Hadoop源代码分析(完整版)
Java大数据处理实践:使用Hadoop和Spark进行分析

Java大数据处理实践:使用Hadoop和Spark进行分析引言:随着互联网的迅猛发展,大数据已经成为当今社会中不可忽视的一部分。
海量的数据需要被处理和分析,以从中获得有价值的信息。
而Java作为一种广泛应用于企业级应用的编程语言,也在大数据处理中发挥着重要的作用。
本文将介绍如何使用Hadoop和Spark这两个流行的开源框架,来进行Java大数据处理的实践。
一、Hadoop的介绍和使用1.1 Hadoop的背景Hadoop是Apache基金会的一个开源项目,它提供了一个可靠、可扩展的分布式计算框架,用于存储和处理大规模数据集。
Hadoop的核心组件包括Hadoop分布式文件系统(HDFS)和基于MapReduce模型的计算框架。
1.2 Hadoop的安装和配置要使用Hadoop进行大数据处理,首先需要安装和配置Hadoop。
可以从Hadoop官方网站上下载最新的稳定版本,并按照官方文档进行安装和配置。
1.3 Hadoop的基本操作一旦安装和配置完成,就可以使用Hadoop进行大数据处理了。
Hadoop提供了一些基本的命令行工具,如hadoop fs用于操作HDFS上的文件,hadoop jar用于提交MapReduce作业等。
1.4 Hadoop的应用实例以一个简单的WordCount程序为例,介绍Hadoop的应用实例。
首先需要编写一个MapReduce程序,用于统计文本中每个单词的出现次数。
然后使用hadoop jar命令将程序打包成jar文件,并提交到Hadoop集群上运行。
最后,通过hadoop fs命令查看运行结果。
二、Spark的介绍和使用2.1 Spark的背景Spark是另一个流行的大数据处理框架,它提供了一个快速、通用、可扩展的集群计算系统。
与Hadoop相比,Spark具有更快的速度和更强大的功能。
2.2 Spark的安装和配置要使用Spark进行大数据处理,首先需要安装和配置Spark。
hadoop技术、方法以及原理的理解

hadoop技术、方法以及原理的理解Hadoop技术、方法以及原理的理解Hadoop是一个开源的分布式计算框架,它能够存储和处理海量的数据。
它由Apache基金会开发和维护,是目前最流行的大数据处理解决方案之一。
Hadoop的技术、方法以及原理是构成Hadoop 的核心部分,下面我们将对其进行详细的解析。
一、Hadoop的技术1. HDFSHadoop分布式文件系统(HDFS)是Hadoop的核心组件之一。
它是一种高度容错的分布式文件系统,具有高可靠性和高可用性。
该文件系统将海量数据分散存储在多个节点上,以实现快速访问和处理。
2. MapReduceMapReduce是Hadoop的另一个核心组件,它是一种编程模型和处理数据的方式。
MapReduce将数据分成小的块,然后在分布式计算机集群上处理这些块。
MapReduce将任务分为Map和Reduce两个阶段。
在Map阶段,数据被分割并分配给不同的节点进行计算。
在Reduce阶段,计算的结果被合并起来并输出。
3. YARNHadoop资源管理器(YARN)是另一个重要的组件,它是一个分布式的集群管理系统,用于管理Hadoop集群中的资源。
YARN允许多个应用程序同时运行在同一个Hadoop集群上,通过动态管理资源来提高集群的使用效率。
二、Hadoop的方法1. 大数据存储Hadoop通过HDFS实现对海量数据的存储和管理。
HDFS的设计目标是支持大型数据集的分布式处理,它通过多个节点存储数据,提供高可靠性和高可用性。
2. 数据处理Hadoop通过MapReduce实现对海量数据的处理。
MapReduce 将数据分成小的块,然后在分布式计算机集群上处理这些块。
在Map阶段,数据被分割并分配给不同的节点进行计算。
在Reduce 阶段,计算的结果被合并起来并输出。
3. 数据分析Hadoop通过Hive、Pig和Spark等工具实现数据分析。
这些工具提供了高级查询和数据分析功能,可以通过SQL和其他编程语言来处理海量数据。
Java大数据处理使用Hadoop和Spark进行数据分析

Java大数据处理使用Hadoop和Spark进行数据分析随着信息技术的迅速发展,海量数据的产生已经成为了一种普遍现象。
在这背景下,大数据处理技术逐渐崭露头角,并发挥着越来越重要的作用。
作为大数据处理的两个重要工具,Hadoop和Spark已经成为了众多企业和研究机构的首选。
本文将对Java大数据处理使用Hadoop和Spark进行数据分析进行探讨,旨在帮助读者更好地理解和应用这两种技术。
一、Hadoop介绍及使用1. Hadoop概述Hadoop是一个开源的、基于Java的大数据处理框架。
它的核心思想是将大数据分布式处理,通过搭建集群实现数据的存储和并行计算。
Hadoop包含了HDFS(Hadoop分布式文件系统)和MapReduce(分布式计算模型)两个核心组件。
2. Hadoop的安装和配置在使用Hadoop进行数据分析之前,我们首先需要完成Hadoop 的安装和配置。
这包括下载Hadoop压缩包、解压缩、配置环境变量和核心配置文件等步骤。
通过正确配置,我们可以保证Hadoop的正常运行和数据处理的准确性。
3. Hadoop与Java的结合由于Hadoop是基于Java的,因此我们可以利用Java语言编写Hadoop程序。
Java提供了丰富的类库和API,使得我们可以方便地开发和调试Hadoop应用。
在Java程序中,我们可以通过Hadoop的API实现数据的输入、输出、计算和结果的保存等功能。
二、Spark介绍及使用1. Spark概述Spark是一个快速、通用、可扩展的大数据处理引擎。
与Hadoop的MapReduce相比,Spark的优势在于其内存计算和任务调度的高效性。
Spark提供了丰富的编程接口,包括Java、Scala和Python等,使得开发者可以根据自己的需求选择最适合的语言进行编码。
2. Spark的安装和配置与Hadoop类似,我们在使用Spark之前也需要进行安装和配置工作。
什么是Java的Hadoop有什么特点

什么是Java的Hadoop有什么特点在当今的大数据时代,数据的处理和分析变得至关重要。
Java 的Hadoop 就是在这样的背景下应运而生的一项强大技术。
那么,究竟什么是 Java 的 Hadoop 呢?它又具有哪些显著的特点呢?要理解 Hadoop,我们首先得明白大数据处理所面临的挑战。
随着互联网的飞速发展,数据量呈爆炸式增长,传统的数据处理方式已经无法应对如此海量的数据。
Hadoop 就是为了解决这些问题而诞生的一个分布式计算框架。
Hadoop 是基于 Java 语言开发的,这使得它在 Java 生态系统中具有很好的兼容性和可扩展性。
它主要由两个核心组件组成:HDFS (Hadoop 分布式文件系统)和 MapReduce(分布式计算模型)。
HDFS 就像是一个巨大的数据仓库,它将数据分布存储在多个节点上,实现了数据的冗余备份和高可靠性。
想象一下,你有海量的数据,不再是存储在一台服务器上,而是分散在许多台服务器中,这样即使某些服务器出现故障,数据也不会丢失,而且还能并行地读取和写入数据,大大提高了数据的访问效率。
MapReduce 则是 Hadoop 的计算引擎。
它将复杂的计算任务分解为两个阶段:Map 阶段和 Reduce 阶段。
在 Map 阶段,将输入的数据分割成小块,并进行初步的处理;在 Reduce 阶段,对 Map 阶段的结果进行汇总和整合。
通过这种方式,Hadoop 能够在大量的节点上并行执行计算任务,从而快速处理海量的数据。
Java 的 Hadoop 具有以下几个显著的特点:首先是高可靠性。
由于数据在 Hadoop 中被分散存储并进行了冗余备份,所以即使个别节点出现故障,也不会导致数据的丢失。
系统会自动检测故障,并将数据恢复到其他正常的节点上,确保数据的完整性和可用性。
其次是高扩展性。
Hadoop 可以轻松地扩展到数千个节点,随着数据量的增加和计算需求的增长,可以方便地添加新的节点来提升系统的处理能力。
大数据实例代码

大数据实例代码
一、大数据概述
随着互联网和物联网的快速发展,数据量呈现出爆炸式增长,大数据作为一种新兴产业,已经成为各行各业关注的焦点。
大数据的核心价值在于数据分析与挖掘,从而为决策提供有力支持。
本文将通过一个实例代码,简要介绍如何实现大数据的处理与分析。
二、大数据实例代码介绍
本文选取的实例代码是基于Hadoop框架实现的,主要包括以下几个部分:
1.数据收集:通过Flume等工具将数据从不同来源收集到Hadoop分布式系统中。
2.数据存储:将收集到的数据存储在Hadoop的HDFS中,以便进行后续处理。
3.数据处理:采用MapReduce编程模型,实现对数据的分布式处理。
本文实例代码涉及的数据处理包括数据清洗、统计分析等。
4.数据可视化:将处理结果通过JavaScript、HTML等前端技术展示在前端页面,便于用户查看与分析。
hadoop3 源码编译

hadoop3 源码编译
编译hadoop 3源码需要以下几个步骤:
1. 确认编译环境
Hadoop 3要求使用JDK 8或更高版本进行编译。
同时需要安装Maven 3.3或更高版本作为构建工具.
2. 下载源代码
从Apache官方网站下载最新的Hadoop v3源代码包并解压缩。
3. 修改配置文件
进入hadoop-3.x-src/hadoop-project-dist/hadoop-common目录,编辑pom.xml文件,将hadoop.version属性设置为当前版本号。
4. 编译代码
在hadoop-3.x-src目录下使用以下命令编译源代码:
```
mvn clean install -DskipTests
```
这将编译hadoop的所有模块,并将构建的JAR文件安装到本地Maven存储库中。
5. 配置环境变量
将以下环境变量添加到你的~/.bashrc文件中:
```
export HADOOP_HOME=/path/to/hadoop-3.x-src/hadoop-
dist/target/hadoop-3.x.x
export PATH=PATH:HADOOP_HOME/bin:HADOOP_HOME/sbin
```
替换/path/to/为你的Hadoop源代码目录。
6. 测试安装
重启终端后,使用以下命令验证Hadoop安装是否成功:
```
hadoop version
```
如果一切顺利,你应该能够看到安装的版本号。
以上是Hadoop 3源代码的编译流程。
hadoop大数据技术基础 python版

Hadoop大数据技术基础 python版随着互联网技术的不断发展和数据量的爆炸式增长,大数据技术成为了当前互联网行业的热门话题之一。
Hadoop作为一种开源的大数据处理评台,其在大数据领域的应用日益广泛。
而Python作为一种简洁、易读、易学的编程语言,也在大数据分析与处理中扮演着不可或缺的角色。
本文将介绍Hadoop大数据技术的基础知识,并结合Python编程语言,分析其在大数据处理中的应用。
一、Hadoop大数据技术基础1. Hadoop简介Hadoop是一种用于存储和处理大规模数据的开源框架,它主要包括Hadoop分布式文件系统(HDFS)和MapReduce计算框架。
Hadoop分布式文件系统用于存储大规模数据,而MapReduce计算框架则用于分布式数据处理。
2. Hadoop生态系统除了HDFS和MapReduce之外,Hadoop生态系统还包括了许多其他组件,例如HBase、Hive、Pig、ZooKeeper等。
这些组件形成了一个完整的大数据处理评台,能够满足各种不同的大数据处理需求。
3. Hadoop集群Hadoop通过在多台服务器上构建集群来实现数据的存储和处理。
集群中的各个计算节点共同参与数据的存储和计算,从而实现了大规模数据的分布式处理。
二、Python在Hadoop大数据处理中的应用1. Hadoop StreamingHadoop Streaming是Hadoop提供的一个用于在MapReduce中使用任意编程语言的工具。
通过Hadoop Streaming,用户可以借助Python编写Map和Reduce的程序,从而实现对大规模数据的处理和分析。
2. Hadoop连接Python除了Hadoop Streaming外,Python还可以通过Hadoop提供的第三方库和接口来连接Hadoop集群,实现对Hadoop集群中数据的读取、存储和计算。
这为Python程序员在大数据处理领域提供了更多的可能性。
Hadoop知识点总结

Hadoop知识点总结Hadoop知识点总结1.什么是hadoop?hadoop是⼀个开源软件框架,⽤于存储⼤量数据,并发处理/查询在具有多个商⽤硬件(即低成本硬件)节点的集群上的那些数据。
总之Hadoop包括⼀下内容:HDFS(Hadoop分布式⽂件系统):允许以⼀种分布式和冗余的⽅式存储⼤量数据。
例如:1GB(即1024MB)⽂本⽂件可以拆分为16*128MB⽂件,并存储在Hadoop集群中的8个不同节点上。
每个分裂可以复制三次,以实现容错,以便如果⼀个节点出现错误的话,也有备份。
HDFS适⽤于顺序的"⼀次写⼊,多次读取"的类型访问。
MapReduce:⼀个计算框架。
它以分布式和并⾏的⽅式处理⼤量的数据,当你对所有年龄>18的⽤户在上述1GB⽂件上执⾏查询时,将会有"8个映射"函数并⾏运⾏,以在其128MB拆分⽂件中提取年龄>18的⽤户,然后"reduce"函数将将会运⾏以将所有单独的输出组合成单个最终结果。
YARN(⼜⼀资源定位器):⽤于作业调度和集群资源管理的框架。
Hadoop⽣态系统,拥有15多种框架和⼯具,如Sqoop,Flume,Kafka,Pig,Hive,Spark,Impala等以便将数据摄⼊HDFS,在HDFS中转移数据(即变换、丰富、聚合等),并查询来⾃HDFS的数据⽤于商业智能和分析。
某些⼯具(如Pig和Hive)是MapReduce上的抽象层,⽽Spark和Impala等其他⼯具则是来⾃MapReduce的改进架构/设计,⽤于显著提⾼延迟以⽀持近实时和实时处理2.为什么组织从传统的数据仓库⼯具转移到基于Hadoop⽣态系统的智能数据中⼼?1.现有数据基础设施:主要使⽤存储在⾼端和昂贵硬件中的"structured data,结构化数据"主要处理为ETL批处理作业,⽤于将数据提取到RDBMS和数据仓库系统中进⾏数据挖掘,分析和报告,以进⾏关键业务决策主要处理以千兆字节到兆字节为单位的数据量2.基于Hadoop的更加智能的数据基础设施,其中:结构化(例如RDBMS),⾮结构化(例如images,PDF,docs)和半结构化(例如logs,XMLs)的数据可以以可扩展和容错的⽅式存储在⽐较便宜的商⽤机器中数据可以存储诸如Spark和Impala之类的⼯具以低延迟的能⼒查询可以存储以兆兆字节到千兆字节为单位的较⼤数据量3.基于Hadoop的数据中⼼的好处是什么?随着数据量和复杂性的增加,提⾼量整体服务⽔平协议。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键字: 分布式云计算Google的核心竞争技术是它的计算平台。
Google的大牛们用了下面5篇文章,介绍了它们的计算设施。
GoogleCluster: /archive/googlecluster.htmlChubby:/papers/chubby.htmlGFS:/papers/gfs.htmlBigTable:/papers/bigtable.htmlMapReduce:/papers/mapreduce.html很快,Apache上就出现了一个类似的解决方案,目前它们都属于Apache的Hadoop项目,对应的分别是:Chubby-->ZooKeeperGFS-->HDFSBigTable-->HBaseMapReduce-->Hadoop目前,基于类似思想的Open Source项目还很多,如Facebook用于用户分析的Hive。
HDFS作为一个分布式文件系统,是所有这些项目的基础。
分析好HDFS,有利于了解其他系统。
由于Hadoop的HDFS和MapReduce 是同一个项目,我们就把他们放在一块,进行分析。
下图是MapReduce整个项目的顶层包图和他们的依赖关系。
Hadoop包之间的依赖关系比较复杂,原因是HDFS提供了一个分布式文件系统,该系统提供API,可以屏蔽本地文件系统和分布式文件系统,甚至象Amazon S3这样的在线存储系统。
这就造成了分布式文件系统的实现,或者是分布式文件系统的底层的实现,依赖于某些貌似高层的功能。
功能的相互引用,造成了蜘蛛网型的依赖关系。
一个典型的例子就是包conf,conf用于读取系统配置,它依赖于fs,主要是读取配置文件的时候,需要使用文件系统,而部分的文件系统的功能,在包fs中被抽象了。
Hadoop的关键部分集中于图中蓝色部分,这也是我们考察的重点。
下面给出了Hadoop的包的功能分析。
Hadoop源代码分析(三)由于Hadoop的MapReduce和HDFS都有通信的需求,需要对通信的对象进行序列化。
Hadoop并没有采用Java的序列化,而是引入了它自己的系统。
org.apache.hadoop.io中定义了大量的可序列化对象,他们都实现了Writable接口。
实现了Writable接口的一个典型例子如下:Java代码1.public class MyWritable implements Writable {2.// Some data3.private int counter;4.private long timestamp;5.6.public void write(DataOutput out) throws IOException {7.out.writeInt(counter);8.out.writeLong(timestamp);9.}10.11.public void readFields(DataInput in) throws IOException {12.counter = in.readInt();13.timestamp = in.readLong();14.}15.16.public static MyWritable read(DataInput in) throws IOException {17.MyWritable w = new MyWritable();18.w.readFields(in);19.return w;20.}21.}其中的write和readFields分别实现了把对象序列化和反序列化的功能,是Writable接口定义的两个方法。
下图给出了庞大的org.apache.hadoop.io中对象的关系。
这里,我把ObjectWritable标为红色,是因为相对于其他对象,它有不同的地位。
当我们讨论Hadoop的RPC时,我们会提到RPC上交换的信息,必须是Java的基本类型,String和Writable接口的实现类,以及元素为以上类型的数组。
ObjectWritable 对象保存了一个可以在RPC上传输的对象和对象的类型信息。
这样,我们就有了一个万能的,可以用于客户端/服务器间传输的Writable对象。
例如,我们要把上面例子中的对象作为RPC请求,需要根据MyWritable创建一个ObjectWritable,ObjectWritable往流里会写如下信息对象类名长度,对象类名,对象自己的串行化结果这样,到了对端,ObjectWritable可以根据对象类名创建对应的对象,并解串行。
应该注意到,ObjectWritable依赖于WritableFactories,那存储了Writable子类对应的工厂。
我们需要把MyWritable的工厂,保存在WritableFactories中(通过WritableFactories.setFactory)。
Hadoop源代码分析(五)介绍完org.apache.hadoop.io以后,我们开始来分析org.apache.hadoop.rpc。
RPC采用客户机/服务器模式。
请求程序就是一个客户机,而服务提供程序就是一个服务器。
当我们讨论HDFS的,通信可能发生在:∙Client-NameNode之间,其中NameNode是服务器∙Client-DataNode之间,其中DataNode是服务器∙DataNode-NameNode之间,其中NameNode是服务器∙DataNode-DateNode之间,其中某一个DateNode是服务器,另一个是客户端如果我们考虑Hadoop的Map/Reduce以后,这些系统间的通信就更复杂了。
为了解决这些客户机/服务器之间的通信,Hadoop 引入了一个RPC框架。
该RPC框架利用的Java的反射能力,避免了某些RPC解决方案中需要根据某种接口语言(如CORBA的IDL)生成存根和框架的问题。
但是,该RPC框架要求调用的参数和返回结果必须是Java的基本类型,String和Writable接口的实现类,以及元素为以上类型的数组。
同时,接口方法应该只抛出IOException异常。
(参考自/blog/86306)既然是RPC,当然就有客户端和服务器,当然,org.apache.hadoop.rpc也就有了类Client和类Server。
但是类Server是一个抽象类,类RPC封装了Server,利用反射,把某个对象的方法开放出来,变成RPC中的服务器。
下图是org.apache.hadoop.rpc的类图。
Hadoop源代码分析(六)既然是RPC,自然就有客户端和服务器,当然,org.apache.hadoop.rpc也就有了类Client和类Server。
在这里我们来仔细考察org.apache.hadoop.rpc.Client。
下面的图包含了org.apache.hadoop.rpc.Client中的关键类和关键方法。
由于Client可能和多个Server通信,典型的一次HDFS读,需要和NameNode打交道,也需要和某个/某些DataNode通信。
这就意味着某一个Client需要维护多个连接。
同时,为了减少不必要的连接,现在Client的做法是拿ConnectionId(图中最右侧)来做为Connection的ID。
ConnectionId包括一个InetSocketAddress(IP地址+端口号或主机名+端口号)对象和一个用户信息对象。
这就是说,同一个用户到同一个InetSocketAddress的通信将共享同一个连接。
连接被封装在类Client.Connection中,所有的RPC调用,都是通过Connection,进行通信。
一个RPC调用,自然有输入参数,输出参数和可能的异常,同时,为了区分在同一个Connection上的不同调用,每个调用都有唯一的id。
调用是否结束也需要一个标记,所有的这些都体现在对象Client.Call中。
Connection对象通过一个Hash表,维护在这个连接上的所有Call:Java代码1.private Hashtable<Integer, Call> calls = new Hashtable<Integer, Call>();一个RPC调用通过addCall,把请求加到Connection里。
为了能够在这个框架上传输Java的基本类型,String和Writable接口的实现类,以及元素为以上类型的数组,我们一般把Call需要的参数打包成为ObjectWritable对象。
Client.Connection会通过socket连接服务器,连接成功后回校验客户端/服务器的版本号(Client.ConnectionwriteHeader()方法),校验成功后就可以通过Writable对象来进行请求的发送/应答了。
注意,每个Client.Connection会起一个线程,不断去读取socket,并将收到的结果解包,找出对应的Call,设置Call并通知结果已经获取。
Call使用Obejct的wait和notify,把RPC上的异步消息交互转成同步调用。
还有一点需要注意,一个Client会有多个Client.Connection,这是一个很自然的结果。
Hadoop源代码分析(七)聊完了Client聊Server,按惯例,先把类图贴出来。
需要注意的是,这里的Server类是个抽象类,唯一抽象的地方,就是Java代码1.public abstract Writable call(Writable param, long receiveTime) throws IOException;这表明,Server提供了一个架子,Server的具体功能,需要具体类来完成。
而具体类,当然就是实现call方法。
我们先来分析Server.Call,和Client.Call类似,Server.Call包含了一次请求,其中,id和param的含义和Client.Call是一致的。
不同点在后面三个属性,connection是该Call来自的连接,当然,当请求处理结束时,相应的结果会通过相同的connection,发送给客户端。
属性timestamp是请求到达的时间戳,如果请求很长时间没被处理,对应的连接会被关闭,客户端也就知道出错了。
最后的response是请求处理的结果,可能是一个Writable的串行化结果,也可能一个异常的串行化结果。
Server.Connection维护了一个来之客户端的socket连接。
它处理版本校验,读取请求并把请求发送到请求处理线程,接收处理结果并把结果发送给客户端。