系xoy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上.(I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.三、课堂定时训练(45分钟)1.(2020黑龙江黑河一中高二期中)已知A (3,-2),B (-5,4),则以AB 为直径的圆的方程是( ) A .(x -1)2+(y +1)2=25 B .(x +1)2+(y -1)2=25 C .(x -1)2+(y +1)2=100 D .(x +1)2+(y -1)2=1002.(2020山东潍坊三中高二期中)已知以点A (2,-3)为圆心,半径长等于5的圆O ,则点M (5,-7)与圆O 的位置关系是( )A .在圆内B .在圆上C .在圆外D .无法判断3.(2020福建莆田一中高二月考)过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程是( ) A .()()22314x y -++= B .()()22314x y ++-= C .()()22114x y -+-=D .()()22114x y +++=4.(2020邢台市第八中学高二期末)方程220x y Dx Ey F ++++=表示以(2,3)-为圆心,4为半径的圆,则D,E,F 的值分别为( ) A .4,6,3-B .4,6,3-C .4,6,3--D .4,6,3--5.(2020·全国高二课时练习)直线y=x+1与圆x 2+y 2=1的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离6.(2020山东泰安实验中学高二期中)0y m -+=与圆22220x y x +--=相切,则实数m 等于( )A 或B .C .-D .-7.(2020全国高二课时练)与圆()22:136C x y -+=同圆心,且面积等于圆C 面积的一半的圆的方程为_________.8.(2020·上海高二课时练习)若圆22(1)(4)5x y -+-=的圆心到直线0x y a -+=的距离为2,则a 的值为_________.9.(2020湖南师大附中高二期中)已知点()()1,2,1,4A B --,求(1)过点A,B 且周长最小的圆的方程; (2)过点A,B 且圆心在直线240x y --=上的圆的方程.10.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.。

圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题)知识梳理.doc

圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题)知识梳理.doc

的方程与专题复习(直线与圆.圆与圆的位置关系.轨迹问题)知识梳理浙江省诸暨市学勉屮学(311811)郭天平圆的标准方程、一般方程与参数方程的推导与运用是这节内容的重点;涉及直线与圆、圆与圆的位置关系的讨论及有关性质的研究是这节的难点。

一、有关圆的基础知识要点归纳1.圆的定义:平而内与定点距离等于定长的点的集合(轨迹)是圆.定点即为圆心,定长为半径.2.圆的标准方程①圆的标准方程:由圆的定义及求轨迹的方法,得(x-r/)2+(y-/7)2 =r2(r>0), 其屮圆心坐标为(%),半径为r;当a = O,h = O时,即圆心在原点时圆的标准方程为x2 + y2 =厂2 ;②圆的标准方程的特点:是能够直接由方程看出圆心与半径,即突出了它的几何意义。

3.圆的一般方程①圆的一般方程:展开圆的标准方程,整理得,x2 + y2 + Dx + + F = 0(D2 + E2 - 4F >0);②圆的一般方程的特点:(1) x2,y2项系数相等且不为();(2)没有小这样的二次项③二元二次方程Ax2+Bxy + Cy2 +Dx + £y + F = 0表示圆的必要条件是4=C H 0 且B = Q;二元二次方程+ Bxy + Cy2 +Dx + Ey + F =0表示圆的充要条件是A = C^0且3 = 0 且D2 +E2-4AF>04.圆的参数方程圆的参数方程是由中间变量0将变量x, y联系起来的一个方程.[x = r cos e①鬪心在原点,半径为厂的圆的参数方程是:{.八(0为参数);[y = rsin^/ 、\x = a + r cos 0②圆心在(a,b),半径为旷的圆的参数方程是:{(〃为参数);[y = b + rsin05.圆方程之间的互化x2 +y2 +Dx + Ey + F =0(D2 +E2-4F>0)配方(E、2D2 + E2 -4F< D<=>X + —+x + —即圆心< 2丿L 2丿4 1 22厂=丄S +E: -4F o 利用(rcos0)2 +(rsin^)2 = r2得j“ °十'°°"矽为参数)2 \y = b + rsind6.确定圆方程的条件圆的标准方程、圆的一燉方程及参数方程都冇三个参数,因此要确定圆方程需要三个独立的条件,而确定圆的方程我们常用待定系数法,根据题目不同的已知条件,我们可适当地选择不同的圆方程形式,使问题简单化。

圆的方程、直线与圆的位置关系题型归纳教师版

圆的方程、直线与圆的位置关系题型归纳教师版
由d= =1,得k= .又斜率不存在时直线x=3也与圆相切,
故所求切线方程为x=3或3x-4y+11=0.
(2)直线OA的方程为y= x,即5x-3y=0,点C到直线OA的距离为
d= = ,又|OA|= = ,所以S= |OA|d= .
【变式训练2】.在平面直角坐标系 中,曲线 与坐标轴的交点都在圆C上.
(2)代数法:根据直线与圆的方程组成的方程组的解的个数判断.
(3)直线系法:若动直线过定点 ,则点 在圆内时,直线与圆相交;当 在圆上时,直线与圆相切或相交;当 在圆外时,直线与圆位置关系不确定.
例2.(1)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|= ”的()
故所求直线的方程为y=-(x-3),即x+y-3=0.答案:x+y-3=0
【变式训练3】.在平面直角坐标系 中,已知圆 在 轴上截得线段长为 ,在 轴上截得线段长为 .
(I)求圆心 的轨迹方程;
(II)若 点到直线 的距离为 ,求圆 的方程.
【解析】(I)设 ,圆 的半径为 .
由题设 ,从而 故 点的轨迹方程为 .
相交
|r1-r2|<d<r1+r2
两组不同实数解
内切
d=|r1-r2|(r1≠r2)
一组实数解
内含
0≤d<|r1-r2|(r1≠r2)
无解
2、重难点题型突破
重难点1圆的方程
求圆的标准方程的常用方法包括几何法和待定系数法.
(1)由圆的几何性质易得圆心坐标和半径长时,用几何法可以简化运算.对于几何法,常用到圆的以下几何性质:①圆中任意弦的垂直平分线必过圆心;②圆内的任意两条弦的垂直平分线的交点一定是圆心.
(II)设 ,由已知得 .

第4节 直线与圆、圆与圆的位置关系--2025年高考数学复习讲义及练习解析

第4节  直线与圆、圆与圆的位置关系--2025年高考数学复习讲义及练习解析

第四节直线与圆、圆与圆的位置关系1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax+By +C =0,圆心C (a ,b )到直线l 的距离为d ,由x -a )2+(y -b )2=r 2,+By+C =0,消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.位置关系相离相切相交图形量化方程观点Δ01<0Δ02=0Δ03>0几何观点d 04>rd 05=rd 06<r2.圆与圆的位置关系(⊙O 1,⊙O 2的半径分别为r 1,r 2,d =|O 1O 2|)位置关系图形几何法公切线条数外离d >r 1+r 2四条外切d=r1+r2三条相交|r1-r2|<d<r1+r2两条内切d=|r1-r2|一条内含0≤d<r1-r2无1.圆的切线方程常用的结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2. 2.直线被圆截得的弦长的求法(1)几何法:弦心距d、半径r和弦长|AB|的一半构成直角三角形,弦长|AB|=2r2-d2.(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,将直线方程代入圆的方程中,消去y,得关于x的一元二次方程,则|MN|=1+k2·(x M+x N)2-4x M x N. 3.圆与圆的位置关系的常用结论(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.(2)两个圆系方程①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程为x2+y2+Dx+Ey+F +λ(Ax+By+C)=0(λ∈R);②过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(其中不含圆C2,所以注意检验C2是否满足题意,以防丢解).1.概念辨析(正确的打“√”,错误的打“×”)(1)若直线平分圆的周长,则直线一定过圆心.()(2)若两圆相切,则有且只有一条公切线.()(3)若直线的方程与圆的方程组成的方程组有解,则直线与圆相交或相切.()(4)在圆中最长的弦是直径.()答案(1)√(2)×(3)√(4)√2.小题热身(1)(人教A选择性必修第一册习题2.5T1改编)直线y=x+1与圆x2+y2=1的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离答案B解析圆心为(0,0),到直线y=x+1,即x-y+1=0的距离d=12=22,而0<22<1,所以直线与圆相交,但直线不过圆心.故选B.(2)(人教A选择性必修第一册2.5.2练习T2改编)圆O1:x2+y2-2x=0与圆O2:x2+y2+4y =0的位置关系是()A.外离B.外切C.相交D.内切答案C解析圆O1:x2+y2-2x=0的标准方程为(x-1)2+y2=1,圆心为O1(1,0),半径为r1=1,圆O2:x2+y2+4y=0的标准方程为x2+(y+2)2=4,圆心为O2(0,-2),半径为r2=2,所以两圆的圆心距为|O1O2|=(-1)2+(-2)2=5,所以1=|r1-r2|<|O1O2|<r1+r2=3,因此两圆的位置关系为相交.故选C.(3)(人教A选择性必修第一册习题2.5T2改编)以点(3,-1)为圆心且与直线3x+4y=0相切的圆的方程是________________.答案(x-3)2+(y+1)2=1解析由题意得,r=|3×3+4×(-1)|32+42=1,因此圆的方程为(x-3)2+(y+1)2=1.(4)(人教A选择性必修第一册习题2.2T3改编)已知圆C:x2+y2-6x-4y+4=0.若一直线被圆C所截得的弦的中点为M(2,3),则该直线的方程为________________.答案y=x+1解析圆C:x2+y2-6x-4y+4=0化为标准方程为(x-3)2+(y-2)2=9,则圆心为C(3,2),k CM=3-22-3 1.设所求的直线为m.由圆的几何性质可知,k m·k CM=-1,所以k m=1,所以所求的直线方程为y-3=1·(x-2),即y=x+1.考点探究——提素养考点一直线与圆的位置关系例1(1)(2023·江西九江二模)直线l:mx-y-2+m=0(m∈R)与圆C:x2+(y-1)2=16的位置关系为________.答案相交解析由mx-y-2+m=0(m∈R),得m(x+1)-y-2=0(m∈R),+1=0,y-2=0,解得=-1,=-2,所以直线l过定点(-1,-2),又因为(-1)2+(-2-1)2=10<16,得(-1,-2)在圆内,所以直线l与圆C总相交.(2)(2024·广东湛江廉江中学高三第二次月考)已知直线x+y+2=0与圆x2+y2=r2相切,则r 的值为________.答案±2解析由直线x+y+2=0与圆x2+y2=r2相切,得|2|12+12=|r|,即|r|=2,故r的值为± 2.【通性通法】判断直线与圆的位置关系的两种方法特别地,对于过定点的直线,也可以通过定点在圆内部或圆上判定直线和圆有公共点.【巩固迁移】1.(2023·陕西榆林模拟)已知点P(x0,y0)为圆C:x2+y2=2上的动点,则直线l:x0x-y0y=2与圆C的位置关系为()A.相交B.相离C.相切D.相切或相交答案C解析由题意可得x20+y20=2,于是圆心C到直线l的距离d=2x20+y20=22=2=r,所以直线l与圆C相切.故选C.2.已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点至少有2个,则a的取值范围为________.答案(-32,32)解析由圆的方程可知圆心为(0,0),半径为2.因为圆上到直线l:x+y=a的距离等于1的点至少有2个,所以圆心到直线l的距离d<r+1=3,即d=|-a|2<3,解得-32<a<32.考点二圆的弦长、切线问题(多考向探究)考向1弦长问题例2(1)(2024·四川西昌期末)直线l:x-3y cosθ=0被圆x2+y2-6x+5=0截得的最大弦长为()A.3B.5C.7D.3答案C解析因为圆x2+y2-6x+5=0,所以其圆心为(3,0),半径r=2,于是圆心(3,0)到直线l:x-3y cosθ=0的距离为d=31+3cos2θ,因为cosθ∈[-1,1],所以cos2θ∈[0,1],所以d=31+3cos2θ∈32,3,因为直线l与圆相交,所以d<2,所以d∈32,又因为弦长为2r2-d2=24-d2,所以当d取得最小值32时,弦长取得最大值,为7.故选C.(2)(2023·海南华侨中学二模)已知直线x-3y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为________.答案5解析因为圆心(0,0)到直线x-3y+8=0的距离d=81+3=4,由|AB|=2r2-d2,可得6=2r2-42,解得r=5.【通性通法】求直线被圆截得的弦长的两种方法【巩固迁移】3.设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3)与圆C交于A,B两点,若|AB|=23,则直线l 的方程为()A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0答案B解析当直线l 的斜率不存在,即直线l 的方程为x =0时,弦长为23,符合题意;当直线l 的斜率存在时,可设直线l 的方程为y =kx +3,由弦长为23,半径为2可知,圆心到该直线的距离为1,从而有|k +2|k 2+1=1,解得k =-34.综上,直线l 的方程为x =0或3x +4y -12=0.故选B.4.(2023·新课标Ⅱ卷)已知直线l :x -my +1=0与⊙C :(x -1)2+y 2=4交于A ,B 两点,写出满足“△ABC 的面积为85”的m 的一个值:________.答案,-2,12,-12中任意一个皆可以解析设点C 到直线AB 的距离为d ,由弦长公式得|AB |=24-d 2,所以S △ABC =12×d ×24-d 2=85,解得d =455或d =255,由d =|1+1|1+m 2=21+m 2,所以21+m 2=455或21+m 2=255,解得m =±2或m =±12.考向2切线问题例3(1)在平面直角坐标系中,过点A (3,5)作圆O :x 2+y 2-2x -4y +1=0的切线,则切线的方程为()A .5x -12y +45=0B .y +5=0C .x -3=0或5x -12y +45=0D .y -5=0或12x -5y +45=0答案C解析因为32+52-2×3-4×5+1>0,点(3,5)在圆外,且x 2+y 2-2x -4y +1=0的圆心为(1,2),半径为2.若切线的斜率不存在,即x =3,圆心(1,2)到直线x =3的距离为2,故直线x =3是圆的切线;若切线的斜率存在,设切线方程为y -5=k (x -3),即kx -y -3k +5=0,则|k -2-3k +5|k 2+1=2,则|3-2k |k 2+1=2,两边平方得12k =5,k =512,所以y -5=512(x -3),即5x-12y +45=0.综上,切线的方程为5x -12y +45=0或x -3=0.故选C.(2)由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为________.答案7解析设直线上一点P ,切点为Q ,圆心为M ,M 的坐标为(3,0),则|PQ |即为切线长,|MQ |为圆M 的半径,长度为1,|PQ |=|PM |2-|MQ |2=|PM |2-1,要使|PQ |最小,即求|PM |的最小值,此题转化为求直线y =x +1上的点到圆心M 的最小距离.设圆心到直线y =x +1的距离为d ,则d =|3-0+1|12+(-1)2=22,所以|PM |的最小值为22,此时|PQ |=|PM |2-1=(22)2-1=7.【通性通法】1.求过圆上一点(x 0,y 0)的圆的切线方程:先求切点与圆心连线的斜率k ,再由垂直关系,求得切线斜率为-1k ,由点斜式方程可求得切线方程,如果k =0或k 不存在,则由图形可直接得到切线方程为y =y 0或x =x 0.2.求过圆外一点(x 0,y 0)的圆的切线方程当切线斜率存在时,圆的切线方程的求法:(1)几何法:设切线方程为y -y 0=k (x -x 0),利用点到直线的距离公式表示出圆心到切线的距离d ,然后令d =r ,进而求得k .(2)代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0,进而求得k .注意验证斜率不存在的情况.3.涉及与圆的切线有关的线段长度范围(或最值)问题,可以利用几何图形求解,也可以把所求线段长表示为关于圆心与直线上的点的距离的函数的形式,利用求函数值域的方法求解.【巩固迁移】5.(2023·河南开封模拟)已知圆M 过点A (1,3),B (1,-1),C (-3,1),则圆M 在点A 处的切线方程为()A .3x +4y -15=0B .3x -4y +9=0C .4x +3y -13=0D .4x -3y +5=0答案A解析设圆M 的一般方程为x 2+y 2+Dx +Ey +F =0.+3E +F +10=0,-E +F +2=0,3D +E +F +10=0,=1,=-2,=-5,所以圆M 的方程为x 2+y 2+x -2y -5=0,圆心为-12,所以直线AM的斜率k AM =3-11+12=43,所以圆M 在点A 处的切线方程为y -3=-34(x -1),即3x +4y -15=0.故选A.6.(2023·新课标Ⅰ卷)过点(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D .64答案B解析解法一:因为x 2+y 2-4x -1=0,即(x -2)2+y 2=5,可得圆心C (2,0),半径r =5,过点P (0,-2)作圆C 的切线,切点为A ,B ,因为|PC |=22+(-2)2=22,则|PA |=|PC |2-r 2=3,可得sin ∠APC =522=104,cos ∠APC =322=64,则sin ∠APB =sin2∠APC =2sin ∠APC cos ∠APC =2×104×64=154,cos ∠APB =cos2∠APC =cos 2∠APC -sin 2∠APC ==-14<0,即∠APB 为钝角,所以sin α=sin(π-∠APB )=sin ∠APB =154.故选B.解法二:圆x 2+y 2-4x -1=0的圆心C (2,0),半径r =5,过点P (0,-2)作圆C 的切线,切点为A ,B ,连接AB ,可得|PC |=22+(-2)2=22,则|PA |=|PB |=|PC |2-r 2=3,因为|PA |2+|PB |2-2|PA |·|PB |cos ∠APB =|CA |2+|CB |2-2|CA |·|CB |cos ∠ACB ,且∠ACB =π-∠APB ,则3+3-6cos ∠APB =5+5-10cos(π-∠APB ),即3-3cos ∠APB =5+5cos ∠APB ,解得cos ∠APB =-14<0,即∠APB 为钝角,则cos α=cos(π-∠APB )=-cos ∠APB =14,又α为锐角,所以sinα=1-cos2α=154.故选B.解法三:圆x2+y2-4x-1=0的圆心C(2,0),半径r=5,若切线斜率不存在,则切线方程为x=0,则圆心到切线的距离d=2<r,不符合题意;若切线斜率存在,设切线方程为y=kx-2,即kx-y-2=0,则|2k-2|k2+1=5,整理得k2+8k+1=0,且Δ=64-4=60>0.设两切线斜率分别为k1,k2,则k1+k2=-8,k1k2=1,可得|k1-k2|=(k1+k2)2-4k1k2=215,所以tanα=|k1-k2|1+k1k2=15,即sinαcosα=15,可得cosα=sinα15,则sin2α+cos2α=sin2α+sin2α15=1,又α则sinα>0,解得sinα=154.故选B.7.(2024·陕西西安碑林区校级月考)已知圆M:(x-x0)2+(y-y0)2=8,点T(-3,4),从坐标原点O向圆M作两条切线OP,OQ,切点分别为P,Q,若切线OP,OQ的斜率分别为k1,k2,k1·k2=-1,则|TM|的取值范围为________.答案[1,9]解析由题意可知,直线OP的方程为y=k1x,直线OQ的方程为y=k2x,∵OP,OQ与圆M相切,∴|k1x0-y0|1+k21=22,|k2x0-y0|1+k22=22,分别对两个式子进行两边平方,整理可得21(8-x20)+2k1x0y0+8-y20=0,22(8-x20)+2k2x0y0+8-y20=0,∴k1,k2是方程k2(8-x20)+2kx0y0+8-y20=0的两个不相等的实数根,易知8-x20≠0,∴k1·k2=8-y208-x20,又k1·k2=-1,∴8-y208-x20=-1,即x20+y20=16,则圆心M的轨迹是以(0,0)为圆心,4为半径的圆.又|TO|=9+16=5,∴|TO|-4≤|TM|≤|TO|+4,∴1≤|TM|≤9.考点三圆与圆的位置关系例4(1)(2024·广东揭阳期末)圆O1:x2+y2=1与圆O2:x2+y2-4x+1=0的位置关系为() A.相交B.相离C.外切D.内切答案A解析圆O1:x2+y2=1的圆心为O1(0,0),半径为r1=1.圆O2:x2+y2-4x+1=0的圆心为O2(2,0),半径为r2=3.|O1O2|=2,r2-r1<|O1O2|<r2+r1,所以两圆相交.故选A.(2)(多选)(2023·吉林期中)点P在圆C1:x2+y2=1上,点Q在圆C2:x2+y2-6x+8y+24=0上,则()A.|PQ|的最小值为0B.|PQ|的最大值为7C .两个圆心所在直线的斜率为-43D .两个圆相交弦所在直线的方程为6x -8y -25=0答案BC解析根据题意,圆C 1:x 2+y 2=1,其圆心C 1(0,0),半径R =1,圆C 2:x 2+y 2-6x +8y +24=0,即(x -3)2+(y +4)2=1,其圆心C 2(3,-4),半径r =1,圆心距|C 1C 2|=9+16=5,则|PO |的最小值为|C 1C 2|-R -r =3,最大值为|C 1C 2|+R +r =7,故A 错误,B 正确;对于C ,圆心C 1(0,0),圆心C 2(3,-4),则两个圆心所在直线的斜率k =-4-03-0=-43,故C 正确;对于D ,两圆的圆心距|C 1C 2|=5,则|C 1C 2|>R +r =2,两圆外离,不存在公共弦,故D 错误.故选BC.(3)(2022·新高考Ⅰ卷)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程:________.答案x =-1或7x -24y -25=0或3x+4y -5=0解析如图,因为圆x 2+y 2=1的圆心为O (0,0),半径r 1=1,圆(x -3)2+(y -4)2=16的圆心为A (3,4),半径r 2=4,所以|OA |=5,r 1+r 2=5,所以|OA |=r 1+r 2,所以两圆外切,公切线有三种情况:①易知公切线l 1的方程为x =-1.②另一条公切线l 2与公切线l 1关于过两圆圆心的直线l 对称.易知过两圆圆心的直线l 的方程为y =43x ,=-1,=43x ,=-1,=-43,由对称性可知公切线l21,设公切线l 2的方程为y +43=k (x +1),则点O (0,0)到l 2的距离为1,所以1=|k -43|k 2+1,解得k =724,所以公切线l 2的方程为y +43=724(x +1),即7x -24y -25=0.③还有一条公切线l 3与直线l :y =43x 垂直.设公切线l 3的方程为y =-34x +t ,易知t >0,则点O (0,0)到l 3的距离为1,所以1解得t =54,所以公切线l 3的方程为y =-34x +54,即3x +4y -5=0.综上,所求直线方程为x =-1或7x -24y -25=0或3x +4y -5=0.【通性通法】(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到.【巩固迁移】8.(2024·安徽芜湖模拟)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是()A .内切B .相交C .外切D .相离答案B解析由题意,得圆M 的标准方程为x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d=a2,所以2a 2-a 22=22,解得a =2,圆M 、圆N 的圆心距|MN |=2,小于两圆半径之和3,大于两圆半径之差1,故两圆相交.故选B.9.(2023·云南丽江期中)圆C 1:x 2+y 2-6x -10y -2=0与圆C 2:x 2+y 2+4x +14y +4=0公切线的条数为()A .1B .2C .3D .4答案C解析根据题意,圆C 1:x 2+y 2-6x -10y -2=0,即(x -3)2+(y -5)2=36,其圆心为(3,5),半径r =6;圆C 2:x 2+y 2+4x +14y +4=0,即(x +2)2+(y +7)2=49,其圆心为(-2,-7),半径R =7,两圆的圆心距|C 1C 2|=(-2-3)2+(-7-5)2=13=R +r ,所以两圆相外切,其公切线有3条.故选C.10.(2024·江苏启东中学阶段考试)已知P 是圆M :x 2-4x +y 2-4y +6=0上一动点,A ,B 是圆C :x 2+2x +y 2+2y -2=0上的两点,若|AB |=23,则|PA →+PB →|的取值范围为________.答案[42-2,82+2]解析由题意知,点P 所在圆M :(x -2)2+(y -2)2=2,且A ,B 所在圆C :(x +1)2+(y +1)2=4的圆心为C (-1,-1),半径为2.设D 是AB 的中点,连接CD ,则CD 垂直平分AB ,则|CD |1,所以点D 在以C 为圆心,1为半径的圆上,即点D 所在圆C 1:(x+1)2+(y +1)2=1,又由PA →+PB →=2PD →,可得|PA →+PB →|=2|PD →|,|PD →|即为圆M :x 2-4x +y 2-4y +6=0上的点与圆C 1:(x +1)2+(y +1)2=1上的点的距离,因为|MC 1|=(2+1)2+(2+1)2=32,所以32-1-2≤|PD →|≤32+1+2,即|PA →+PB →|的取值范围为[42-2,82+2].课时作业一、单项选择题1.(2023·福建泉州模拟)已知圆C :x 2+y 2+2x -4y =0,直线l :2x -y -1=0,则直线l 与圆C 的位置关系是()A .相交B .相切C .相离D .相交且直线过圆C 的圆心答案B解析由x 2+y 2+2x -4y =0,可得(x +1)2+(y -2)2=5,故圆心C (-1,2),半径r =5,则圆心到直线l :2x -y -1=0的距离d =|-2-2-1|22+1=55=5=r ,故直线l 与圆C 相切.故选B.2.(2024·黑龙江大庆质检)若直线kx -y +1-2k =0与圆C :(x -1)2+y 2=4相交于A ,B 两点,则|AB |的最小值为()A .23B .22C .3D .2答案B解析直线kx -y +1-2k =0,即k (x -2)-(y -1)=0恒过定点M (2,1),而(2-1)2+12=2<4,即点M 在圆C 内,因此当且仅当AB ⊥CM 时,|AB |最小,而圆C 的圆心C (1,0),半径r =2,|CM |=2,所以|AB |min =2r 2-|CM |2=24-2=2 2.故选B.3.(2023·河北联考一模)直线l :ax +by -4=0与圆O :x 2+y 2=4相切,则(a -3)2+(b -4)2的最大值为()A .16B .25C .49D .81答案C解析由直线l 与圆O 相切可得,圆心O (0,0)到直线l 的距离等于圆的半径,即|-4|a 2+b 2=2,故a 2+b 2=4,即点(a ,b )在圆O 上,(a -3)2+(b -4)2的几何意义为圆上的点(a ,b )与点(3,4)之间距离的平方,由a 2+b 2=4,得圆心为(0,0),因为32+42>4,所以点(3,4)在圆a 2+b 2=4外,所以点(a ,b )到点(3,4)的距离的最大值为圆心到(3,4)的距离与圆半径之和,即d +r =(3-0)2+(4-0)2+2=7,所以(a -3)2+(b -4)2的最大值为72=49.故选C.4.(2023·广东汕头模拟)已知圆C 1:(x -3)2+(y +4)2=1与C 2:(x -a )2+(y -a +3)2=9恰好有4条公切线,则实数a 的取值范围是()A .(-∞,0)∪(4,+∞)B .(-∞,1-6)∪(1+6,+∞)C .(0,4)D .(-∞,-1)∪(3,+∞)答案D解析因为圆C 1:(x -3)2+(y +4)2=1与C 2:(x -a )2+(y -a +3)2=9恰好有4条公切线,所以圆C 1与C 2外离,所以(a -3)2+(a -3+4)2>4,解得a >3或a <-1,即实数a 的取值范围是(-∞,-1)∪(3,+∞).故选D.5.(2023·山东青岛模拟)已知直线l :3x +my +3=0,曲线C :x 2+y 2+4x +2my +5=0,则下列说法正确的是()A .“m >1”是“曲线C 表示圆”的充要条件B .当m =33时,直线l 与曲线C 表示的圆相交所得的弦长为1C .“m =-3”是“直线l 与曲线C 表示的圆相切”的充分不必要条件D .当m =-2时,曲线C 与圆x 2+y 2=1有两个公共点答案C解析对于A ,曲线C :x 2+y 2+4x +2my +5=0⇒(x +2)2+(y +m )2=m 2-1,曲线C 表示圆,则m 2-1>0,解得m <-1或m >1,所以“m >1”是“曲线C 表示圆”的充分不必要条件,A 错误;对于B ,当m =33时,直线l :x +3y +1=0,曲线C :(x +2)2+(y +33)2=26,圆心到直线l 的距离d =|-2+3×(-33)+1|1+3=5,所以弦长为2r 2-d 2=226-25=2,B 错误;对于C ,若直线l 与圆相切,则圆心到直线l 的距离d =|-6-m 2+3|9+m 2=m 2-1,解得m =±3,所以“m =-3”是“直线l 与曲线C 表示的圆相切”的充分不必要条件,C 正确;对于D ,当m =-2时,曲线C :(x +2)2+(y -2)2=3,其圆心坐标为(-2,2),r =3,曲线C 与圆x 2+y 2=1的圆心距为(-2-0)2+(2-0)2=22>3+1,故两圆相离,没有公共点,D 错误.故选C.6.(2024·山东淄博期末)已知圆C :(x -1)2+y 2=2,直线l :y =kx -2,若直线l 上存在点P ,过点P 引圆的两条切线l 1,l 2,使得l 1⊥l 2,则实数k 的取值范围是()A ∞,-43∪[0,+∞)B ∞,-43∪[0,1)C ∞,-43∪[1,+∞)D .-43,1答案A解析圆心C (1,0),半径r =2,设P (x ,y ),因为两切线l 1⊥l 2,如图,设切点为A ,B ,则PA ⊥PB ,由切线性质定理,知PA ⊥AC ,PB ⊥BC ,|PA |=|PB |,所以四边形PACB 为正方形,所以|PC |=2,则点P 的轨迹是以(1,0)为圆心,2为半径的圆,方程为(x -1)2+y 2=4,直线l :y =kx -2过定点(0,-2),直线方程即kx -y -2=0,只要直线与点P 的轨迹(圆)有交点即可,即大圆的圆心到直线的距离小于等于半径,即d =|k -2|k 2+1≤2,解得k ≥0或k ≤-43,即实数k ∞,-43∪[0,+∞).故选A.7.已知实数x ,y 满足x 2+y 2-4x -2y -4=0,则x -y 的最大值是()A .1+322B .4C .1+32D .7答案C解析解法一:令x -y =k ,则x =k +y ,代入原式,化简得2y 2+(2k -6)y +k 2-4k -4=0,因为存在实数y ,则Δ≥0,即(2k -6)2-4×2(k 2-4k -4)≥0,化简得k 2-2k -17≤0,解得1-32≤k ≤1+32,故x -y 的最大值是32+1.故选C.解法二:x 2+y 2-4x -2y -4=0,整理得(x -2)2+(y -1)2=9,令x =3cos θ+2,y =3sin θ+1,其中θ∈[0,2π],则x -y =3cos θ-3sin θ+1=32cos 1,因为θ∈[0,2π],所以θ+π4∈π4,9π4,则当θ+π4=2π,即θ=7π4时,x -y 取得最大值32+1.故选C.解法三:由x 2+y 2-4x -2y -4=0,可得(x -2)2+(y -1)2=9,设x -y =k ,则圆心到直线x -y =k 的距离d =|2-1-k |2≤3,解得1-32≤k ≤1+3 2.故选C.8.(2023·甘肃酒泉三模)若直线3x -y -3=0分别与x 轴、y 轴交于点A ,B ,动点P 在圆x 2+(y -1)2=1上,则△ABP 面积的取值范围是()A .[2,32]B .[3,23]C .[3,33]D .[22,32]答案C解析如图所示,因为直线3x -y -3=0与坐标轴的交点A (3,0),B (0,-3),则|AB |=3+9=23,圆x 2+(y -1)2=1的圆心为C (0,1),半径为r =1,则圆心C (0,1)到直线3x -y -3=0的距离为d =|-1-3|3+1=2,所以圆x 2+(y -1)2=1上的点P 到直线3x -y -3=0的距离的最小值为d -r =2-1=1,最大距离为d +r =2+1=3,所以△ABP 面积的最小值为12×23×1=3,最大值为12×23×3=33,即△ABP 面积的取值范围为[3,33].故选C.二、多项选择题9.(2024·湖北武汉期末)已知圆x2+y2=4,直线l:y=x+b.若圆上恰有三个点到直线l的距离都等于1,则b的可能值为()A.-1B.-2C.1D.2答案BD解析由圆x2+y2=4,可得圆心为(0,0),半径为2,要使圆上恰有三个点到直线l的距离都等于1,则圆心到直线的距离为1,所以|b|2=2-1,所以b=± 2.故选BD.10.已知圆O1:x2+y2-2x-3=0和圆O2:x2+y2-2y-1=0的交点为A,B,则() A.圆O1和圆O2有两条公切线B.直线AB的方程为x-y+1=0C.圆O2上存在两点P和Q使得|PQ|>|AB|D.圆O1上的点到直线AB的最大距离为2+2答案ABD解析对于A,因为两圆相交,所以有两条公切线,故A正确;对于B,将两圆方程作差可得-2x+2y-2=0,即得公共弦AB的方程为x-y+1=0,故B正确;对于C,直线AB过圆O2的圆心(0,1),所以线段AB是圆O2的直径,故圆O2中不存在比AB长的弦,故C错误;对于D,圆O1的圆心坐标为(1,0),半径为2,圆心到直线AB:x-y+1=0的距离为|1+1| 2=2,所以圆O1上的点到直线AB的最大距离为2+2,D正确.故选ABD.三、填空题11.(2023·广东深圳校考二模)过点(1,1)且被圆x2+y2-4x-4y+4=0所截得的弦长为22的直线方程为________.答案x+y-2=0解析圆x2+y2-4x-4y+4=0,即(x-2)2+(y-2)2=4,圆心为(2,2),半径r=2,若弦长l=22,则圆心到直线的距离d=2,显然直线的斜率存在,设直线方程为y-1=k(x-1),即kx-y-k+1=0,所以d=|2k-2-k+1|k2+(-1)2=2,解得k=-1,所以直线方程为x+y-2=0.12.若A为圆C1:x2+y2=1上的动点,B为圆C2:(x-3)2+(y+4)2=4上的动点,则线段AB长度的最大值是________.答案8解析圆C1:x2+y2=1的圆心为C1(0,0),半径r1=1,圆C2:(x-3)2+(y+4)2=4的圆心为C2(3,-4),半径r2=2,所以|C1C2|=5.因为|C1C2|>r1+r2,所以圆C1与圆C2外离.又A 为圆C1上的动点,B为圆C2上的动点,所以线段AB长度的最大值是|C1C2|+r1+r2=5+1+2=8.13.(2024·浙江校考模拟预测)已知圆C1:x2+y2=4和圆C2:(x-3)2+(y-2)2=1,则过点MC1,C2都相切的直线方程为________(写出一个即可).答案x=2或5x+12y-26=0(写出一个即可)解析若过M的切线斜率不存在,即为x=2,此时显然与两圆都相切;若过M的切线斜率存在,不妨设为y-43=k(x-2),则C1(0,0),C2(3,2)到y-43=k(x-2)的距离分别为d1=|2k-43|k2+1=2,d2=|k-23|k2+1=1,解得k=-512,即y-43=-512(x-2),即5x+12y-26=0.综上,过M且与两圆都相切的直线方程为x=2或5x+12y-26=0(写出一个即可).14.(2024·云南大理一模)已知圆C:x2+y2-2x-4y+1=0,过点A(1,1)的相互垂直的两条直线分别交圆C于点M,N和P,Q,则四边形MQNP面积的最大值为________.答案7解析圆C:x2+y2-2x-4y+1=0,即(x-1)2+(y-2)2=4,点A(1,1)在圆C内部,设圆心C到直线PQ和MN的距离分别为d1,d2,则有|PQ|=24-d21,|MN|=24-d22,且d21+d22=|CA|2=1,所以四边形MQNP的面积S=12|PQ|·|MN|=24-d21·4-d22≤7,当且仅当d1=d2=22时,等号成立,故四边形MQNP面积的最大值为7.四、解答题15.(2024·辽宁大连月考)已知圆C:(x-2)2+(y-3)2=4外有一点P(4,-1),过点P作直线l.(1)当直线l与圆C相切时,求直线l的方程;(2)当直线l的倾斜角为135°时,求直线l被圆C所截得的弦长.解(1)由题意知,圆C的圆心为(2,3),半径r=2.当斜率不存在时,直线l的方程为x=4,此时圆C与直线l相切;当斜率存在时,设直线l的方程为y+1=k(x-4),即kx-y-4k-1=0,则圆心到直线的距离为d=r,即|2k-3-4k-1|1+k2=2,解得k=-34,所以此时直线l的方程为3x+4y-8=0.综上,直线l的方程为x=4或3x+4y-8=0.(2)当直线l 的倾斜角为135°时,直线l 的方程为x +y -3=0,圆心到直线l 的距离d =|2+3-3|2= 2.故所求弦长为2r 2-d 2=222-(2)2=2 2.16.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求点M 的轨迹方程;(2)当|OP |=|OM |时,求直线l 的方程及△POM 的面积.解(1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x ,2-y ).由题意,得CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2.所以点M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知点M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以直线l 的斜率为-13,故直线l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到直线l 的距离为|-8|12+32=4105,所以|PM |=2=4105,所以S △POM =12×4105×4105=165.17.(多选)(2023·重庆一中模拟)已知⊙E :(x -2)2+(y -1)2=4,过点P (5,5)作圆E 的两条切线,切点分别为M ,N ,则下列命题中正确的是()A .|PM |=21B .直线MN 的方程为3x +4y -14=0C .圆x 2+y 2=1与圆E 共有4条公切线D .若过点P 的直线与圆E 交于G ,H 两点,则当△EHG 的面积最大时,|GH |=22答案ABD解析因为圆E 的方程为(x -2)2+(y -1)2=4,所以圆心E 的坐标为(2,1),半径为2,所以|EM |=|EN |=2,又P (5,5),所以|PE |=(5-2)2+(5-1)2=5,由已知得PM ⊥ME ,PN ⊥NE ,所以|PM |=|PE |2-|EM |2=21,A 正确;因为PM ⊥ME ,PN ⊥NE ,所以P ,M ,E ,N 四点共圆,且圆心为PE 的中点,线段PE 的中点坐标为所以圆F +(y -3)2=254,即x 2-7x +y 2-6y +15=0,因为52-2<|EF |=52<52+2,所以圆E 与圆F 相交,又圆E 的方程可化为x 2-4x +y 2-2y +1=0,所以圆E 与圆F 的公共弦方程为3x +4y -14=0,故直线MN 的方程为3x +4y -14=0,B 正确;圆x 2+y 2=1的圆心O 的坐标为(0,0),半径为1,因为|OE |=5,2-1<|OE |<1+2,所以圆x 2+y 2=1与圆E 相交,故两圆只有2条公切线,C 错误;设∠HEG =θ,则θ∈(0,π),△EHG 的面积S =12EH ·EG sin θ=2sin θ,所以当θ=π2时,△EHG 的面积取最大值2,此时|GH |=4+4=22,D 正确.故选ABD.18.(2023·福建龙岩统考二模)已知M 是圆C :x 2+y 2=2上一个动点,且直线l 1:m (x -3)-n (y -2)=0与直线l 2:n (x -2)+m (y -3)=0(m ,n ∈R ,m 2+n 2≠0)相交于点P ,则|PM |的最小值是____________.答案2解析由两直线方程可知,l 1,l 2分别过定点A (3,2),B (2,3),且两直线互相垂直,设AB的中点为O ,则如图所示,则两直线的交点P 的轨迹为以O 为圆心,AB 为直径的圆O ,|AB |=2,|OC |=522,可知两圆相离,设直线OC 交圆C 于点E ,交圆O 于点D ,显然|PM |≥|ED |=|OC |-|CE |-|OD |=522-2-22= 2.。

高三数学第一轮复习:圆的方程及直线与圆的位置关系通用版

高三数学第一轮复习:圆的方程及直线与圆的位置关系通用版

高三数学第一轮复习:圆的方程及直线与圆的位置关系通用版【本讲主要内容】圆的方程及直线与圆的位置关系圆的标准方程、圆的一般方程、圆的参数方程、直线和圆的位置关系【知识掌握】 【知识点精析】1. 圆的标准方程:()()222x a y b r -+-=,方程表示圆心为(),C a b ,半径为r 的圆。

2. 圆的一般方程:022=++++F Ey Dx y x⑴当0422>-+F E D 时,表示圆心为,22D E ⎛⎫-- ⎪⎝⎭,的圆; ⑵当2240D E F +-=时,表示一个点,22D E ⎛⎫-- ⎪⎝⎭; ⑶当0422<-+F E D 时,它不表示任何图形。

3. 圆的标准方程与一般方程的比较:圆的标准方程的优点在于它明确地指出了圆心和半径,而一般方程突出了方程形式上的特点:①2x 和2y 的系数相同,都不等于0;②没有xy 这样的二次项。

二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件是:①2x 和2y 的系数相等且不为零,即0A C =≠;②没有xy 项,即0B =;③0422>-+F E D ,其中①、②是二元二次方程表示圆的必要条件,但不是充分条件。

说明:圆的标准方程和一般方程均含有三个参变量,因此必须有三个独立条件才能确定一个圆;求圆的方程的主要方法为待定系数法。

4. 圆的参数方程:在取定的坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数,即()()x f t y g t =⎧⎪⎨=⎪⎩()*,并且对于t 的每一个允许值,由方程组()*所确定的点(),M x y 都在这条曲线上,那么方程组()*就叫做这条曲线的参数方程,联系,x y 之间关系的变数叫做参变数,简称参数。

cos sin x a r y b r θθ=+⎧⎨=+⎩()θ为参数表示圆心为()a ,b ,半径为r 的圆。

5. 直线与圆的位置关系: ⑴点与圆的位置关系:若圆()()222x a y b r -+-=,那么点()000,P x y 在⎪⎪⎩⎪⎪⎨⎧>-+-⇔<-+-⇔=-+-⇔220202202022020)()()()()()(r b y a x r b y a x r b y a x 圆外圆内圆上⑵直线与圆的位置关系:直线与圆的位置关系有三种:相离、相切、相交。

高考数学考点总复习课件 第55讲 直线与圆、圆与圆的位置关系

高考数学考点总复习课件 第55讲  直线与圆、圆与圆的位置关系

A.相交
B.相离
C.相切
D.无法确定
【解析】 因为 d=450=8<10=r,所以直线与圆相交.
2.以点(2,-1)为圆心,且与直线 3x-4y+5=0 相切的圆的方程为( )
A.(x-2)2+(y+1)2=3 B.(x+2)2+(y-1)2=3 C.(x-2)2+(y+1)2=9 D.(x+2)2+(y-1)2=9
【点评】 判断两圆的位置关系常用几何法,即用两 圆圆心之间的距离与两圆半径之间的关系,一般不采用代 数法.若两圆相交,则两圆公共弦所在直线的方程可由两 圆的方程作差消去 x2,y2 项得到.
素材2
若⊙O:x2+y2=5 与⊙O1:(x-m)2+y2=20(m∈R) 相交于 A、B 两点,且两圆在点 A 处的切线互相垂直,则 线段 AB 的长度是 4 .
综上所述,动圆圆心轨迹方程是 x2=4(y+1)(y>0)及 x2=-4(y-1)(y>0),其轨迹为两条抛物线位于 x 轴上方的 部分.作简图如图所示.
(2)假设直线 l 存在,可设 l 的方程为 y=31x+b,依题意, 它与曲线 x2=4(y+1)交于点 A、D,与曲线 x2=-4(y-1) 交于点 B,C.
相切② 圆与直线相离③
相交④
(几何法).
2
判别式法:由方程组
Ax By x a2
C y
0 b2
r2
得关于x(或y)的一元二次方程,则判别式
0⑤ 0⑥
0⑦
(代数法).
3直线与圆相离时,圆上各点到直线的距离
中的最大值和最小值的求法可用线心距法.
4 直线与圆相交时,弦长的求法可利用弦心
7x-y-15=0 (3)由x-12+y-22=2
,解得 A(152,95).

直线与圆、圆与圆位置关系知识点总结、经典例题及高考题和答案

直线与圆、圆与圆位置关系知识点总结、经典例题及高考题和答案

直线与圆、圆与圆位置关系【考纲说明】1、能根据给定直线、圆的方程判断直线与圆的位置关系,能根据给定两个圆的方程判断两圆的位置关系。

2、能用直线和圆的方程解决一些简单的问题。

【知识梳理】一、直线与圆的位置关系1、 直线与圆的位置关系有三种:相交、相切、相离,判断直线与圆的位置关系常见的有两种方法(1)代数法:把直线方程与圆的方程联立成方程组,消去x 或y 整理成一元二次方程后,计算判别式24b ac ∆=-0∆>⇔直线l 与圆C 相交⇔直线l 与圆C 有两交点0∆=⇔直线l 与圆C 相切⇔直线l 与圆C 有一交点0∆<⇔直线l 与圆C 相离⇔直线l 与圆C 无交点(2)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系:r d <⇔直线l 与圆C 相交⇔直线l 与圆C 有两交点r d =⇔直线l 与圆C 相切⇔直线l 与圆C 有一交点r d >⇔直线l 与圆C 相离⇔直线l 与圆C 无交点2、圆的切线方程若圆的方程为222x y r +=,点P 00(,)x y 在圆上,则过P 点且与圆222x y r +=相切的切线方程为2o o x x y y r +=.经过圆22()()x a y b r -+-=上一点P 00(,)x y 的切线方程为222()()22o o x x y y a b r ++-+-=. 3、直线与圆相交直线与圆相交时,若l 为弦长,d 为弦心距,r 为半径,则有2224l r d =+,即l =二、圆与圆的位置关系1、圆与圆的位置关系可分为五种:外离、外切、相交、内切、内含。

2、判断圆与圆的位置关系常用方法(1)几何法:设两圆圆心分别为12,O O ,半径为1212,()r r r r ≠,则1212OO r r >+⇔圆1O与圆2O 相离⇔有4条公切线 1212OO r r =+⇔圆1O与圆2O 外切⇔有3条公切线 121212||r r OO r r -<<+⇔圆1O与圆2O 相交⇔有2条公切线 1212||OO r r =-⇔圆1O与圆2O 内切⇔有1条公切线 1212||OO r r <-⇔圆1O与圆2O 内含⇔有0条公切线. (2)代数法:方程组221112222200x y D x E y F x y D x E y F ⎧++++=⎨++++=⎩ 有两组不同的实数解⇔两圆相交;有两组相同的实数解⇔两圆相切;无实数解⇔两圆外离或内含。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题)
知识梳理
浙江省诸暨市学勉中学(311811)郭天平
圆的标准方程、一般方程与参数方程的推导与运用是这节内容的重点;涉及直线与圆、圆与圆的位置关系的讨论及有关性质的研究是这节的难点。

一、有关圆的基础知识要点归纳
1. 圆的定义:平面内与定点距离等于定长的点的集合(轨迹)是圆.定点即为圆心,定长为半径.
2. 圆的标准方程
① 圆的标准方程:由圆的定义及求轨迹的方法,得()()()022
2>=-+-r r b y a x ,其中圆心坐标为()b a ,,半径为r ;当0,0==b a 时,即圆心在原点时圆的标准方程为222r y x =+;
② 圆的标准方程的特点:是能够直接由方程看出圆心与半径,即突出了它的几何意义。

3. 圆的一般方程
①圆的一般方程:展开圆的标准方程,整理得,022=++++F Ey Dx y x ()
0422>-+F E D ;
② 圆的一般方程的特点:(1)22,y x 项系数相等且不为0;(2)没有xy 这样的二次项
③ 二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件是0≠=C A 且0=B ;
二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是0
≠=C A 且0=B 且0422>-+AF E D
4. 圆的参数方程
圆的参数方程是由中间变量θ将变量y x ,联系起来的一个方程.
① 圆心在原点,半径为r 的圆的参数方程是:θθ
θ(sin cos ⎩⎨
⎧==r y r x 为参数)
; ② 圆心在()b a ,,半径为r 的圆的参数方程是:θθθ(sin cos ⎩⎨⎧+=+=r b y r a x 为参数); 5. 确定圆方程的条件
圆的标准方程、圆的一般方程及参数方程都有三个参数,因此要确定圆方程需要三个独立的条件,而确定圆的方程我们常用待定系数法,根据题目不同的已知条件,我们可适当地选择不同的圆方程形式,使问题简单化。

如已知条件中涉及圆心与半径有关等条件,一般设圆的标准方程,即列出r b a ,,的方程组,求出r b a ,,的值,也可根据圆的特点直接求出圆心()b a ,,半径r 。

当圆心位置不能确定时,往往选择圆的一般方程形式,由已知条件列出F E D ,,的三个方程,显然前者解的是三元二次方程组,后者解的是三元一次方程组,在运算上显然设一般式比标准式要简单。

6. 点与圆的位置关系
设圆()()22
2:r b y a x C =-+-,点()00,y x M 到圆心的距离为d ,则有: (1)r d >⇔点M 在圆外; (2)r d = ⇔点M 在圆上; (3)r d < ⇔点M 在圆内.
7. 直线与圆的位置关系
设圆()()22
2:r b y a x C =-+-,直线l 的方程为0=++C By Ax (B A ,不全为0),圆心()b a ,,判别式为△,则有:
(1) 几何特征(数形结合):由圆心到直线的距离d 与半径r 的大小来判断
① r d < ⇔直线与圆相交;
② r d = ⇔直线与圆相切;
③ r d >⇔直线与圆相离;
(2) 代数特征:由直线方程与圆方程联立方程组,研究其解的个数来判断位置关系 ① △>0⇔有两组不同的实数解⇔ 直线与圆相交;
② △=0⇔有两组相同的实数解⇔ 直线与圆相切;
③ △<0⇔无实数解⇔ 直线与圆相离.
(3) 直线与圆相交的弦长问题
①直线与圆相切时,要考虑过切点与切线垂直的半径; ②求弦长时,要用半径、弦心距、半弦长构成的直角三角形,即设弦长为l ,弦心距
为d ,半径为r ,则有222
2r d l =+⎪⎭
⎫ ⎝⎛. ③弦长公式:设直线交圆于()()2211,,,y x B y x A ,则B A AB x x k AB -⋅+=21 或B A y y k AB -⋅+=2
11. (4) 圆的切线方程:
①已知圆2221:r y x O =+;()()2222:r b y a x O =-+-;
0:223=++++F Ey Dx y x O ,则以()00,y x M 为切点的圆1O 切线方程为:200r y y x x =+;圆2O 切线方程为:()()()()200r b y b y a x a x =--+--;圆3O 切线方程为:()()02
20000=++++++F y y E x x D yy xx . ②若()00,y x M 在圆1O 外,到圆1O 有两条切线,则切点弦方程:200r y y x x =+.
9.圆与圆的位置关系
设圆()()2221:r b y a x C =-+-,()()2222:R n y m x C =-+-且设两圆圆心距为d .
(1) 几何特征(数形结合):由圆心距与半径r 、R 的大小来判断
① r R d +=⇔两圆外切;
② r R d -= ⇔两圆内切且两圆的连心线过切点;
③ r R d +>⇔两圆外离;
④ r R d -<⇔ 两圆内含;
⑤ r R d r R +<<-⇔两圆相交.
(2) 代数特征:由两圆方程联立方程组,研究其解的个数来判断位置关系
① △>0⇔有两组不同的实数解⇔ 两圆相交;
② △=0⇔有两组相同的实数解⇔ 两圆相切;
③ △<0⇔无实数解⇔ 两圆相离.
10.圆系方程
① 设两相交圆0:1112
21=++++F y E x D y x C 0:222221=++++F y E x D y x C
则λ+++++111223:F y E x D y x C 0)(11122=++++F y E x D y x ()1-≠λ表示过
两圆交点的圆(不包括2C );
当1-=λ时()()0212121=-+-+-F F y E E x D D 表示两圆的公共弦所在的直线方
程. ②()022=+++++++c by ax F Ey Dx y x λ表示过圆022=++++F Ey Dx y x 与直线0=++c by ax 交点的圆.
③ ()()222k b y a x =-+-k (为变数)表示以()b a ,为圆心的同心圆系。

二、有关圆问题的注意事项
1.在用待定系数法求圆方程时,一定要注意分析已知条件中圆的特点及规律,并能运用数形结合的思想,即利用平面知识充分挖掘其几何特征,联立待定系数的方程组,使问题简单化。

2.在讨论直线与圆,圆与圆的位置问题时,一般不用0,0,0<∆=∆>∆,而用圆心到直线距离d 与半径r ,和圆心距与半径的大小关系,分别确定相交,相切,相离的位置关系。

3.求圆的切线方程一般有三种方法:设切点公式法;设切线斜率用判别式法;设切线斜率用圆心到切线距离等于圆的半径法。

相关文档
最新文档