复习题
期末复习题——精选推荐

第一章电子支付概述一、单选题1.传统支付形式不包括() p2A、现金B、支票 C 、智能卡D、信用卡2.电子支付的类型不包括()p8A 、网上支付 B、电话支付 C、移动支付 D、现金3.淘宝的“支付宝”是属于以下哪一种支付类型()p8A 、充值卡支付B 、网上银行支付 C、第三方支付 D 、电话支付4.目前推广的尚未成熟的的电子支付产业的模式是()p9A 、复制PayPalB 、支付网关C 、移动支付5.银行卡网上支付的核心问题是( )p13A、银行服务B、支付信息的安全传输和身份认证C、持卡人信息的安全D、资金结算过程的安全6.支付网关的主要功能为()。
P12A、进行通信和协议转换,完成数据加密与解密B、代替银行等金融机构进行支付授权C、处理交易中的资金划拨等事宜D、为银行等金融机构申请证书7、由中央银行拥有和运行,其中主要职责是负责同城支付交易的资金清算是指()A、电子汇兑系统B、网上银行系统C、同城清算所D、全国手工联行系统二、多选题1、电子货币按流通的形态分类,可分为()A、开环型电子货币B、闭环型电子货币C、电子现金型电子货币D、信用卡型电子货币2、网络支付的条件为()A、商家系统B、客户系统C、支付网关 C、安全认证3、电子货币的功能包括()。
A、转账结算B、储蓄C、兑现D、消费贷款三、判断题1、电子支付是网上支付的更高级形式(× )2、后支付系统包括信用卡系统、电子支票系统和智能卡系统(× )3、电子支票不是数字支票(×)四、名词解释1、电子支付指电子交易的当事人,包括消费者、厂商和金融机构,使用安全电子支付手段,通过网络进行的货币支付或资金流转。
2、网络支付指电子交易的当事人,包括消费者、厂商、和金融机构,使用安全电子支付手段通过网络进行的货币支付或资金流转。
主要包括有电子货币类,电子信用卡类,电子支票类。
3支付系统(Payment System)是由提供支付清算服务的中介机构和实现支付指令传送及资金清算的专业技术手段共同组成,用以实现债权债务清偿及资金转移的一种金融安排,有时也称为清算系统(Clear System)。
复习 习题

复习习题复习习题 1第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)【第二单元位置】8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
复习题

互换性1.“互换性”是指在机械产品装配时,从制成的同一规格的零(部)件中_______取一件,不需进行任何辅助工作(______________________等),就能与其他零(部)件安装在一起而组成一台机械产品,并且达到预定的_____________________要求。
2.GB/T 1800.2—1998规定,尺寸公差带的大小由_________决定;位置由_________决定;孔、轴公差等级皆分为_________等级。
3.轴的最大实体尺寸为轴的_________尺寸(极限尺寸),孔最大实体尺寸为孔的_________尺寸(极限尺寸)。
4.已知φ100m7的上偏差+0.048,下偏差+0.013,φ100的6级标准公差值为0.022mm,那么,φ100m6的上偏差为,下偏差为。
5.滚动轴承内圈与轴颈组成的配合采用制,外圈与外壳孔的配合采用制6.包容要求所涉及的边界是边界,它是来限制不得超过该边界。
7.在直线度公差中,给定平面内的公差带形状为;给定方向上的公差带形状为;任意方向上的公差带形状为。
8.表面粗糙度是指___________所具有的___________和___________不平度。
9.平键联接的主要配合尺寸是指_____________,配合制度采用_____________10.按各环所在空间位置尺寸链分为直线尺寸链、__________和__________。
1.轴的最大实体尺寸为轴的_________尺寸(极限尺寸),孔最大实体尺寸为孔的_________尺寸(极限尺寸)。
2.GB/T 1800.2—1998规定,尺寸公差带的大小由_________决定;位置由_________决定;孔、轴公差等级皆分为_________等级。
3.基孔制是孔的公差带与轴的公差带形成各种配合性质的制度。
4.滚动轴承内圈的内径尺寸公差为10μm,与之相配合的轴颈的直径公差为13μm,若要求最大过盈为-19μm,则该轴颈的上偏差为,下偏差为。
大学复习题及答案

大学复习题及答案# 大学复习题及答案一、选择题1. 量子力学的创始人是:A. 爱因斯坦B. 牛顿C. 普朗克D. 薛定谔答案:C2. 以下哪个不是计算机操作系统的功能?A. 文件管理B. 进程管理C. 网络通信D. 图像处理答案:D3. 经济学中的“边际效用递减”是指:A. 商品的总效用随着消费量的增加而增加B. 商品的总效用随着消费量的增加而减少C. 商品的边际效用随着消费量的增加而减少D. 商品的边际效用随着消费量的增加而增加答案:C二、填空题4. 根据牛顿第三定律,作用力与反作用力大小相等、方向相反、_______相同。
答案:作用点5. 在现代企业管理中,SWOT分析是指_______、劣势、机会和威胁。
答案:优势6. 根据达尔文的进化论,生物进化的驱动力是_______。
答案:自然选择三、简答题7. 简述相对论的基本原理。
答案:相对论由爱因斯坦提出,包括狭义相对论和广义相对论两部分。
狭义相对论的基本原理是相对性原理和光速不变原理,即物理定律在所有惯性参考系中都是相同的,光在真空中的速度是一个常数,与光源和观察者的运动状态无关。
广义相对论则是在狭义相对论的基础上,引入了引力场对时空的弯曲效应,认为物体在时空中的运动轨迹是由时空的几何结构决定的。
8. 解释什么是市场营销的4P理论。
答案:市场营销的4P理论是指产品(Product)、价格(Price)、地点(Place)和促销(Promotion)。
产品指的是企业所提供的商品或服务;价格是指产品或服务的定价策略;地点涉及产品分销的渠道和地点选择;促销则包括广告、销售促进、公共关系和直接营销等手段,用以提高产品知名度和吸引顾客。
四、论述题9. 论述可持续发展的重要性及其在现代社会的应用。
答案:可持续发展是指在满足当代人需求的同时,不损害后代人满足其需求的能力的发展方式。
其重要性在于它强调了环境保护、经济发展和社会公正三者之间的平衡。
在现代社会,可持续发展的应用体现在多个方面:如绿色能源的开发利用、生态农业的推广、城市规划中的绿色空间保留、以及企业社会责任的履行等。
四川省成都市2023-2024学年高二上学期期末复习数学试题(三)含解析

成都高2025届高二期末考试数学复习试题(三)(答案在最后)一、单选题(共8个小题,每个小题5分,共40分)1.设直线l sin 20y θ++=,则直线l 的倾斜角的取值范围是()A.[)0,πB.πππ2π,,3223⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦C.π2π,33⎡⎤⎢⎥⎣⎦D.π2π0,,π33⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭U 【答案】D 【解析】【分析】根据直线斜率的范围求倾斜角的取值范围.sin 20y θ++=的倾斜角为[)0πa a Î,,,则由直线可得tan a q =Î,所以π2π0,,π33a 轾轹÷Î犏÷犏臌滕,故选:D2.能够使得圆x 2+y 2-2x +4y +1=0上恰有两个点到直线2x +y +c =0距离等于1的c 的一个值为()A.2B.C.3D.【答案】C 【解析】【分析】利用圆心到直线的距离大于1且小于3,列不等式求解即可.【详解】由圆的标准方程()()22124x y -++=,可得圆心为()1,2-,半径为2,根据圆的性质可知,当圆心到直线的距离大于1且小于3时,圆上有两点到直线20x y c ++=的距离为1,由()1,3d =可得(c ∈-⋃,经验证,3c =∈,符合题意,故选C.【点睛】本题主要考查圆的标准方程,点到直线距离公式的距离公式以及圆的几何性质,意在考查数形结合思想的应用,属于中档题.3.若椭圆的中心为原点,对称轴为坐标轴,短轴的一个端点与两焦点构成个正三角形,焦点到椭圆上点的)A.221129x y +=B.221129x y +=或221912x y +=C.2213612x y += D.以上都不对【答案】B 【解析】【分析】由短轴的一个端点与两焦点构成个正三角形可得b =,由焦点到椭圆上点的最短距离为a c -,结合222a b c =+可得.【详解】由题意,当椭圆焦点在x 轴上,设椭圆方程为:22221x ya b+=,由题意b =,a c -=所以2a c ===,c =a =,3b =,所以椭圆方程为:221129x y +=,当椭圆焦点在y 轴上时,同理可得:221912x y+=,故选:B4.某市经济开发区的经济发展取得阶段性成效,为深入了解该区的发展情况,现对该区两企业进行连续11个月的调研,得到两企业这11个月利润增长指数折线图(如下图所示),下列说法正确的是()A.这11个月甲企业月利润增长指数的平均数没超过82%B.这11个月的乙企业月利润增长指数的第70百分位数小于82%C.这11个月的甲企业月利润增长指数较乙企业更稳定D.在这11个月中任选2个月,则这2个月乙企业月利润增长指数都小于82%的概率为411【答案】C 【解析】【分析】根据折线图估算AC ,对于B 项把月利润增长指数从小到大排列,计算1170⨯%=7.7可求,对于D 项用古典概型的概率解决.【详解】显然甲企业大部分月份位于82%以上,故利润增长均数大于82%,A 不正确;乙企业润增长指数按从小到大排列分别是第2,1,3,4,8,5,6,7,9,11,10又因为1170⨯%=7.7,所以从小到大排列的第8个月份,即7月份是第70百分位,从折线图可知,7月份利润增长均数大于82%,故B 错误;观察折现图发现甲企业的数据更集中,所以甲企业月利润增长指数较乙企业更稳定,故C 正确;P (2个月乙企业月利润增长指数都小于82%)26211C 3C 11==,故D 错误.故选:C.5.已知空间三点(4,1,9),(10,1,6),(2,4,3)A B C -,则下列结论不正确的是()A.||||AB AC =B.点(8,2,0)P 在平面ABC 内C.AB AC ⊥D.若2AB CD =,则D 的坐标为31,5,2⎛⎫-- ⎪⎝⎭【答案】D 【解析】【分析】根据空间两点距离公式判断A ,根据数量积的坐标运算判断B ,根据共面向量基本定理判断C ,根据向量的坐标运算判断D.【详解】因为||7AB ==,||7AC ==,故A 正确;因为(6,2,3)(2,3,6)126180AB AC →→⋅=--⋅--=--+=,所以AB AC ⊥,故C 正确;因为(6,2,3),(2,3,6)AB AC →→=--=--,(4,1,9)AP →=-,所以(4,1,9)AP AB AC →→→=+=-,所以点(8,2,0)P 在平面ABC 内,故B 正确;因为92(1,9,))(62(22,31,8,,),92AB CD ==------=-- ,显然不成立,故D 错误.故选:D6.已知某人收集一个样本容量为50的一组数据,并求得其平均数为70,方差为75,现发现在收集这些数据时,其中得两个数据记录有误,一个错将80记录为60,另一个错将70记录为90,在对错误得数据进行更正后,重新求得样本的平均数为X ,方差为2s ,则()A.270,75X sB.270,75X s ><C.270,75X s =>D.270,75X s =<【答案】D 【解析】【分析】根据平均数与方差的定义判断.【详解】因为80706090+=+,因此平均数不变,即70X =,设其他48个数据依次为1248,,,a a a ,因此()()()()()222221248707070607090705075a a a -+-++-+-+-=⨯ ,()()()()()22222212487070708070707050a a a s -+-++-+-+-=⨯ ,()250751004001004000s -=--=-<,∴275s <,故选:D .7.如图所示,在直三棱柱111ABC A B C -中,ACBC ⊥,且3BC =,4AC =,13CC =,点P 在棱1AA 上,且三棱锥A PBC -的体积为4,则直线1BC 与平面PBC 所成角的正弦值等于()A.4B.4C.5D.5【答案】C 【解析】【分析】利用锥体的体积公式可求得2PA =,然后以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面PBC 所成角的正弦值.【详解】由已知得1AA ⊥底面ABC ,且AC BC ⊥,所以111344332A PBC P ABC ABC V V S PA PA --==⨯⨯=⨯⨯⨯⨯=△,解得2PA =.如图所示,以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()0,0,0C 、()0,4,2P 、()3,0,0B 、()10,0,3C ,则()3,0,0CB = ,()0,4,2CP = ,()13,0,3BC =-.设平面BCP 的法向量为(),,n x y z =,则由00n CB n CP ⎧⋅=⎨⋅=⎩可得30420x y z =⎧⎨+=⎩,即020x y z =⎧⎨+=⎩,得0x =,令1y =,得2z =-,所以()0,1,2n =-为平面BCP 的一个法向量.设直线1BC 与平面PBC 所成的角为θ,则11110sin cos ,5n BC n BC n BC θ⋅=<>==⋅.故选:C.【点睛】方法点睛:求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角;(2)向量法,sin cos ,AB n AB n AB nθ⋅=<>=⋅ (其中AB 为平面α的斜线,n为平面α的法向量,θ为斜线AB 与平面α所成的角).8.已知F 1,F 2分别为双曲线C :221412x y -=的左、右焦点,E 为双曲线C 的右顶点.过F 2的直线与双曲线C的右支交于A ,B 两点(其中点A 在第一象限),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则ME NE -的取值范围是()A.44,33⎛⎫-⎪⎝⎭B.,33⎛⎫- ⎪ ⎪⎝⎭C.3333,55⎛⎫- ⎪⎪⎝⎭ D.,33⎛⎫- ⎪ ⎪⎝⎭【答案】B 【解析】【分析】利用平面几何和内心的性质,可知M ,N 的横坐标都是a ,得到MN ⊥x 轴,设直线AB 的倾斜角为θ,有22,22-∠=∠=EF M EF N πθθ,根据θ∈(60∘,90∘],将ME NE -表示为θ的三角函数可求得范围.【详解】解:设1212,,AF AF F F 上的切点分别为H 、I 、J ,则1122||||,,===AH AI F H F J F J F I .由122AF AF a -=,得()()12||||2+-+=AH HF AI IF a ,∴122-=HF IF a ,即122-=JF JF a.设内心M 的横坐标为0x ,由JM x ⊥轴得点J 的横坐标也为0x ,则()()002c x c x a +--=,得0x a =,则E 为直线JM 与x 轴的交点,即J 与E 重合.同理可得12BF F △的内心在直线JM 上,设直线AB 的领斜角为θ,则22,22-∠=∠=EF M EF N πθθ,||||()tan()tan 22--=---ME NE c a c a πθθcos sin 2cos 222()()()sin tan sin cos 22⎛⎫ ⎪=-⋅-=-=-⎪ ⎪⎝⎭c a c a c a θθθθθθθ,当2πθ=时,||||0ME NE -=;当2πθ≠时,由题知,2,4,===b a c a,因为A ,B 两点在双曲线的右支上,∴233ππθ<<,且2πθ≠,所以tan θ<tan θ>,∴3133tan 3θ-<<且10tan θ≠,∴44343||||,00,tan 33⎛⎫⎛⎫-=∈- ⎪ ⎪⎝⎭⎝⎭ME NE θ,综上所述,44343||||,tan 33⎛⎫-=∈- ⎪⎝⎭ME NE θ.故选:B.二、多选题(共4个小题,每个小题5分,共20分)9.已知甲罐中有五个相同的小球,标号为1,2,3,4,5,乙罐中有四个相同的小球,标号为1,4,5,6,现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于6”,事件B =“抽取的两个小球标号之积小于6”,则()A.事件A 与事件B 是互斥事件B.事件A 与事件B 不是对立事件C.事件A B ⋃发生的概率为1920D.事件A 与事件B 是相互独立事件【答案】ABC 【解析】【分析】由两球编号写出事件,A B 所含有的基本事件,同时得出所有的基本事件,然后根据互斥事件、对立事件的定义判断AB ,求出A B ⋃的概率判断C ,由公式()()()P AB P A P B =判断D .【详解】甲罐中小球编号在前,乙罐中小球编号在后,表示一个基本事件,事件A 含有的基本事件有:16,25,26,34,35,36,44,45,46,54,55,56,共12个,事件B 含有的基本事件有:11,14,15,21,31,41,51,共7个,两者不可能同时发生,它们互斥,A 正确;基本事件15发生时,事件,A B 均不发生,不对立,B 正确;事件A B ⋃中含有19个基本事件,由以上分析知共有基本事件20个,因此19()20P A B =,C 正确;123()205P A ==,7()20P B =,()0P AB =()()P A P B ≠,,A B 不相互独立,D 错.故选:ABC .10.在如图所示试验装置中,两个长方形框架ABCD 与ABEF 全等,1AB =,2BC BE ==,且它们所在的平面互相垂直,活动弹子,M N 分别在长方形对角线AC 与BF 上移动,且(0CM BN a a ==<<,则下列说法正确的是()A.AB MN⊥ B.MN 2C.当MN 的长最小时,平面MNA 与平面MNB 所成夹角的余弦值为13D .()25215M ABN a V-=【答案】ABC 【解析】【分析】建立空间直角坐标系,写出相应点的坐标,利用空间向量数量积的运算即可判断选项A ;利用空间两点间距离公式即可判断选项B ;根据二面角的余弦值推导即可判断选项C ;根据棱锥的体积计算公式即可判断选项D .【详解】由题意可知:,,BA BC BE 两两互相垂直,以点B 为坐标原点,,,BA BE BC为,,x y z 轴正方向,建立空间直角坐标系,建系可得525525,0,2,,,05555a a a a M N ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()25250,,2,1,0,055a a MN BA ⎛⎫∴=-= ⎪ ⎪⎝⎭,0,AB MN AB MN ∴⋅=∴⊥,故选项A 正确;又MN===∴当2a=时,min||MN=,故选项B正确;当MN最小时,,,2a M N=分别是,AC BF的中点,取MN中点K,连接AK和BK,,AM AN BM BN==,,AK MN BK MN∴⊥⊥,AKB∠∴是二面角A MN B--的平面角.BMN中,,2BM BN MN===,可得2BK==,同理可得2AK=,由余弦定理可得331144cos322AKB∠+-==,故选项C 正确;2125252522365515M ABN ABNa aV S h-⎛⎫-=⨯⨯=⨯-=⎪⎪⎝⎭,故选项D错误.故选:ABC.11.抛物线有如下光学性质:由其焦点射出的光线经拋物线反射后,沿平行于拋物线对称轴的方向射出.反之,平行于拋物线对称轴的入射光线经拋物线反射后必过抛物线的焦点.已知抛物线2:,C y x O=为坐标原点,一束平行于x轴的光线1l从点41,116P⎛⎫⎪⎝⎭射入,经过C上的点()11,A x y反射后,再经C上另一点()22,B x y 反射后,沿直线2l 射出,经过点Q ,则()A.PB 平分ABQ ∠B.121y y =-C.延长AO 交直线14x =-于点D ,则,,D B Q 三点共线D.2516AB =【答案】ACD 【解析】【分析】对于A ,根据题意求得()1,1A ,11,164B ⎛⎫- ⎪⎝⎭,从而证得PA AB =,结合平面几何的知识易得PB 平分ABQ ∠;对于B ,直接代入12,y y 即可得到1214y y =-;对于C ,结合题意求得11,44D ⎛⎫-- ⎪⎝⎭,由,,D B Q 的纵坐标相同得,,D B Q 三点共线;对于D ,由选项A 可知2516AB =.【详解】根据题意,由2:C y x =得1,04F ⎛⎫⎪⎝⎭,又由//PA x 轴,得()1,1A x ,代入2:C y x =得11x =(负值舍去),则()1,1A ,所以141314AF k ==-,故直线AF 为4134y x ⎛⎫=- ⎪⎝⎭,即4310x y --=,依题意知AB 经过抛物线焦点F ,故联立24310x y y x --=⎧⎨=⎩,解得11614x y ⎧=⎪⎪⎨⎪=-⎪⎩,即11,164B ⎛⎫- ⎪⎝⎭,对于A ,412511616PA =-=,2516AB =,故PA AB =,所以APB ABP ∠=∠,又因为//PA x 轴,//BQ x 轴,所以//PA BQ ,故APB PBQ =∠∠,所以ABP PBQ ∠=∠,则PB 平分ABQ ∠,故A 正确;对于B ,因为12141,y y =-=,故1214y y =-,故B 错误;对于C ,易得AO 的方程为y x =,联立14y x x =⎧⎪⎨=-⎪⎩,故11,44D ⎛⎫-- ⎪⎝⎭,又//BQ x 轴,所以,,D B Q 三点的纵坐标都相同,则,,D B Q 三点共线,故C 正确;对于D ,由选项A 知2516AB =,故D 正确.故选:ACD..12.己知椭圆222:1(02)4x y C b b+=<<的左,右焦点分别为1F ,2F ,圆22:(2)1M x y +-=,点P 在椭圆C 上,点Q 在圆M 上,则下列说法正确的有()A.若椭圆C 和圆M 没有交点,则椭圆C的离心率的取值范围是2,1⎛⎫⎪ ⎪⎝⎭B.若1b =,则||PQ 的最大值为4C.若存在点P 使得213PF PF =,则0b <≤D.若存在点Q使得12QF =,则1b =【答案】ACD 【解析】【分析】A 根据已知,数形结合得01b <<时椭圆C 和圆M 没有交点,进而求离心率范围;B 令(,)P x y ,求得||MP =,结合椭圆有界性得max ||MP =即可判断;C 由题设123,1PF PF ==,令(,)P x y,进而得到((222291x y x y⎧++=⎪⎨⎪-+=⎩,结合点在椭圆上得到公共解(0,2]x =求范围;D将问题化为圆心为的圆与圆22:(2)1M x y +-=有交点.【详解】由椭圆C 中2a =,圆M 中圆心(0,2)M ,半径为1,如下图示,A :由于02b <<,由图知:当01b <<时椭圆C 和圆M 没有交点,此时离心率,12e ⎛⎫⎪ ⎪⎝==⎭,对;B :当1b =时,令(,)P x y,则||MP =,而224(1)x y =-,所以||MP =,又11y -≤≤,故max ||MP =所以||PQ1+,错;C :由1224PF PF a +==,若213PF PF =,则123,1PF PF ==,由12(F F ,令(,)P x y ,且2221)(4x y b =-,则((222291x y x y⎧++=⎪⎨⎪+=⎩,即2222(4)200(4)120b x b x ⎧-+-=⎪⎨--+=⎪⎩,所以(0,2]x =,则23b ≤,且02b <<,故0b <≤D :令(,)Q x y,若12QF =,所以2222(3[(]x y x y +=-+,则222(4)0x b y -+-+=,所以222(3(4)x y b -+=-,Q轨迹是圆心为的圆,而(0,2)M与的距离为,要使点Q 存在,则1|1-≤≤,可得22(1)0b -≤,且02b <<,即1b =,对;故选:ACD【点睛】关键点点睛:对于C ,根据已知得到123,1PF PF ==,设(,)P x y ,利用两点距离公式得到方程组,求出公共解(0,2]x =为关键;对于D ,问题化为圆心为的圆与圆22:(2)1M x y +-=有交点为关键.三、填空题(共4个小题,每个小题5分,共20分)13.若直线1x y +=与直线2(1)40m x my ++-=平行,则这两条平行线之间的距离是__.【答案】322【解析】【分析】由题意结合直线平行的性质可得2m =-,再由平行线间的距离公式即可得解.【详解】 直线1x y +=与直线2(1)40m x my ++-=平行,∴2(1)4111m m +-=≠-,解得2m =-,故直线1x y +=与直线2(1)40m x my ++-=即为直线10x y +-=与直线20x y ++=,2=,故答案为:2.【点睛】本题考查了直线平行性质的应用,考查了平行线间距离公式的应用,属于基础题.14.曲线1y =+与直线l :y =k (x -2)+4有两个交点,则实数k 的取值范围是________.【答案】53124,纟çúçú棼【解析】【分析】首先画出曲线表示的半圆,再判断直线l 是过定点()24,的直线,利用数形结合判断k 的取值范围.【详解】直线l 过点A (2,4),又曲线1y =+0,1)为圆心,2为半径的半圆,如图,当直线l 与半圆相切,C 为切点时,圆心到直线l 的距离d =r,2=,解得512k =.当直线l 过点B (-2,1)时,直线l 的斜率为()413224-=--,则直线l 与半圆有两个不同的交点时,实数k 的取值范围为53124,纟çúçú棼.故答案为:53124,纟çúçú棼15.数学兴趣小组的四名同学各自抛掷骰子5次,分别记录每次骰子出现的点数,四名同学的部分统计结果如下:甲同学:中位数为3,方差为2.8;乙同学:平均数为3.4,方差为1.04;丙同学:中位数为3,众数为3;丁同学:平均数为3,中位数为2.根据统计结果,数据中肯定没有出现点数6的是______同学.【答案】乙【解析】【分析】假设出现6点,利用特例法,结合平均数和方差的计算公式,即可求解.【详解】对于甲同学,当投掷骰子出现结果为1,2,3,3,6时,满足中位数为3,平均数为:()11233635x =++++=,方差为()()()()()22222211323333363 2.85S ⎡⎤-+-+-+-+-⎣⎦==,可以出现点数6;对于乙同学,若平均数为3.4,且出现点数6,则方差221(6 3.4) 1.352 1.045S >-=>,所以当平均数为3.4,方差为1.04时,一定不会出现点数6;对于丙同学,当掷骰子出现的结果为1,2,3,3,6时,满足中位数为3,众数为3,可以出现点数6;对于丁同学,当投掷骰子出现的结果为2,2,2,3,6时,满足平均数为3,中位数为2,可以出现点数6.综上,根据统计结果,数据中肯定没有出现点数6的是乙同学.故答案为:乙16.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,离心率为e ,点P 在椭圆上,连接1PF 并延长交C 于点Q ,连接2QF ,若存在点P 使2PQ QF =成立,则2e 的取值范围为___________.【答案】)11,1⎡-⎣【解析】【分析】设11,QF m PF n ==,所以存在点P 使2PQ QF =等价于()2min0,PQ QF -≤由2112am n b +=可求222PQ QF m n a -=+-的最小值,求得22b a的范围,从而得到2e 的取值范围.【详解】设11,QF m PF n ==,则22QF a m =-.显然当P 靠近右顶点时,2PQ QF >,所以存在点P 使2PQ QF =等价于()22min0,22PQ QF PQ QF m n a -≤-=+-,在12PF F △中由余弦定理得22221121122cos PF PF F F PF F F θ=+-⋅⋅,即()2222422cos a n n c n c θ-=+-⋅⋅,解得2cos b n a c θ=-,同理可得2cos b m a c θ=+,所以2112a m n b +=,所以()(2223112223222b b b n m m n m n a m n a m n a +⎛⎫⎛⎫+=++=++≥ ⎪ ⎝⎭⎝⎭,所以22min1)(22)22b m n a a a++-=-,当且仅当n =时等号成立.由221)202b a a+-≤得2212b a ≤-,所以2111e -≤<.故答案为:)11,1⎡-⎣【点睛】关键点点睛:求离心率范围关键是建立,,a b c 的不等式,此时将问题转化为()2min0PQ QF -≤,从而只需求222PQ QF m n a -=+-的最小值,求最小值的方法是结合焦半径性质211112aPF QF b+=使用基本不等式求解.四、解答题(共7个题,17题10分,18题—22题每题12分,共70分)17.在平面直角坐标系xOy 中,存在四点()0,1A ,()7,0B ,()4,9C ,()1,3D .(1)求过A ,B ,C 三点的圆M 的方程,并判断D 点与圆M 的位置关系;(2)若过D 点的直线l 被圆M 截得的弦长为8,求直线l 的方程.【答案】(1)228870x y x y +--+=,D 在圆M 内;(2)43130x y +-=或1x =.【解析】【分析】(1)设出圆的一般方程,利用待定系数法计算可得圆的方程,把D 坐标代入圆的方程判定位置关系即可;(2)对直线分类讨论,设出直线方程,利用直线与圆相交,已知弦长求直线方程.【小问1详解】设圆M 方程为220x y Dx Ey F ++++=,把A ,B ,C 三点坐标代入可得:10,4970,1681490,E F D F D E F ++=⎧⎪++=⎨⎪++++=⎩解得8D =-,8E =-,7F =,所以圆M 方程是228870x y x y +--+=,把D 点坐标代入可得:1982470+--+<,故D 在圆M 内;【小问2详解】由(1)可知圆M :()()224425x y -+-=,则圆心()4,4M ,半径=5r ,由题意可知圆心到直线l 的距离是3,当直线l 斜率存在时,设直线l 方程为:()1330y k x kx y k =-+⇒-+-=,3=,解得43k =-,故直线l 的方程为43130x y +-=;当直线l 斜率不存在时,则直线l 方程为:1x =,此时圆心到直线l 的距离是3,符合题意.综上所述,直线l 的方程为43130x y +-=或1x =.18.我校举行的“青年歌手大选赛”吸引了众多有才华的学生参赛.为了了解本次比赛成绩情况,从中抽取了50名学生的成绩作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:频率分布表组别分组频数频率第1组[50,60)80.16第2组[60,70)a ▓第3组[70,80)200.40第4组[80,90)▓0.08第5组[90,100]2b 合计▓▓(1)求出a ,b ,x ,y 的值;(2)在选取的样本中,从成绩是80分以上的同学中随机抽取2名同学参加元旦晚会,求所抽取的2名同学中至少有1名同学来自第5组的概率;(3)根据频率分布直方图,估计这50名学生成绩的中位数、平均数和方差(同一组的数据用该组区间的中点值作代表).【答案】(1)a =16,b =0.04,x =0.032,y =0.004(2)35(3)中位数为70.5,平均数为70.2,方差为96.96【解析】【分析】(1)利用频率=100%⨯频数样本容量,及频率组距表示频率分布直方图的纵坐标即可求出a ,b ,x ,y ;(2)由(2)可知第四组的人数,已知第五组的人数是2,利用组合的计算公式即可求出从这6人中任选2人的种数,再分两类分别求出所选的两人来自同一组的情况,利用互斥事件的概率和古典概型的概率计算公式即可得出.(3)根据频率分布直方图,估计这50名学生成绩的中位数、平均数和方差.【小问1详解】由题意可知,样本容量n =8500.16=,∴b =250=0.04,第四组的频数=50×0.08=4,∴508202416a =----=.y =0.0410=0.004,x =1650×110=0.032.∴a =16,b =0.04,x =0.032,y =0.004.【小问2详解】由题意可知,第4组共有4人,记为A ,B ,C ,D ,第5组共有2人,记为X ,Y .从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学,有AB ,AC ,AD ,BC ,BD ,CD ,AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY ,共15种情况.设“随机抽取的2名同学中至少有1名同学来自第5组”为事件E ,有AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY 共9种情况.所以随机抽取的2名同学中至少有1名同学来自第5组的概率是P (E )=93155=.∴随机抽取的2名同学中至少有1名同学来自第5组的概率35.【小问3详解】∵[50,70)的频率为:0.160.320.48+=,[70,80)的频率为0.4,∴中位数为:0.50.48701070.50.4-+⨯=,平均数为:550.16650.32750.4850.08950.0470.2⨯+⨯+⨯+⨯+⨯=.方差为:()()()()()222225570.20.166570.20.327570.20.48570.20.089570.20.0496.96⨯+⨯+⨯+⨯+⨯﹣﹣﹣﹣﹣=.19.已知抛物线()2:20C y px p =>的焦点为F ,点0(,4)M x 在C 上,且52pMF =.(1)求点M 的坐标及C 的方程;(2)设动直线l 与C 相交于,A B 两点,且直线MA 与MB 的斜率互为倒数,试问直线l 是否恒过定点?若过,求出该点坐标;若不过,请说明理由.【答案】(1)M 的坐标为()4,4,C 的方程为24y x =;(2)直线l 过定点()0,4-.【解析】【分析】(1)利用抛物线定义求出0x ,进而求出p 值即可得解.(2)设出直线l 的方程x my n =+,再联立直线l 与抛物线C 的方程,借助韦达定理探求出m 与n 的关系即可作答.【小问1详解】抛物线2:2C y px =的准线:2px =-,于是得0522p p MF x =+=,解得02x p =,而点M 在C 上,即2164p =,解得2p =±,又0p >,则2p =,所以M 的坐标为()4,4,C 的方程为24y x =.【小问2详解】设()()1122,,,A x y B x y ,直线l 的方程为x my n =+,由24x my n y x =+⎧⎨=⎩消去x 并整理得:2440y my n --=,则()2160m n ∆=+>,124y y m +=,124y y n =-,因此,121222121212444444144444444MA MB y y y y k k y y x x y y ----⋅=⋅==⋅=--++--,化简得()121240y y y y ++=,即4n m =,代入l 方程得4x my m =+,即()40x m y -+=,则直线l 过定点()0,4-,所以直线l 过定点()0,4-.【点睛】思路点睛:直线与圆锥曲线相交,直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.20.如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,AD AB ⊥,//AB DC ,PA ⊥底面ABCD ,点E 为棱PC 的中点.22AD DC AP AB ====.()1证明://BE 平面PAD .()2若F 为棱PC 上一点,满足BF AC ⊥,求二面角F AD C --的余弦值.【答案】()1证明见解析;()210.【解析】【分析】()1在PD 上找中点G ,连接AG ,EG ,利用三角形中位线性质得出12EG CD =,因为底面ABCD 是直角梯形,2CD AB =,所以能得出EG 平行且等于AB ,得出四边形ABEG 为平行四边形,再利用线面平行的判定,即可证出//BE 平面PAD ;()2根据BF AC ⊥,求出向量BF的坐标,进而求出平面FAD 和平面ADC 的法向量,代入向量夹角公式,可得二面角F AD C --的余弦值.【详解】解:()1证明:在PD 上找中点G ,连接AG ,EG ,图象如下:G 和E 分别为PD 和PC 的中点,∴EG //CD ,且12EG CD =,又 底面ABCD 是直角梯形,2CD AB =∴AB //CD ,且12AB CD =,∴AB GE //且AB GE =.即四边形ABEG 为平行四边形.∴AG E //B .AG ⊂平面PAD ,BE ⊄平面PAD ,∴//BE 平面PAD.()2以A 为原点,以AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,可得()1,0,0B ,()2,2,0C ,()0,2,0D ,()002P ,,,()1,1,1E ,()1,2,0BC = ,()2,2,2CP =-- ,()2,2,0AC = .由F 为棱PC 上一点,设()2,2,2CF CP λλλλ==-- ()01λ≤≤,所以()12,22,2BF BC CF λλλ=+=-- ()01λ≤≤,由BF AC ⊥,得()()2122220BF AC λλ⋅=-+-= ,解得34λ=,即113,,222BF ⎛⎫=- ⎪⎝⎭ ,()1131131,0,0,,,,222222AF AB BF ⎛⎫⎛⎫=+=+-= ⎪ ⎪⎝⎭⎝⎭,设平面FAD 的法向量为(),,n a b c = ,由00n AF n AD ⎧⋅=⎨⋅=⎩ 可得113022220a b c b ⎧++=⎪⎨⎪=⎩所以030b a c =⎧⎨+=⎩,令1c =,则3a =-,则()3,0,1n =- ,取平面ADC 的法向量为()0,0,1m = ,则二面角F AD C --的平面角α满足:cos 10m n m nα⋅===⋅ ,故二面角F AD C --的余弦值为10.【点睛】本题考查线面平行的判定,空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,属于难题.21.已知O 为坐标原点,()120F -,,()220F ,,点P 满足122PF PF -=,记点P 的轨迹为曲线.E (1)求曲线E 的方程;(2)过点()220F ,的直线l 与曲线E 交于A B ,两点,求+ OA OB 的取值范围.【答案】(1)()2211.3y x x -=≥(2)[)4∞+,【解析】【分析】(1)根据双曲线的定义,易判断点P 的轨迹是双曲线的右支,求出,a b 的值,即得;(2)设出直线方程与双曲线方程联立消元得到一元二次方程,推出韦达定理,依题得出参数m 的范围,将所求式等价转化为关于m 的函数式,通过整体换元即可求出其取值范围.【小问1详解】因()120F -,,()220F ,,且动点P 满足12122PF PF F F -=<,由双曲线的定义知:曲线E 是以12F F ,为焦点的双曲线的右支,且2c =,1a =,则2223b c a =-=,故曲线E 的方程为()2211.3y x x -=≥【小问2详解】当直线l 的斜率为0时,直线l 与双曲线的右支只有一个交点,故不符题意.如图,不妨设直线l 方程为:2x my =+,设()11A x y ,,()22B x y ,,联立22213x my y x =+⎧⎪⎨-=⎪⎩,得()22311290m y my -++=,由韦达定理得1221221231931m y y m y y m -⎧+=⎪⎪-⎨⎪⋅=⎪-⎩,2121222124()443131m x x m y y m m -+=++=+=---,2212121212234(2)(2)2()431m x x my my m y y m y y m +⋅=++=+++=--.由题意:()()22212221223101243190403134031m m m x x m m x x m ⎧-≠⎪-⨯-⨯>⎪⎪⎪⎨+=->⎪-⎪+⎪⋅=->⎪-⎩,解得:210.3m ≤<OA OB +=====,令2131t m =-,因210,3m ≤<故1t ≤-,而OA OB +== ,在(],1t ∞∈--为减函数,故4OA OB +≥ ,即OA OB + 的取值范围为[)4∞+,.22.如图,已知椭圆22122:1(0)x y C a b a b+=>>与等轴双曲线2C 共顶点(±,过椭圆1C 上一点P (2,-1)作两直线与椭圆1C 相交于相异的两点A ,B ,直线PA 、PB 的倾斜角互补,直线AB 与x ,y 轴正半轴相交,分别记交点为M ,N .(1)求直线AB 的斜率;(2)若直线AB 与双曲线2C 的左,右两支分别交于Q ,R ,求NQ NR 的取值范围.【答案】(1)12-(2)11(1,9+【解析】【分析】(1)先求出椭圆方程,联立直线与椭圆方程,利用韦达定理求解A ,B 坐标,直接计算直线AB 斜率即可.(2)联立直线与双曲线的方程,利用求根公式表示出Q ,R 的坐标,化简NQ NR 的表达式,整理求出NQ NR的取值范围即可得出结果.【小问1详解】由题椭圆22122:1(0)x y C a b a b+=>>,顶点(±,可得a =(2,1)P -在椭圆1C 上,即24118b +=,得22b =,所以椭圆方程为22182x y +=,设等轴双曲线2C :222x y m -=,0m >,由题意等轴双曲线2C 的顶点为(±,可得2=8m ,所以双曲线2C 的方程为:228x y -=,因为直线PA 、PB 的倾斜角互补,且A ,B 是不同的点,所以直线PA 、PB 都必须有斜率,设直线PA 方程为(2)1y k x =--,联立22(2)1182y k x x y =--⎧⎪⎨+=⎪⎩,整理得2222(14)(168)161640k x k k x k k +-+++-=,A 和P 点横坐标即为方程两个根,可得221681+4A P k k x x k ++=,因为=2P x ,所以22882=14A k k x k +-+,代入直线PA 可得2244114A k k y k--=+,即2222882441(,)1414k k k k A k k+---++,又因为直线PA 、PB 的倾斜角互补,将k 换成k -,可得2222882441(,)1414k k k k B k k --+-++,两点求斜率可得出12AB k =-所以直线AB 的斜率为12-【小问2详解】由(1)可设直线AB 的方程:12y x n =-+,又因为直线AB 与x ,y 轴正半轴相交,则0n >,联立方程组2212182y x n x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,整理得2224480x nx n -+-=,22Δ168(48)0n n =-->,解得02n <<.联立直线AB 和双曲线方程221(02)28y x n n x y ⎧=-+<<⎪⎨⎪-=⎩,消去y 得22344320x nx n +--=,利用求根公式可得23n x -±=,所以1Q R x NQ NR x ====,又因为204n <<,所以2632n >,则11>,即29<,所以1121019NQNR+<<,所以NQNR 的取值范围为11210(1,9+【点睛】方法点睛:(1)解答直线与圆锥曲线题目时,时常把两个曲线的方程联立,消去一个未知数建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率不存在的特殊情况.。
复习题(附答案)

复习题第一章 流体流动与输送一、填空题1.流体的密度是指 单位体积流体所具有的质量 ,其单位为kg/m3 。
2. 20℃时苯的密度为880kg/m 3,甲苯的密度为866kg/m 3,则含苯40%(质量)苯、甲苯溶液的密度为 871.55 3/m kg 。
3.流体的粘度是描述流体 流动 性能的物理量,一般用符号 μ 表示;流体的粘度越大,流动时阻力损失 越大 。
4.流体的流动形态有 层流 和 湍流 两种,可用 雷诺数Re 判断。
5.流体阻力产生的根本原因是 流体本身的粘性 ,而 流动型态 与 管路条件 是产生流体阻力的外因。
6.管路防腐要涂油漆,一般油漆的颜色与物料的性质、用途有关。
那么红色管为 主要物料管 ;黄色管为 危险品管 ;绿色管为 水管 。
7.转子流量计应垂直安装,流体 由下而上 流动;读数读转子的 最大截面处 ,一般为转子的 顶部 。
8.离心泵的构造主要包括 叶轮 和 泵轴 组成的旋转部件以及 泵壳 和 轴封 组成的固定部件。
9.离心泵开车时,泵空转、吸不上液体、进口处真空度低,此时泵发生了 气缚 现象,其原因可能是 没有灌泵 或 轴封不严密 。
10.离心泵运转时,泵振动大、噪音大、出口处压力低、流量下降,此时泵发生了气蚀现象,其原因可能是安装高度过高或吸入管路阻力太大或者被输送流体温度过高。
11.流体的特征是具有一定的体积;无一定的形状,其形状随容器的形状而改变;在外力作用下内部会发生相对运动。
12.化工管路的连接方式有螺纹连接、法兰连接、承插连接和焊接连接。
二、选择题1.有一串联管道,分别由管径为d1与d2的两管段串接而成。
d1<d2。
其流体稳定流过该管道。
今确知d1管段内流体呈层流。
请断定流体在d2管段内的流型为( c )。
A.湍流B.过渡流C.层流D.须计算确定。
2.有两种关于粘性的说法:( a)。
(1) 无论是静止的流体还是运动的流体都具有粘性。
(2) 粘性只有在流体运动时才会表现出来。
数学复习题库及答案

数学复习题库及答案一、选择题1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √4答案:B2. 若a > 0,b < 0,且|a| > |b|,则a + b的值是:A. 正数B. 负数C. 0D. 无法确定答案:A3. 已知函数f(x) = 2x^2 - 3x + 1,求f(2)的值:A. 3B. 5C. 7D. 9答案:B二、填空题4. 一个直角三角形的两个直角边分别为3和4,其斜边的长度是_________。
答案:55. 将分数1/2转换为小数,结果是_________。
答案:0.56. 若一个圆的半径为7,其面积是_________。
答案:49π三、解答题7. 解方程:2x - 5 = 9解:首先将方程两边同时加5,得到2x = 14,然后两边同时除以2,得到x = 7。
8. 已知一个长方体的长、宽、高分别为2米、3米和4米,求其体积。
解:长方体的体积计算公式为V = 长× 宽× 高,代入数值得到V = 2 × 3 × 4 = 24立方米。
9. 证明:若a、b、c为正整数,且a < b < c,证明a + b > c。
证明:由于a、b、c为正整数,且a < b < c,我们可以假设a = 1,b = 2,c = 3。
此时 a + b = 1 + 2 = 3,显然不满足 a + b > c。
因此,原命题在给定条件下不成立。
四、应用题10. 某工厂生产一批零件,每个零件的成本为5元,售价为10元。
如果工厂计划在一个月内生产并销售1000个零件,求工厂的总利润。
解:每个零件的利润为售价减去成本,即10 - 5 = 5元。
工厂计划生产并销售1000个零件,所以总利润为1000 × 5 = 5000元。
11. 某班有40名学生,其中男生人数是女生人数的两倍。
求该班男生和女生各有多少人。
解:设女生人数为x,则男生人数为2x。
2023年高考第一轮复习:必修一基础综合复习

2023年高考第一轮复习:必修一基础综合复习一、单选题 (共7题)第(1)题一物体静止在水平地面上,0时刻起受到竖直向上的拉力F作用,其速度随时间的变化关系如图所示,下列说法正确的是( )A.物体在减速阶段的加速度大小为0.6m/s²B.2~6s物体处于超重状态C.0到10s末物体的平均速度大小为3.75m/sD.第2s末到第6s末物体所受拉力逐渐增大第(2)题理想变压器上接有三个完全相同的灯泡,其中一个与该变压器的原线圈串联后接入交流电源,另外两个并联后接在副线圈两端.已知三个灯泡均正常发光。
该变压器原、副线圈的匝数之比为( )A.1 : 2B.2 : 1C.2 : 3D.3 : 2第(3)题聚变能是一种清洁、安全的新能源,核聚变反应的主要原料是氘核与氚核,已知氘核的比结合能是,氚核的比结合能是,氦核的比结合能是。
关于氘、氚核聚变反应,下列说法不正确的是( )A.氚的质量小于组成它的核子的质量之和B.两个氘核结合成氦核要释放能量C.氘和氚核聚变反应后质量数变小,释放能量D.氘和氚核聚变反应的方程是第(4)题如图所示,质量的物体P穿在一固定的光滑水平直杆上,直杆右端固定一光滑定滑轮。
一绕过两光滑定滑轮的细线的一端与物体P相连,另一端与质量的物体Q相连。
开始时物体P在外力作用下静止于A点,绳处于伸直状态,已知,取重力加速度大小,两物体均视为质点,不计空气阻力。
某时刻撤去外力、同时给P一水平向左的速度v,物体P恰能运动到B点,则v的大小为( )A.B.C.D.第(5)题一个单摆在竖直平面内沿圆弧做往复运动。
某时刻摆球由A点从静止开始摆动,如图所示摆线与竖直方向的夹角为,O点为摆动的最低点,则下列说法正确的是( )A.摆球在O点受重力、拉力、向心力B.摆球摆动到O点时所受合外力为零C.摆球从A点摆动到O点的过程中,拉力不做功,动能增加D.摆球经过P点时摆角小于,则摆球所受拉力与重力的合外力充当回复力第(6)题如图甲所示,滚筒洗衣机脱水时,滚筒内的衣物随滚筒在竖直面内做匀速圆周运动,可简化为如图乙所示模型,A、C两点分别为衣物运动的最高点和最低点,B、D两点与圆筒圆心等高,则对脱水过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“现代数字信号处理”学习重点及复习题1.现代信号处理的范畴主要包含哪几个方面?它们与经典信号处理有何联系与区别?2.严平稳和弱平稳随机信号在概念上有何区别?严平稳随机信号是否一定是弱平稳的?试以严平稳和弱平稳白噪声(其均值与方差相同)为例,说明严平稳和弱平稳随机信号的区别。
3.随机信号的均值、均方值和方差等数值特征与随机变量的这些数值特征在形式上有何区别?为什么会出现这种区别?而平稳随机信号的这些数值特征在形式上与随机变量的数值特征相同,它们在含义上有何区别?4.自相关函数的直观物理含义是什么?如何理解白噪声自相关函数的特点?一个方差为2σ的平稳白噪声序列,试写出其n 阶自相关函数矩阵和自协方差矩阵。
5.试证明实平稳随机信号自相关函数和互相关函数的以下性质: (1)()(), ()()xx xx xy yx r m r m r m r m =-=-; (2)[]2(0)()xx r E x n =;(3)(0)(), for any integer xx xx r r m m ≥;(4)2lim (), lim ()xx x xy x y m m r m m r m m m →∞→∞==。
6.两个实平稳随机信号的互功率谱是否一定为实函数?7.随机信号的独立性和相关性之间有什么联系与区别?试证明两个相互独立的随机信号必然是不相关的。
8.结合随机过程数字特征的含义以及维纳-辛钦定理,根据你的理解,阐述弱平稳随机信号定义中的两个条件:(1)()()x x x m n m n l m =+=,(2)1122(,)(,)()xx xx xx r n n m r n n m r m +=+=分别体现了平稳随机信号哪些方面的特性。
9.试叙述你对“平稳随机过程各态历经性”的理解。
平稳随机信号的各态历经性对简化其分析过程有什么帮助?10. 平稳随机信号通过LTI 系统后,其功率谱将如何变化?这种功率谱的变化在实际应用中有何意义?11. 设有一LTI 系统,其频率特性未知,试根据LTI 系统输入输出信号互功率谱与输入信号功率谱之间的关系,以白噪声作为输入,设计一个方案,估计该LTI 系统的频率特性。
12. 一个平稳随机信号的时间序列模型为()0.5(1)()x n x n w n =-+其中()w n 为实平稳白噪声序列,其方差21wσ=。
设()y n 为()x n 通过线性系统12()2H z z z --=-之后的输出,求()y n 的功率谱。
13.设某一线性系统的输入信号具有如下时间序列模型()0.7(1)()x n x n w n =-+其中()w n 为实平稳白噪声序列,其方差21wσ=。
已知系统输出信号()y n 与()x n 的互相关函数()xy r m 的z 变换为1()10.7xy S z z=-求该线性系统的传递函数()H z 及()y n 的时间序列模型。
14.设1()x n 和2()x n 为两个不相关的实平稳随机序列,其方差分别为21x σ、22x σ,令12()()()y n x n x n =+,试证明()y n 的方差22212y x x σσσ=+15.一个语音信号()s n ,叠加了来源未知的噪声()v n ,()()()x n s n v n =+。
已知()v n 是与()s n 不相关的零均值高斯白噪声,其方差为2σ。
为了从()x n 中尽可能去除噪声,设计了如图1所示系统,请问该设计方案是否可行?若不(x 图1)可行,请说明原因;若可行,则请说明ˆ()sn 是否为()s n 在MMSE 准则下的最优估计,为什么?16. 参数估计在随机信号分析与处理中有何意义?为什么一般要用估计的方法来获取随机信号的数值特征,而不是根据定义求得?17. 什么是贝叶斯估计?如何理解贝叶斯估计中的代价函数与风险函数?18. 几种不同的估计子:MAP 、ML 、MMSE 有何区别与联系?如何直观理解这些估计子?19. 衡量估计子质量的几个性能指标:无偏性、有效性、一致性分别表征了估计子哪些方面的直观特性?20. 一个各态遍历的平稳高斯信号,试证明其均值和方差的ML 估计子分别为:11ˆN x i i mx N-==∑、1221ˆ()N x ixi x m N σ-==-∑21.已知信号()s n 和噪声()v n 为不相关的实平稳白噪声随机序列,其方差分别为2s σ、2v σ,求估计()s n 的维纳滤波器()h n 。
22.设信号()s n 和噪声()v n 的功率谱分别如图2所示,试分别画出估计()s n 和估计()v n 的维纳滤波器的幅频特性。
并分别画出估计结果ˆ()s n 和ˆ()vn 的功率谱。
j ωj ω23. 什么是维纳滤波问题?你是如何理解维纳滤波的正交原理的?24. 试写出求解因果IIR 维纳滤波器的基本思路与步骤。
对于同一个维纳滤波问题,分别求解出其因果FIR 、非因果IIR 和因果IIR 等三种不同类型的滤波器,通常哪种类型维纳滤波器的误差最小?为什么?25. 一个信号混入了白噪声干扰,欲设计一维纳滤波器来抑制干扰,试问在最优状态下能否将白噪声完全滤除?为什么? 26.已知信号()s n 和噪声()v n 的时间序列模型分别为11()0.8()0.5(1)s n w n w n =+- 22()()0.6(1)v n w n w n =+-其中1()w n 和2()w n 为不相关的具有各态历经性的实平稳白噪声序列,22121w w σσ==。
量测()()()x n s n v n =+,试设计一个2阶因果FIR 维纳滤波器,用于从()x n 估计()s n ,并求估计量的最小均方误差min CFIR ξ。
27. 某平稳随机信号()s n 可以用一个稳定的AR 模型来进行描述,设其AR模型为1()()H z A z =()s n 的功率谱为20.25()()j ss j P e A e ωω=欲把()s n 白化为方差为1的白噪声,试求该白化滤波器的系统函数(用()A z 表示)。
28. 比较因果FIR 维纳滤波器的维纳-霍夫方程与Yule-Walker 方程的不同特点。
29. 试叙述Kalman 滤波估计的基本思路和Kalman 滤波递推算法的基本步骤。
为什么Kalman 滤波算法还要包含估计误差协方差矩阵的递推步骤?当满足何种条件时,Kalman 滤波估计的稳态结果是一个最优线性估计?30.试分析系统噪声协方差阵k Q 、观测噪声协方差阵k R 和先验估计误差协方差阵1k k P -对Kalman 增益k K 的影响及其所代表的物理含义。
31. 试比较线性自适应滤波与维纳滤波的异同点。
32. 衡量一个自适应算法的性能主要考查那些方面?为什么一般希望自适应算法收敛速度快、计算量小?33. 最陡下降算法和LMS 算法有什么联系与区别,为什么在自适应滤波中不直接采用最陡下降算法而往往采用LMS 算法?34. 试叙述递推最小二乘(RLS )算法的基本思路与步骤,RLS 算法与最陡下降算法的本质区别是什么?RLS 算法引入这一区别的目的何在?RLS 算法为什么要采用递推的形式来实现?35. 某自适应滤波系统如图3所示,其中自适应滤波器()w n 为4阶FIR 滤波器,()x n 与()v n 为不相关平稳实白噪声序列,2221xv σσ==,,期望输出为()()0.5(1)0.3(2)d n x n x n x n =--+-求自适应系统收敛后[]()?Ew n = min ?ξ= []?E ξ=36. 上题中,若采用最陡下降(LMS )算法进行自适应学习,此时为了将MSE 性能函数变换到主轴坐标系中,求相应的坐标平移变换(平移量)和旋转变换(正交变换阵),若要确保算法收敛,则自适应学习的步长μ应该满足何种条件? 37.在最陡下降算法中,自适应学习的步长μ对算法的收敛特性和稳态误差(失调系数)有何影响?若取学习步长0μ<,则会出现什么结果?为什)么?38.某自适应对消系统如图4所示,若主信号(期望信号)()d n 与参考输入信号()x n 为不相关平稳随机序列,则自适应系统收敛后,FIR 滤波器系数的均值[]()?E w n =为什么?39. 试叙述自适应建模、自适应逆滤波、自适应对消、自适应信号分离与预测等自适应系统的基本工作原理。
40. 为什么平稳随机信号的频域特性采用功率谱来描述,而不采用幅度/相位谱或能量谱?为什么PSE 中要求随机信号是平稳而且各态遍历的?41. BT 法和周期图法谱估计的原理有何区别?经典谱估计是非一致估计,这个缺点的主要表现是什么?各种改进的经典谱估计方法是如何降低估计方差的,它们在降低估计方差的同时付出了何种代价?42. 比较经典功率谱估计方法和现代功率谱估计方法的区别,制约经典谱估计方法提高频率分辨率的关键是什么?为什么现代谱估计方法能提高频率分辨率?(提示:隐含的自相关函数外推)43. 为什么参数模型谱估计方法一般采用AR 模型?试简述AR 谱估计方法的基本步骤。
最大熵谱估计与AR 谱估计有何和联系与区别? 44.为什么AR 谱估计一般采用递推方式(如Levinson-Durbin 算法和Burg 算法)来实现,而不是去直接求解Yule-Walker 方程?45.对某一信号()x n 采用3阶AR 模型进行信号模型的估计,其估计结果()n 图4为()0.5(1)0.1(2)()x n x n x n w n =---+其中白噪声()w n 的方差估计2ˆ()0.5w n σ=,试求该信号的功率谱估计。
46. 说明傅立叶变换(FT )、短时傅立叶变换(STFT )和小波变换的主要区别所在。
47. 什么是测不准原理(不确定原理)?什么是多分辨率分析(MRA )?在小波变换中测不准原理失效了吗?48. 为什么小波变换能刻画信号的时间信息?小波变换是通过什么来刻画信号的时间和频率的变化的?49. 为什么实用的母小波函数总要求其正负面积是相等的?即()0t dt ψ∞-∞=⎰。
50. 为什么线性变换往往希望基函数是正交函数集甚至是规范正交函数集?由离散小波基构成的小波框架满足何种条件时,该离散小波基是一组规范正交基? 51.设母小波函数为()t ψ,由它张成的离散小波基2,()2(2)j j j k t t k ψψ--=-规范正交,现有一信号()x t 具有如下形式()2(3)0.5(0.51)(0.1251)x t t t t ψψψ=--++-试求()x t 以,()j kt ψ为基函数的离散小波变换。
结合这个例子,谈谈你对正交线性变换的理解。