13.1 概率及其计算

合集下载

初中数学知识归纳概率与概率的计算方法

初中数学知识归纳概率与概率的计算方法

初中数学知识归纳概率与概率的计算方法概率是数学中的一个重要概念,它用于描述某个事件发生的可能性。

在初中数学中,学生们需要学习并掌握概率的基本概念和计算方法。

本文将对初中数学中与概率相关的知识进行归纳总结,包括概率的定义、概率的计算方法以及与概率相关的常见问题。

一、概率的定义概率是指某个事件发生的可能性大小。

通常用一个介于0到1之间的数值来表示概率,其中0表示不可能发生,1表示必然发生。

在实际问题中,概率的取值也可以是一个百分比,例如50%表示事件发生的可能性为一半。

二、概率的计算方法1. 等可能事件的概率计算如果一个事件中的每个结果发生的可能性相同且互不影响,我们称这些事件为等可能事件。

对于等可能事件,其概率的计算公式为:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的样本点个数,n(S)表示样本空间中的样本点总数。

2. 有限样本空间的概率计算对于有限样本空间的事件,我们可以先计算出每个样本点发生的概率,再根据事件包含的样本点的概率之和计算事件发生的概率。

3. 独立事件的概率计算如果两个事件A和B同时发生的可能性与事件A发生的可能性以及事件B发生的可能性之乘积相等,我们称这两个事件为独立事件。

对于独立事件,其概率的计算公式为:P(A ∩ B) = P(A) × P(B)4. 互斥事件的概率计算如果两个事件A和B不能同时发生,那么我们称这两个事件为互斥事件。

对于互斥事件,其概率的计算公式为:P(A ∪ B) = P(A) + P(B)三、与概率相关的常见问题1. 排列组合问题在概率计算中,常常涉及到排列组合问题,例如从一组数中选择若干个数的不同排列情况。

在解决这类问题时,我们可以使用排列组合公式来计算可能的情况数,进而计算概率。

2. 抽样问题在实际问题中,经常需要进行抽样调查来获取数据。

在计算概率时,我们需要根据抽样的结果来计算概率的估计值,从而对总体的情况进行推断。

概率计算公式详解

概率计算公式详解

概率计算公式详解概率是描述事件发生可能性的数值,是一个介于0和1之间的实数。

概率计算公式是用来计算事件发生概率的数学公式。

本文将详细介绍概率计算公式,包括概率的定义、基本概率公式、条件概率公式和事件相互关系公式。

一、概率的定义概率是一个描述事件发生可能性的数值,通常用P(A)表示事件A发生的概率。

概率的取值范围在0和1之间,其中0表示事件不可能发生,1表示事件一定会发生。

二、基本概率公式1.基本概率公式一:频率定义概率频率定义概率是通过实验统计数据来计算事件发生概率的方法。

当我们进行一定数量的实验,事件A发生的次数为n(A),总实验次数为n时,频率定义概率P(A)可计算为P(A)=n(A)/n。

2.基本概率公式二:古典概率古典概率是在一定条件下利用概率的基本规律计算事件发生概率的方法。

对于一个有限的样本空间S,包含n个等可能的样本点,事件A包含m个有利结果,则古典概率P(A)可计算为P(A)=m/n。

3.基本概率公式三:几何概率几何概率是通过几何方法计算事件发生概率的方法。

当事件A是在一个图形空间中随机选择一个点时,落在事件A的面积与总图形面积之比即为几何概率P(A)。

三、条件概率公式条件概率是指在已知其中一事件B发生的条件下,事件A发生的概率。

条件概率用P(A,B)表示。

条件概率公式可表示为P(A,B)=P(A∩B)/P(B),其中P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。

四、事件相互关系公式1.互斥事件:如果事件A和事件B不能同时发生,则称两个事件互斥。

互斥事件的概率公式为P(A∪B)=P(A)+P(B)。

2.独立事件:如果事件A的发生与否不受事件B的影响,事件B的发生与否不受事件A的影响,则称两个事件相互独立。

独立事件的概率公式为P(A∩B)=P(A)*P(B)。

四、概率计算的常用方法1.组合数计算法:对于涉及到计算事件发生数和总数的概率计算问题,可以使用组合数计算法来求解。

概率计算方法全攻略

概率计算方法全攻略

概率计算方法全攻略概率计算方法全攻略在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下:一.公式法P(随机事件)=的结果数随机事件所有可能出现果数随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件)=0;0<P(随机事件)<1.例1 (07河北)图1中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为________.解析: 本题考查用公式法求概率,在随机翻动木牌过程中,一共有6种可能的翻牌结果,其中有2种为中奖,所以P(中奖)=3162 . 说明: 本题采用了一种较为有趣的试题背景,重在考查学生对概率模型的理解、以及对随机事件发生概率值的计算. 二.面积法例2 如图2是地板格的一部分,一只图1蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_______.解析:因为四块地板的面积各不相同,故应分别求出阴影部分的面积为2×1+2×3=8,总面积为:2×1+2×2+2×3+1×5=17,面积之比即为所求概率. 所以P(随意停留在阴影部分)=178.评注:几何概型也就是概率的大小与面积大小有关,事件发生的概率等于此事件所有可能结果所组成的图形面积除以所有可能结果组成的图形的面积.三.树形图法例3 不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12 .(1)试求袋中蓝球的个数.(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图法,求两次摸到都是白球的概率.解析:⑴设蓝球个数为x 个 .由题意得21122=++x ∴x=1 答:蓝球有1个 (2)树状图如下:∴两次摸到都是白球的概率 =61122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是机会均等的.本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗列出来,便于计算结果. 四.列表法例4 (07山西)如图3,有四张编号为1,2,3,4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?黄白2白1蓝黄白1蓝黄白2(2)从四张卡片中随机抽取一张贴在如图4所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.解析:(1)所求概率是.2142= (2)解法一(树形图):共有12种可能的结果(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3).其中只有两种结果(1,2)和(2,1)是符合条件的,所以贴法正确的概率是.61122= 解法二(列表法):12 3图图3第一次抽取12 3 第二次抽取 21 3 31 2 41 2 1共有12种可能的结果(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3).其中只有两种结果(1,2)和(2,1)是符合条件的,所以贴法正确的概率是.61122 评注:本题考查学生对用树状图或列表法求概率的掌握情况,用树状图法或列表法列举出的结果一目了然,当事件要经过多次步骤(三步以上)完成时,用这两种方法求事件的概率很有效.概率计算一个20面体,每个面都是等边三角形,如果截去所有的顶角,它将成为多少面体?共有多少个顶点?共有多少条棱?1条件概率 P(A|B)=Nab/Nb=P(AB)/P(B)=AB包含的基本事件数/B包含的基本事件数相对独立事件 P(A*B)=P(A)*P(B) 事件A发生与事件B的发生没有关系独立重复事件 P=C(n,k)P(k次方)(1-p)(n-k次方)【本讲教育信息】一. 教学内容:概率计算二. 重点、难点:1. 古典概型∴2. A、B互斥,则3. A的对立事件,4. A、B独立,则【典型例题】[例1] 从5双不同的鞋中任取四只,求至少配成一双的概率。

高中数学第13章概率131试验与事件1311事件1312事件的运算应用案巩固提升课件湘教版必修5

高中数学第13章概率131试验与事件1311事件1312事件的运算应用案巩固提升课件湘教版必修5
语 同学们,你们要相信梦想是价值的源泉,相信成
功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油。
第13章 概 率
解析:选 D.a∥b,a⊥α⇒b⊥α,故 A 错;a∥b,a⊂α⇒b∥
α 或 b⊂α,故 B 错;当 α⊥ν,β⊥ν时,α 与 β 有可能平行,
也可能相交(包括垂直).故 C 错;如果两条直线垂直于同一 平面,则这两条直线必平行,故 D 正确.
第13章 概 率
12.给出关于满足 A B 的非空集合 A、B 的四个命题: ①若任取 x∈A,则 x∈B 是必然事件;②若任取 x∉A,则 x∈B 是不可能事件;③若任取 x∈B,则 x∈A 是随机事件;④ 若任取 x∉B,则 x∉A 是必然事件. 其中正确的命题有________.
第13章 概 率
解:(1)由于事件 C“至多订一种报”中有可能“只订甲 报”,即事件 A 与事件 C 有可能同时发生,故 A 与 C 不是 互斥事件. (2)事件 B“至少订一种报”与事件 E“一种报也不订”是 不可能同时发生的,故 B 与 E 是互斥事件.且 B 和 E 必有 一个发生,故 B 与 E 也是对立事件.
第13章 概 率
解析:200 件产品中,8 件是二级品,现从中任意选出 9 件, 当然不可能全是二级品,不是一级品的件数最多为 8,小于 10. 答案:③④ ② ①
第13章 概 率
8.下列事件:①一个口袋内装有 5 个红球,从中任取一球 是红球;②抛掷两枚骰子,所得点数之和为 9;③x2≥0(x∈R); ④方程 x2-3x+5=0 有两个不相等的实数根;⑤巴西足球 队会在下届世界杯足球赛中夺得冠军,其中随机事件的个 数为________.

概率及其计算

概率及其计算

概率及其计算概率是数学中一个重要的概念,用于描述事件发生的可能性。

在现实生活中,我们经常会面临各种概率问题,比如抛硬币的结果、摇骰子的点数、购彩中奖的可能性等等。

因此,了解概率的定义、性质以及计算方法是非常重要的。

一、概率的定义和性质概率可以用来衡量事件发生的可能性大小,通常用一个介于0到1之间的数值表示。

其中,0表示事件不可能发生,1表示事件一定会发生。

下面是概率的一些基本性质:1. 对于任何事件A,0 ≤ P(A) ≤ 1。

2. 如果事件A发生的概率为P(A),那么事件A不发生的概率为1 - P(A)。

3. 对于必然事件,其概率为1;对于不可能事件,其概率为0。

4. 如果两个事件A和B互斥(即不可能同时发生),那么它们的概率之和为P(A∪B) = P(A) + P(B)。

二、概率的计算方法在计算概率时,我们可以采用多种方法,根据实际情况选择合适的方法进行计算。

下面是一些常见的概率计算方法:1. 经典概率计算:对于有限个等可能的结果,概率可以通过计算有利结果的数量与总结果数量之比得到。

比如抛一枚硬币,正反两面各有一个,因此正面朝上的概率为1/2。

2. 相对频率概率计算:通过实验或观察,统计事件发生的次数与总次数之比,作为概率的估计值。

比如抛硬币100次,正面朝上的次数为50次,因此正面朝上的概率估计为50/100=1/2。

3. 条件概率计算:当已知事件B发生的前提下,事件A发生的概率。

条件概率可以通过P(A|B) = P(A∩B) / P(B) 计算得到。

4. 独立事件概率计算:当事件A和事件B相互独立(即事件A的发生不影响事件B的发生)时,可以通过P(A∩B) = P(A) * P(B)计算两个事件同时发生的概率。

三、概率的应用领域概率的应用领域非常广泛,几乎涵盖了生活的方方面面。

举几个例子来说明一下:1. 在金融领域,概率可以用于计算投资的风险和回报,并帮助投资者做出决策。

2. 在医学领域,概率可以用于计算疾病的发病率和治愈率,指导医生进行诊断和治疗。

初中数学知识归纳概率的计算与应用

初中数学知识归纳概率的计算与应用

初中数学知识归纳概率的计算与应用初中数学知识归纳:概率的计算与应用概率是数学中一个重要的概念,也是我们日常生活中遇到的问题经常涉及到的内容。

概率的计算与应用是初中数学中的一个重要章节,本文将对初中数学中关于概率的知识进行归纳,并介绍其计算方法和实际应用。

一、概率的基本概念概率是指某种事件发生的可能性大小。

在数学中,概率的取值范围是0到1之间,其中0表示不可能事件,1表示必然事件。

根据事件的等可能性原理,概率可以通过事件发生的次数与总次数的比值来计算。

二、事件的计数方法在计算概率时,需要准确计算事件发生的次数和总次数。

以下是几种常见的计数方法:1. 用排列计数方法计算事件发生的次数。

当事件中的元素没有重复且有一定的顺序时,可以使用排列方法进行计数。

例如,从3个人中选出2个人进行一场足球比赛,可以用3P2来计算。

2. 用组合计数方法计算事件发生的次数。

当事件中的元素没有重复且没有一定的顺序时,可以使用组合方法进行计数。

例如,在一副扑克牌中,从中选出5张红桃牌的可能性可以用C(13,5)来计算。

3. 用图形计数方法计算事件发生的次数。

当事件中的元素具有一定的图形性质时,可以使用图形计数方法进行计数。

例如,在一个圆中,抛掷一个点,点落在圆上的可能性可以用点的总面积与圆的面积的比值来计算。

三、概率的计算方法概率的计算方法包括频率法和几何概率法。

1. 频率法:通过实验的次数与总次数的比值来估计概率。

当实验次数趋近于无穷大时,频率法计算的结果逼近真实概率。

2. 几何概率法:通过几何图形中的面积比值来计算概率。

对于几何图形中的事件,可以通过事件的面积与总面积的比值来计算概率。

四、概率的应用概率的应用非常广泛,主要包括以下几个方面:1. 游戏中的概率:在一些游戏中,概率起到决定输赢的作用。

例如,在扑克牌游戏中,计算不同牌型的概率可以帮助我们做出更好的决策。

2. 事件的发生概率:在生活中,我们经常需要计算某种事件发生的概率。

概率的基本概念和计算

概率的基本概念和计算

概率的基本概念和计算概率是数学中一个重要的概念,用于描述事物发生的可能性。

在现实生活中,我们经常需要估计或计算某个事件发生的概率。

本文将介绍概率的基本概念和计算方法。

一、概率的基本概念概率是描述随机事件发生可能性的数值。

简单来说,概率是指某个事件在所有可能结果中出现的频率或可能性。

1. 事件与样本空间事件是指某个结果的集合,样本空间是指随机试验中所有可能结果的集合。

例如,掷一枚硬币的样本空间为{正面,反面},抛一颗骰子的样本空间为{1,2,3,4,5,6}。

事件是样本空间的子集。

2. 随机试验随机试验是指在相同条件下可以重复进行的实验,每次试验的结果是不确定的。

例如,掷一枚硬币、抛一颗骰子等都属于随机试验。

3. 频率与概率频率是指某个事件在大量实验中出现的相对次数。

当试验次数足够多时,频率会接近于概率。

概率用数值来表示,通常用百分数或小数表示。

二、概率的计算方法概率可以通过多种方法来计算,常用的方法包括:经典概率、古典概率、条件概率和复合事件概率。

1. 经典概率经典概率适用于随机试验的样本空间是有限且所有结果等可能的情况。

计算方法为:事件发生的可能数除以样本空间中所有结果的总数。

2. 古典概率古典概率适用于随机试验的样本空间是有限的情况,但各结果的概率不相等。

计算方法为:事件发生的结果数乘以各结果的概率之和。

3. 条件概率条件概率是指在某个条件下事件发生的概率。

计算方法为:事件A在事件B已经发生的条件下发生的概率等于事件A与事件B同时发生的概率除以事件B发生的概率。

4. 复合事件概率复合事件概率是指由多个简单事件组成的事件的概率。

计算方法为:将多个简单事件的概率相乘。

三、实例分析为了更好地理解概率的概念和计算方法,以下以一个抛硬币的实例进行分析。

假设我们有一枚硬币,希望计算掷一次硬币正面朝上的概率。

首先,分析:- 样本空间为{正面,反面};- 事件为【正面朝上】;- 根据经典概率,两个结果等可能。

《概率的计算公式》课件

《概率的计算公式》课件
定义
适用于长度、面积、体积等几何量度的等可能概率计算。
应用场景
$P(A) = frac{有利于A的几何量度}{全部可能的几何量度}$
计算公式
应用场景
适用于事件之间存在条件关系的情况,如事件A和B同时发生或连续发生。
定义
条件概率是指在某一事件B已经发生的情况下,另一事件A发生的概率。
计算公式
$P(A|B) = frac{P(A cap B)}{P(B)}$,其中 $P(A cap B)$ 是事件A和事件B同时发生的概率,$P(B)$ 是事件B发生的概率。
概率具有非负性、规范性、可加性和有限可加性等基本性质。
03
02
01
概率的取值范围反映了随机事件发生的可能性大小,其中0表示事件不可能发生,1表示事件一定会发生。
概率的取值范围是概率论中一个重要的概念,是描述随机事件发生可能性大小的数值量度。
概率的取值范围是0到1之间,包括0和1。
概率的计算方法
《概率的计算公式》ppt课件
目录
CONTENTS
概率的基本概念概率的计算方法概率的加法公式概率的乘法公式概率的连续性公式概率在实际生活中的应用
概率的基本概念
表示随机事件发生的可能性大小的数值。
概率的定义
概率的取值范围
概率的基本性质
概率的取值范围是0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
贝叶斯公式定义
在事件B已经发生的情况下,事件A发生的概率,记作P(A|B)=P(B|A)×P(A)/P(B)。
应用场景
贝叶斯公式常用于更新一个事件的概率,当已经知道另一个相关事件的概率时。例如,在机器学习和统计推断中,贝叶斯公式用于估计未知参数的后验概率分布。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章概率与统计本章知识结构图第一节 概率及其计算考纲解读1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。

2.了解两个互斥事件的概率的加法公式。

3.掌握古典概型及其概率计算公式。

4.了解随机数的意义,能运用模拟方法估计概率。

5.了解几何概型的意义。

命题趋势探究1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。

2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。

知识点精讲一、必然事件、不可能事件、随机事件在一定条件下:①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件;③可能发生也可能不发生的事件叫随机事件。

二、概率在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。

对于必然事件A ,;对于不可能事件A ,=0.三、基本事件和基本事件空间在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。

四、两个基本概型的概率公式1、古典概型条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同()(A)=()A card P A card =Ω包含基本事件数基本事件总数2、几何概型条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为Aμ.()P A =AμμΩ。

五、互斥事件的概率1、互斥事件在一次实验中不能同时发生的事件称为互斥事件。

事件A 与事件B 互斥,则()()()P A B P A P B =+U 。

2、对立事件事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。

()()1P A p A =- 。

3、互斥事件与对立事件的联系对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。

题型归纳及思路提示 题型176 古典概型思路提示首先确定事件类型为古典概型,古典概型特征有二:有限个不同的基本事件及各基本事件发生的可能性是均等的;其次计算出基本事件的总数及事件A 所包含的基本事件数;最后计算()A P A =包含基本事件数基本事件总数。

例13.1 设平面向量(),1m a m =,()2,n b n = ,其中{}, 1.2,3,4m n ∈ (1)请列出有序数组(),m n 的所有可能结果;(2) 若“使得()m m n a a b ⊥-成立的(),m n 为事件A ,求事件A 发生的概率。

分析:两向量垂直的充要条件是两向量的数量积为0,从而可得m 与n 的关系,再从以上(),m n 的16个有序数组中筛选出符合条件的,即得事件A 包含的基本事件个数。

解析:(1)由{}, 1.2,3,4m n ∈,有序数组(),m n 的所有可能结果为()1,1 ,()()()1,2,1,3,1,4,()()()()2,1,2,2,2,3,2,4,()()()()3,1,3,2,3,3,3,4,()()()()4,1,4,2,4,3,4,4 共16个。

(2)因为(),1m a m =,()2,n b n =,所以()2,1m n a b m n -=-- .又()m m n a a b ⊥-,得()(),12,10m m n ⋅--= ,即22m 10m n -+-= ,所以()21n m =- 。

故事件A 包含的基本事件有()2,1和()3,4,共2个,由古典概型概率计算公式得()21168P A == 。

评注:①解题时,将所有基本事件全部列出是避免重复和遗漏的有效方法,注意在列举时,必须按照某一顺序来列举;②本题以向量为载体,利用向量的运算和关系等向量的基本知识解决概率问题,是将两类知识结合得较好的一道题目。

变式1 电子钟一天显示的时间从00:00~23:59,每一时间都由4个数字组成,则一天中任取一时刻显示的4个数字之和为23的概率为( )A.1180 B. 1288 C.1360 D.1480变式2 连抛两次骰子的点数分别为,m n ,记向量(),a m n =r,向量()1,1b =-r ,a r 与b r 的夹角为θ,则0,2πθ⎛⎤∈ ⎥⎝⎦的概率是( )A. 512B. 12C.712D. 56例13.2 (2012重庆理15)某艺校在一天的6节课中随机安排语文,数学,外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为____________(用数字作答)。

解析: 6节课随机安排,共有66720A =种不同的方法。

课表上相邻两节文化课之间最多间隔1节艺术课,有以下三种情况:①三门文化课间有2节艺术课:有32133272A A A =种方法; ②三门文化课间有1节艺术课:有31133323216A C A A =种方法;③三门文化课间有0节艺术课:有3434144A A =种方法。

共有72+216+144=432种符合题意的安排方法,故所求概率为4323=7205P =。

变式1 (2012上海理11)三位同学参加跳高,跳远,铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是______________(结果用最简分数表示)。

变式2 甲乙两人一起去游“2011西安世园会”,他们约定:各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( ) A.136 B. 19 C. 536D. 16变式3 在某地的奥运火炬传递活动中,有编号1,2,3,…,18的18名火炬手,若从中任选3人,则选出的3名火炬手的编号能组成以3为公差的等差数列的概率为( ) A. 151 B. 168 C. 1306 D. 1408题型177 几何概型的计算思路提示首先确定事件类型为几何概型并明确其几何区域(长度、面积、体积或时间),其次计算出基本事件区域的数值和事件A 包含区域数值 ,最后计算(A)A P =事件区域数值(长度、面积、体积或时间)基本事件区域数值(长度、面积、体积或时间),解几何概型问题的关键是画图、求面积。

例13.3 (2012辽宁理10)在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别为线段AC,CB 的长,则该矩形面积小于322cm 的概率为( ) A.16 B. 13 C. 23 D. 45解析: 设AC x =,则12CB x =-,且012x << ,所以()12x x -表示矩形的面积,令()1232x x -≤,解得:4x <或8x >,如图13-1所示,故所示的概率为442123P +== .故选C . 变式1 []22,log A t =,{}214240B x x x =-+≤ ,,x t R ∈ ,A B ⊆. (1)定义区间[],a b 的长度为b a -,A 的长度为3,则t =_________.(2)某函数()f x 的值域为B ,且()f x A ∈ 的概率不小于0.6,则t 的取值范围为_______. 例13.4 (2012福建理6)如图13-2所示,在边长为1 的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )A.14 B. 15 C. 16 D. 17解析:由题意可知,阴影部分的面积是由函数,y x y x ==围成的几何图形的面积,利用定积分可知: 1100=S xdx xdx -=⎰⎰阴影 3211200211326x x -= ,又OABC =1S 正方形,所以由几何概型知,所求的概率为16P = .故选C .评注:利用线性规划和积分知识求面积,是解决相关的几何概型问题的常见方法.变式1 小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12 ,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为_____________.变式 2 (2012北京石景山一模理13)如图13-3所示,圆O :222x y π+=内正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则该点A落在区域M 内的概率是__________.变式3 (2012湖北理8)如图13-4所示,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A. 21π-B.112π- C.2π D. 1π例13.5 已知()[]2,,0,4f x x ax b a b =-+-∈ ,,a b R ∈,则()10f > 的概率为______.解析 几何概型{0404,0,a b A a b ≤≤≤≤Ω⊆Ω->:且-1+ 作出Ω,A 的区域图(如图13-5所示).4416μΩ=⨯= ,193322A μ=⨯⨯= ,则()9921632A P A μμΩ===.变式1 =A {}10x x -≤≤ ,{}|210,02,13x B x ax b a b =+⋅-<≤≤≤≤(1),a b N ∈,求A B ⋂≠∅ 的概率; (2),a b R ∈ ,求=A B ⋂∅的概率.例13.6 甲乙两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内能相见的概率。

分析 由题意知,当甲乙两人到达目的地的时间相差小于或等于40分钟时两人便能在约定时间内相见。

解析 设甲乙两人分别于x 时和y 时到达约定地点,要使两人能在约定时间范围内相见,当且仅当2233x y -≤-≤ .记20:00为0时,21:00为1时,两人到达约见地点的所有可能时刻(),x y 满足0101x y ≤≤⎧⎨<≤⎩,结果可用如图13-6所示的单位正方形(包括边界)内的点来表示,两人能在约定时间内相见的时刻 (),x y 的所有可能满足2323x y y x ⎧-≤⎪⎪⎨⎪-≤⎪⎩, 可用 如图13-6所示的阴影部分(包括边界)来表示。

故所求概率为P =11111282331=19⎛⎫⨯-⨯⨯⨯ ⎪⎝⎭⨯ .评注:对问题中事件模型的认识与转化是解决问题的关键,这里涉及两个人的时间转化为二维面积问题计算.变式1 甲乙两艘轮船都要停靠在同一泊位,它们可能在一昼夜的任意时刻到达.如果甲乙 两船停靠泊位的时间分别为4小时和2小时,求有一艘轮船停靠泊位时必须等待一段时间的概率。

相关文档
最新文档