人教版数学必修五(文)学案:2.3等差数列的前n项和(二)

合集下载

【人教B版】2017年必修五:2.3.2《等比数列的前N项和》示范学案(含答案)

【人教B版】2017年必修五:2.3.2《等比数列的前N项和》示范学案(含答案)

2.3.2 等比数列的前n 项和1.理解等比数列的前n 项和公式的推导过程.2.掌握等比数列的前n 项和公式,并能用它解决有关等比数列问题.(1)在求等比数列{a n }的前n 项和公式时,应分q =1和q ≠1两种情况,若题目中没有指明,切不可忘记对q =1这一情形的讨论.(2)等比数列的通项公式及前n 项和公式共涉及五个量,即a 1,a n ,q ,n ,S n ,通常已知其中三个量可求另外两个量,这一方法简称为“知三求二”.【做一做1-1】在等比数列{a n }中,公比q =-2,S 5=44,则a 1的值为( ). A .4 B .-4 C .2 D .-2【做一做1-2】在等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .1922.等比数列前n 项和的常用性质性质(1):在等比数列{a n }中,若S n 为其前n 项和,则依次每k 项的和构成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,S 4k -S 3k ,…成等比数列,其公比为________.性质(2):在等比数列{an }中,若项数为2n 项,公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S 偶S 奇=____. 性质(3):数列{a n }是公比为q 的等比数列,则S m +n =S n +__________.【做一做2】已知等比数列{a n },S n 是其前n 项和,且S 3=7,S 6=63,则S 9=________.一、错位相减法的实质及应用剖析:(1)用错位相减法求等比数列前n 项和的实质是把等式两边同乘等比数列的公比q ,得一新的等式,错位相减求出S n -qS n ,这样可以消去大量的“中间项”,从而能求出S n .当q =1时,S n =na 1,当q ≠1时,S n =a 1-a 1q n1-q.这是分段函数的形式,分段的界限是q =1.(2)对于形如{x n ·y n }的数列的和,其中{x n }为等差数列,{y n }为等比数列,也可以用错位相减法求和.错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.(3)利用这种方法时,要注意对公比的分类讨论.二、等比数列的前n 项和公式的推导(首项为a 1,公比q ≠1)剖析:除了书上用到的错位相减法之外,还有以下方法可以求等比数列的前n 项和. (1)等比性质法 ∵a 2a 1=a 3a 2=a 4a 3=…=a na n -1=q , ∴a 2+a 3+a 4+…+a na 1+a 2+a 3+…+a n -1=q ,即S n -a 1S n -a n =q ,解得S n =a 1-a n q 1-q =a 1-q n 1-q. (2)裂项相消法S n =a 1+a 2+a 3+…+a n =a 1+a 1q +a 1q 2+…+a 1q n -1=(a 11-q -a 1q 1-q )+(a 1q 1-q -a 1q 21-q)+(a 1q 21-q -a 1q 31-q )+…+(a 1q n -11-q -a 1q n 1-q )=a 11-q -a 1q n 1-q =a 1-q n1-q. (3)拆项法S n =a 1+a 2+a 3+…+a n=a 1+a 1q +a 1q 2+…+a 1q n -1=a 1+q (a 1+a 1q +a 1q 2+…+a 1q n -2)=a 1+q (a 1+a 1q +a 1q 2+…+a 1q n -2+a 1q n -1-a 1q n -1),∴S n =a 1+q (S n -a 1q n -1) =a 1+q (S n -a n ).解得S n =a 1-a n q 1-q =a 1-q n1-q.三、教材中的“?”例2中,有别的解法吗?将这个数列的前8项倒过来排,试一试.剖析:∵S 8=27+26+25+…+2+1, ∴S 8=1+2+22+…+26+27=-281-2=28-1=255.此题说明了在一个等比数列{a n }中,若为有限项,如a 1,a 2,…,a n ,则a n ,a n -1,…,a 2,a 1也是等比数列,其公比为原数列公比的倒数.题型一 等比数列的前n 项和公式的应用 【例1】在等比数列{a n }中,(1)已知a 1=3,q =2,求a 6,S 6;(2)已知a 1=-1,a 4=64,求q 和S 4; (3)已知a 3=32,S 3=92,求a 1,q .分析:在等比数列的前n 项和公式中有五个基本量a 1,a n ,q ,n ,S n ,只要已知任意三个,就可以求出其他两个.反思:在等比数列{a n }中,首项a 1与公比q 是两个最基本的元素;有关等比数列的问题,均可化成关于a 1,q 的方程或方程组求解.解题过程中,要注意:(1)选择适当的公式;(2)利用等比数列的有关性质;(3)注意在使用等比数列前n 项和公式时,要考虑q 是否等于1.题型二 等比数列的前n 项和的性质的应用【例2】在各项均为正数的等比数列{a n }中,若S 10=10,S 20=30,求S 30.分析:可以利用解方程组解决,也可以利用等比数列的前n 项和的性质来解决.反思:由于等比数列中,无论是通项公式还是前n 项和公式,均与q 的若干次幂有关,所以在解决等比数列问题时,经常出现高次方程,为达到降幂的目的,在解方程组时经常利用两式相除,达到整体消元的目的.题型三 某些特殊数列的求和【例3】(1)已知数列{a n }的通项公式a n =2n+n ,求该数列的前n 项和S n ;(2)已知数列{a n }的通项公式a n =n ·2n,求该数列的前n 项和S n .分析:(1)所给数列虽然不是等差数列或等比数列,但在求该数列的前n 项和时可以把a n 看成一个等比数列和一个等差数列的和的形式,分别求和,再相加.(2)写出数列的前n 项和,注意其与等比数列形式类似,考虑用推导等比数列求和公式的方法来求其前n 项和.反思:(1)分组求和法适用于某些特殊数列的求和,这些特殊数列的通项可写成几个等比数列或等差数列的和的形式;(2)错位相减法适用于求一个等差数列与一个等比数列的积组成的新数列的前n 项和.题型四 等比数列前n 项和的实际应用【例4】为了保护某处珍贵文物古迹,政府决定建一堵大理石护墙,设计时,为了与周边景观协调,对于同种规格的大理石用量须按下述法则计算:第一层用全部大理石的一半多一块,第二层用剩下的一半多一块,第三层……依此类推,到第十层恰好将大理石用完,问共需大理石多少块?每层各用大理石多少块?分析:设出共用大理石的块数,即可求出各层大理石的使用块数,通过观察,此即为一等比数列,通过等比数列求和,求出总块数,再求出每层用的块数.反思:对于实际问题,可以采用设出未知量的方法使之具体化.通过对前几项的探求,寻找其为等比数列的本质,再通过等比数列求和公式来求解.题型五 易错辨析【例5】已知数列{a n }满足a n =⎩⎪⎨⎪⎧2n,n 为奇数,n ,n 为偶数,试求其前n 项和.错解:S n =a 1+a 2+a 3+…+a n=(a 1+a 3+a 5+…+a n -1)+(a 2+a 4+a 6+…+a n )=-4n21-4+n2×2+n 2n2-2×2=13·2n +1+n 24+n 2-23. 错因分析:这里数列的通项a n 是关于n 的分段函数,当n 为奇数或为偶数时对应不同的法则,因此求和必须对项数n 进行分类讨论.1在等比数列{a n }中,若a 1=1,a 4=18,则该数列的前10项和为( ).A .2-128B .2-129C .2-1210 D .2-1211 2等比数列的前n 项和S n =k ·3n+1,则k 的值为( ).A .全体实数B .-1C .1D .33某人为了观看2012年奥运会,从2005年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2012年将所有的存款及利息全部取回,则可取回的钱的总数(元)为( ).A .a (1+p )7B .a (1+p )8C .ap [(1+p )7-(1+p )] D .a p[(1+p )8-(1+p )]4已知等比数列{a n }的各项均为正数,前n 项和为S n ,若a 2=2,a 1a 5=16,则S 5=________. 5在等比数列{a n }中,S n =65,n =4,q =23,则a 1=________.6在等比数列{a n }中,S 3=4,S 6=36,求a n . 答案:基础知识·梳理1.na 1 a 1(1-q n )1-q na 1 a 1-a n q1-q【做一做1-1】A 由题意,知q ≠1,故有S 5=44=a 1(1-q 5)1-q,将q =-2代入解得a 1=4.【做一做1-2】B 由a 5=a 2·q 3,得q 3=2439=27,∴q =3,从而a 1=3.∴S 4=a 1(1-q 4)1-q =3×(1-34)1-3=120.2.q k (q ≠-1) q q n·S m 【做一做2】511 典型例题·领悟【例1】解:(1)a 6=a 1q 5=3×25=96.S 6=a 1(1-q 6)1-q =3(1-26)1-2=189.(2)∵a 4=a 1q 3,∴64=-q 3.∴q =-4,∴S 4=a 1-a 4q 1-q =-1-64×(-4)1-(-4)=51.(3)由题意,得⎩⎪⎨⎪⎧a 3=a 1q 2=32,S 3=a 1(1+q +q 2)=92,①②②÷①,得1+q +q2q2=3, ∴2q 2-q -1=0,∴q =1或q =-12.当q =1时,a 1=32;当q =-12时,a 1=6.【例2】解:解法一:设{a n }的公比为q ,显然q ≠1.由已知条件可列出方程组⎩⎪⎨⎪⎧10=a 1(1-q 10)1-q,30=a 1(1-q20)1-q,两式作商,得1+q 10=3,∴q 10=2.∴S 30=a 1(1-q 30)1-q=a 1(1-q 10)1-q(1+q 10+q 20)=10×(1+2+4)=70.解法二:由性质S m +n =S n +q n·S m ,得S 20=S 10+q 10S 10,即30=10+10q 10,∴q 10=2.∴S 30=S 20+q 20S 10=30+40=70.解法三:运用性质S m 1-q m =S n1-qn (q ≠±1).由已知条件S 10=10,S 20=30,易得q ≠±1,∴S 101-q 10=S 201-q 20,即101-q 10=301-q20.∴q 10=2. 又S 101-q 10=S 301-q30,解得S 30=70. 解法四:运用性质S k ,S 2k -S k ,S 3k -S 2k ,S 4k -S 3k ,…成等比数列.∵S 10,S 20-S 10,S 30-S 20成等比数列,而S 10=10,S 20=30,∴(S 20-S 10)2=S 10·(S 30-S 20),即(30-10)2=10×(S 30-30).∴S 30=70. 【例3】解:(1)S n =a 1+a 2+a 3+…+a n=(2+1)+(22+2)+(23+3)+…+(2n+n )=(2+22+23+ (2))+(1+2+3+…n )=2(1-2n)1-2+(1+n )n2 =2n +1-2+(n +1)n 2.(2)∵S n =1×21+2×22+3×23+…+n ×2n,2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1,∴-S n =2+22+23+…+2n -n ·2n +1,∴S n =n .2n +1-(2+22+23+ (2))=n ·2n +1-2(1-2n)1-2=n ·2n +1-(2n +1-2)=(n -1)·2n +1+2.【例4】解:设共用大理石x 块,则各层用大理石块数分别为第一层:x 2+1=x +22;第二层:x -x +222+1=x +24;第三层:x -x +22-x +242+1=x +28;……第十层:x -x +22-x +24-…-x +2292+1=x +2210.所以从第一层到第十层所用大理石的块数构成首项为x +22,公比为12,项数为10的等比数列,故x =x +22+x +24+…+x +2210,解得x =2 046.答:共用去大理石2 046块,各层分别为1 024,512,256,128,64,32,16,8,4,2块. 【例5】正解:(1)当n 为奇数时,S n =(a 1+a 3+a 5+…+a n )+(a 2+a 4+a 6+…+a n -1)=2(1-4n +12)1-4+n -12×2+n -12(n -12-1)2×2=13·2n +2+n 24-1112. (2)当n 为偶数时,S n =(a 1+a 3+a 5+…+a n -1)+(a 2+a 4+a 6+…+a n )=2(1-4n 2)1-4+n 2×2+n 2(n2-1)2×2=13·2n +1+n 24+n 2-23. 随堂练习·巩固1.B 设其公比为q ,∵a 1=1,a 4=a 1q 3=18.∴q =12.∴S 10=1×(1-1210)1-12=2-129.2.B 当n =1时,a 1=S 1=3k +1;当n ≥2时,a n =S n -S n -1=k ·3n -k ·3n -1=2k ·3n-1.令3k +1=2k 得k =-1.3.D 2005年存入的a 元到2012年所得的本息和为a (1+p )7,2006年存入的a 元到2012年所得的本息和为a (1+p )6,依此类推,则2011年存入的a 元到2012年的本息和为a (1+p ),每年所得的本息和构成一个以a (1+p )为首项,1+p 为公比的等比数列,则到2012年取回的总额为a (1+p )+a (1+p )2+…+a (1+p )7=a (1+p )[1-(1+p )7]1-(1+p )=a p[(1+p )8-(1+p )].4.315.27 S 4=a 1(1-q 4)1-q =a 1[1-(23)4]1-23=65,解得a 1=27.6.解:∵S 33≠S 66,∴q ≠1.∴S 3=a 1(1-q 3)1-q =4,S 6=a 1(1-q 6)1-q=36.两式相除,得1+q 3=9,∴q =2.将q =2代入S 3=4,得a 1=47.∴a n =47·2n -1=2n +17.。

人教版高中数学必修五同课异构课件:2.3 等差数列的前n项和 第1课时 等差数列的前n项和

人教版高中数学必修五同课异构课件:2.3 等差数列的前n项和 第1课时 等差数列的前n项和

即Sn=a+n an-1+an-+2 …+a3+ a2 +a1,
+得: 2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1).
由等差数列的性质:当m+n=p+q时,am+an=ap+aq 知: a1+an=a2+an-1=a3+an-2=…=an+a1,所以式可化为: 2Sn=(a1+an)+(a1+an)+ … +(a1+an) = n(a1+an).
项和的公式吗?
分析:将已知条件代入等差数列前n项和的公式后,可
得到两个关于 a与1 d的二元一次方程,由此可以求得 a1
与d,从而得到所求前n项和的公式.
解:由题意知S10 = 310,S20 = 1 220,
将它们代入公式Sn
=
na1
+
n(n - 1)d, 2
得到1200aa11
+ +
45d = 310, 190d = 1 220.
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~

人教a版必修5学案:2.3等差数列的前n项和(含答案)

人教a版必修5学案:2.3等差数列的前n项和(含答案)

§2.3 等差数列的前n 项和材拓展1.等差数列的判定(1)a n -a n -1=d (n ≥2,d 为常数)⇔{a n }是公差为d 的等差数列; (2)2a n =a n -1+a n +1 (n ≥2)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数)⇔{a n }是公差为k 的等差数列(n ≥1);(4)S n =An 2+Bn (A ,B 为常数)⇔{a n }是公差为2A 的等差数列(n ≥1).例如:已知等差数列{a n }的前n 项和S n =(n -1)2+λ,则λ的值是________. 解析 S n =(n -1)2+λ=n 2-2n +(1+λ), ∵{a n }是等差数列, ∴1+λ=0,λ=-1. 答案 -12.等差数列的通项公式将a n =a 1+(n -1)d 可整理为a n =dn +(a 1-d ),它是关于n 的一次函数(d ≠0)或常函数(d =0),它的图象是一条射线上的一群横坐标为正整数的孤立的点,公差d 是该射线所在直线的斜率.例如:等差数列{a n }中,若a n =m ,a m =n (m ≠n ),则a m +n =______. 解析 由点(n ,a n ),(m ,a m ),(m +n ,a m +n )三点共线, ∴a m +n -a n (m +n )-n =a m -a n m -n .即a m +n -m m =n -m m -n =-1, 易得a m +n =0. 答案 03.等差数列的前n 项和公式(1)将公式S n =na 1+n (n -1)2d 变形可得S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n .故当d ≠0时,等差数列前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d 2x 2+⎝⎛⎭⎫a 1-d 2x 上横坐标为正整数的一群孤立点.(2)S n n =d 2n +⎝⎛⎭⎫a 1-d 2是关于n 的一次函数(d ≠0)或常函数(d =0). 当涉及等差数列前n 项和S n 的计算问题时,有时设S n =An 2+Bn 的形式更简便快捷. 例如:等差数列{a n }中,若S p =q ,S q =p (p ≠q ),则S p +q =__________. 解析 设S n =An 2+Bn ,则⎩⎪⎨⎪⎧S p =Ap 2+Bp =q (1)S q =Aq 2+Bq =p (2) 由(1)-(2)得Ap 2+Bp -Aq 2-Bq =q -p , ∴A (p 2-q 2)+B (p -q )=q -p , ∵p ≠q ,∴A (p +q )+B =-1.∵S p +q =A (p +q )2+B (p +q ) =[A (p +q )+B ]·(p +q ) =-(p +q ). 答案 -(p +q ) 4.等差数列的性质(1)若数列{a n }和{b n }均是等差数列,则{ma n +kb n }仍为等差数列,其中m 、k 均为常数. (2)若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q .(3)等差数列中依次k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d (d 是原数列公差).(4)若{a n }与{b n }均为等差数列,且前n 项和分别为S n 与S ′n ,则am b m =S 2m -1S ′2m -1.(5)等差数列{a n }中,奇数项的和记作S 奇,偶数项的和记作S 偶,则S n =S 奇+S 偶.当n 为偶数时:S 偶-S 奇=n2d ;当n 为奇数时:S 奇-S 偶=a 中,S 奇=n +12a 中,S 偶=n -12a 中,S 奇S 偶=n +1n -1.(其中a 中是等差数列的中间一项)例如:已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是________.解析 S 偶-S 奇=n2d =5d ,∴5d =30-15=15,∴d =3. 答案 35.等差数列前n 项和的最值求等差数列前n 项和的最值的常用方法: (1)通项法当a 1>0,d <0时,数列{a n }只有前面有限项为非负数,从某项开始所有项均为负数,因此,S n 有最大值,当n 满足不等式组⎩⎪⎨⎪⎧ a n ≥0a n +1<0时,S n 取到这个最大值;当a 1<0,d >0时,数列{a n }只有前面有限项为非正数,从某项开始所有项均为正数,因此,S n 有最小值,当n 满足不等式组⎩⎪⎨⎪⎧a n ≤0a n +1>0时,S n 取到这一最小值.(2)二次函数法由于S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,n ∈N *是关于n 的二次函数式,故可转化为求二次函数的最值问题,但要注意数列的特殊性n ∈N *.例如:{a n }是等差数列,a 1>0,a 2 009+a 2 010>0,a 2 009·a 2 010<0,则使前n 项和S n 最大时,n 的值是________;使前n 项和S n >0成立时,n 的最大值是________.答案 2 009 4 018法突破一、等差数列的判断方法方法链接:判定等差数列的常用方法: (1)定义法:a n +1-a n =d (常数)(n ∈N *);(2)通项公式法:a n =kn +b (k ,b 为常数) (n ∈N *); (3)中项公式法:2a n +1=a n +a n +2 (n ∈N *);(4)前n 项和法:S n =An 2+Bn (A 、B 为常数),n ∈N *.例1 数列{a n }的前n 项和S n 满足:S n =n (a 1+a n )2,判断{a n }是否为等差数列?并证明你的结论.解 {a n }是等差数列,证明如下: 因为a n =S n -S n -1=n (a 1+a n )2-(n -1)(a 1+a n -1)2(n ≥2),所以a n +1=(n +1)(a 1+a n +1)2-n (a 1+a n )2,所以a n +1-a n =12[(n +1)(a 1+a n +1)-2n (a 1+a n )+(n -1)(a 1+a n -1)]=12[(n +1)a n +1-2na n +(n -1)a n -1] (n ≥2), 即(n -1)(a n +1-2a n +a n -1)=0, 所以a n +1+a n -1=2a n (n ≥2), 所以数列{a n }为等差数列. 二、等差数列中基本量的运算方法链接:在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个基本量,利用通项公式与前n 项和公式,求出a 1和d ,等差数列就确定了.例2 在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8;(2)已知前3项和为12,前3项积为48,且d >0,求a 1; (3)已知前3项依次为a,4,3a ,前k 项和S k =2 550,求a 及k .解 (1)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =105a 1+10d =5.解方程组得a 1=-5,d =3,∴a 8=a 6+2d =10+2×3=16,S 8=8×(a 1+a 8)2=44.(2)设数列的前三项分别为a -d ,a ,a +d ,依题意有: ⎩⎪⎨⎪⎧(a -d )+a +(a +d )=12(a -d )·a ·(a +d )=48, ∴⎩⎪⎨⎪⎧ a =4a (a 2-d 2)=48,∴⎩⎪⎨⎪⎧a =4d =±2. ∵d >0,∴d =2,a -d =2.∴a 1=2. (3)设公差为d ,则由题意得 ⎩⎪⎨⎪⎧a +3a =8,d =4-a ,ka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧a =2,d =2,k =50或k =-51(舍去).因此,a =2,k =50.三、等差数列的性质及运用方法链接:等差数列有一些重要的性质,例如: (1)若m +n =p +q ,则a m +a n =a p +a q ; (2)若m +n =2p ,则a m +a n =2a p ;(3)若{a n }是等差数列,则S k ,S 2k -S k ,S 3k -S 2k 也成等差数列.(其S k 为前k 项和)(4)若等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a n b n =S 2n -1T 2n -1.熟练运用这些性质,可以提高解题速度,获得事半功倍的功效.例3 (1)设等差数列{a n }的前n 项和为S n ,若S 9=72,求a 2+a 4+a 9的值; (2)已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,求证:①a n b n =S 2n -1T 2n -1;②a n b m =2m -12n -1·S 2n -1T 2m -1.(1)解 由S 9=9(a 1+a 9)2=72,∴a 1+a 9=16,∴a 1+a 9=2a 5=16,∴a 5=8,∴a 2+a 4+a 9=a 1+a 5+a 9=3a 5=24.(2)证明 ①a n b n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=(a 1+a 2n -1)2n -12(b 1+b 2n -1)2n -12=S 2n -1T 2n -1.②a n b m =2a n 2b m =a 1+a 2n -1b 1+b 2m -1=(a 1+a 2n -1)2n -12·2m -12(b 1+b 2m -1)2m -12·2n -12=2m -12n -1·S 2n -1T 2m -1. 四、等差数列前n 项和的最值 方法链接:等差数列前n 项和最值问题除了用二次函数求解外,还可用下面的方法讨论:若d >0,a 1<0,S n 有最小值,需⎩⎪⎨⎪⎧a n ≤0,a n +1≥0;若a 1>0,d <0,S n 有最大值,需⎩⎪⎨⎪⎧a n ≥0,a n +1≤0.n 取正整数.例4 (1)首项为正数的等差数列,前n 项和为S n ,且S 3=S 11,问n 为何值时,S n 最大?(2)等差数列{a n }中,a 1=-60,a 17=-12,求{|a n |}的前30项和及前n 项和.解 (1)设首项为a 1,公差为d ,则由题意知,d <0,点P (n ,S n )在抛物线y =d 2x 2+⎝⎛⎭⎫a 1-d 2x 上,其对称轴方程为x =7(由S 11=S 3知),故(7,S 7)是抛物线的顶点,∴n =7时,S n 最大.(2)设公差为d ,则由a 1+16d =a 17,得d =3>0,因此a n =3n -63.点Q (n ,a n )在增函数y =3x -63的图象上.令y =0则得x =21,故当n ≥22时,a n >0;当1≤n ≤21且n ∈N *时,a n ≤0, 于是|a 1|+|a 2|+…+|a 30|=-a 1-a 2-…-a 21+a 22+a 23+…+a 30 =a 1+a 2+…+a 30-2(a 1+a 2+…+a 21) =765.记T n =|a 1|+|a 2|+…+|a n |, 则由上面的求解过程知:当1≤n ≤21,n ∈N *时, T n =|a 1|+|a 2|+…+|a n | =-a 1-a 2-…-a n =(123-3n )n 2=-32n 2+1232n .当n >21,n ∈N *时,T n =|a 1|+|a 2|+…+|a 20|+|a 21|+…+|a n | =-(a 1+a 2+…+a 21)+a 22+a 23+…+a n =(a 1+a 2+…+a n )-2(a 1+a 2+…+a 21) =32n 2-1232n +1 260. ∴数列{|a n |}的前n 项和T n =⎩⎨⎧-32n 2+1232n (1≤n ≤21,n ∈N *),32n 2-1232n +1 260 (n >21,n ∈N *).五、关于等差数列的探索性问题方法链接:对于与等差数列有关的探索性问题,先由前三项成等差数列确定参数后,再利用定义验证或证明所得结论.例5 已知数列{a n }中,a 1=5且a n =2a n -1+2n -1 (n ≥2且n ∈N *). (1)求a 2,a 3的值;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)∵a 1=5,∴a 2=2a 1+22-1=13, a 3=2a 2+23-1=33.(2)假设存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列.则a 1+λ2,a 2+λ22,a 3+λ23成等差数列,∴2×a 2+λ22=a 1+λ2+a 3+λ23,∴13+λ2=5+λ2+33+λ8.解得λ=-1.当λ=-1时,⎝⎛⎭⎫a n +1-12n +1-⎝⎛⎭⎫a n -12n=12n +1[(a n +1-1)-2(a n -1)] =12n +1(a n +1-2a n +1) =12n +1[(2a n +2n +1-1)-2a n +1] =12n +1×2n +1=1. 综上可知,存在实数λ=-1,使得数列⎩⎨⎧⎭⎬⎫a n +λ2为等差数列,且首项是2,公差是1. 六、关于等差数列的创新型问题方法链接:关于等差数列的创新型试题,常以图表、数阵、新定义等形式出现.解决此类问题时通过对图表的观察、分析、提炼,挖掘出题目蕴含的有用信息,利用所学等差数列的有关知识加以解决.例6 下表给出一个“等差数阵”: 4 7 ( ) ( ) ( ) … a 1j … 7 12 ( ) ( ) ( ) … a 2j … ( ) ( ) ( ) ( ) ( ) … a 3j … ( ) ( ) ( ) ( ) ( ) … a 4j …… … … … … … … …a i 1 a i 2 a i 3 a i 4 a i 5 … a ij… … … … … … … … … 其中每行、每列都是等差数列,a ij 表示位于第i 行第j 列的数. (1)写出a 45的值;(2)写出a ij 的计算公式.解 (1)通过观察“等差数阵”发现:第一行的首项为4,公差为3;第二行首项为7,公差为5.归纳总结出:第一列(每行的首项)是以4为首项,3为公差的等差数列,即3i +1,各行的公差是以3为首项,2为公差的等差数列,即2i +1.所以a 45在第4行,首项应为13,公差为9,进而得出a 45=49.(2)该“等差数阵”的第一行是首项为4,公差为3的等差数列:a 1j =4+3(j -1); 第二行是首项为7,公差为5的等差数列: a 2j =7+5(j -1); ……第i 行是首项为4+3(i -1),公差为2i +1的等差数列,因此,a ij =4+3(i -1)+(2i +1)(j -1)=2ij +i +j =i (2j +1)+j .区突破1.审题不细心,忽略细节而致错例1 首项为-24的等差数列,从第10项起开始为正数,求公差d 的取值范围.[错解] a 10=a 1+9d =-24+9d >0,∴d >83.[点拨] 忽略了“开始”一词的含义,题目强调了第10项是该等差数列中的第一个正项,应有a 9≤0.[正解] 设a n =-24+(n -1)d , 由⎩⎪⎨⎪⎧a 9=-24+(9-1)d ≤0a 10=-24+(10-1)d >0, 解不等式得:83<d ≤3.温馨点评 审题时要细心,包括问题的细节,有时细节决定解题的成败.2.忽略公式的基本特征而致错例2 已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且对一切正整数n 都有S n T n =5n +32n +7,试求a 9b 9的值. [错解] 设S n =(5n +3)k ,T n =(2n +7)k ,k ≠0, 则a 9=S 9-S 8=(5×9+3)k -(5×8+3)k =5k , b 9=T 9-T 8=(2×9+7)k -(2×8+7)k =2k ,所以a 9b 9=52.[点拨] 此解答错在根据条件S n T n =5n +32n +7,设S n =(5n +3)k ,T n =(2n +7)k ,这是把等差数列前n 项和误认为是关于n 的一次函数,没有准确把握前n 项和公式的特点.[正解] 因为{a n }和{b n }是公差不为0的等差数列, 故设S n =n (5n +3)k ,T n =n (2n +7)k ,k ≠0,则a 9=S 9-S 8=9×(5×9+3)k -8×(5×8+3)k =88k ,b 9=T 9-T 8=9×(2×9+7)k -8×(2×8+7)k =41k ,所以a 9b 9=8841.温馨点评等差数列的前n 项和S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,当d ≠0时,是关于n 的二次函数式,且常数项为零,当d =0时,S n =na 1,但是本题不属于这种情况(否则S n T n =na 1nb 1=a 1b 1与S n T n =5n +32n +7矛盾).3.对数列的特点考虑不周全而致错例3 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.[错解] 设公差为d , ∵S 10=S 15,∴10×20+10×92d =15×20+15×142d ,得120d =-200,即d =-53,∴a n =20-(n -1)·53,当a n >0时,20-(n -1)·53>0,∴n <13.∴n =12时,S n 最大,S 12=12×20+12×112×⎝⎛⎭⎫-53=130.∴当n =12时,S n 有最大值S 12=130.[点拨] 解中仅解不等式a n >0是不正确的,事实上应解a n ≥0,a n +1≤0.[正解] 由a 1=20,S 10=S 15,解得公差d =-53.∵S 10=S 15,∴S 15-S 10=a 11+a 12+a 13+a 14+a 15=0, ∵a 11+a 15=a 12+a 14=2a 13=0,∴a 13=0. ∵公差d <0,a 1>0,∴a 1,a 2,…,a 11,a 12均为正数, 而a 14及以后各项均为负数.∴当n =12或13时,S n 有最大值为S 12=S 13=130.4.忽略题目中的隐含条件而致错例4 一个凸n 边形的各内角度数成等差数列,其最小角为120°,公差为5°,求凸n 边形的边数.[错解] 一方面凸n 边形的内角和为S n ,S n =120°n +n (n -1)2×5°.另一方面,凸n 边形内角和为(n -2)×180°.所以120n +n (n -1)2×5=(n -2)×180.化简整理得:n 2-25n +144=0. 所以n =9或n =16.即凸n 边形的边数为9或16.[点拨] 凸n 边形的每个内角都小于180°.当n =16时,最大内角为120°+15°×5°=195°>180°应该舍掉.[正解] 凸n 边形内角和为(n -2)×180°,所以120n +n (n -1)2×5=(n -2)×180,解得:n =9或n =16.当n =9时,最大内角为120°+8°×5°=160°<180°; 当n =16时,最大内角为120°+15×5°=195°>180°舍去. 所以凸n 边形的边数为9.题多解例 一个等差数列的前10项之和为100,前100项之和为10,求前110项之和. 分析 本题可从基本方法入手,先求a 1,d ,再求前110项之和,为了简化计算,也可利用等差数列前n 项和的性质.解 方法一 设等差数列{a n }的公差为d ,前n 项和为S n ,则S n =na 1+n (n -1)2d .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①,得a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎫1 099-109×11100 =-110.故此数列的前110项之和为-110. 方法二 设S n =an 2+bn . ∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10, 解得⎩⎨⎧a =-11100,b =11110.∴S n =-11100n 2+11110n .∴S 110=-11100×1102+11110×110=-110.方法三 设等差数列的首项为a 1,公差为d ,则⎩⎨⎧S p =pa 1+p (p -1)2d =q , ①(p ≠q )S q=qa 1+q (q -1)2d =p . ②①-②得(p -q )a 1+(p -q )(p +q -1)2d=-(p -q ). 又p ≠q ,∴a 1+p +q -12d =-1,∴S p +q =(p +q )a 1+(p +q )(p +q -1)2d=(p +q )(-1), ∴S 110=-110.方法四 数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100 成等差数列,设其公差为D .前10项的和10S 10+10×92·D =S 100=10,解得D =-22,∴S 110-S 100=S 10+(11-1)D =100+10×(-22)=-120. ∴S 110=-120+S 100=-110.方法五 ∵S 100-S 10=a 11+a 12+…+a 100 =90(a 11+a 100)2=90(a 1+a 110)2.又S 100-S 10=10-100=-90, ∴a 1+a 110=-2.∴S 110=110(a 1+a 110)2=-110.题赏析1.(2009·全国Ⅱ)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n . 解 设{a n }的公差为d ,则 ⎩⎪⎨⎪⎧(a 1+2d )(a 1+6d )=-16,a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧a 21+8da 1+12d 2=-16,a 1=-4d , 解得⎩⎪⎨⎪⎧a 1=-8,d =2,或⎩⎪⎨⎪⎧a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9), 或S n =8n -n (n -1)=-n (n -9).2.(2009·江苏)设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足a 22+a 23=a 24+a 25,S 7=7.(1)求数列{a n }的通项公式及前n 项和S n ;(2)试求所有的正整数m ,使得a m a m +1a m +2为数列{a n }中的项.解 (1)由题意,设等差数列{a n }的通项公式为 a n =a 1+(n -1)d ,d ≠0.由a 22+a 23=a 24+a 25得a 22-a 25=a 24-a 23,由性质得-3d (a 4+a 3)=d (a 4+a 3),因为d ≠0 所以a 4+a 3=0,即2a 1+5d =0.① 又因为S 7=7,所以a 1+3d =1.② 由①②可得a 1=-5,d =2.所以数列{a n }的通项公式a n =2n -7,S n =na 1+n (n -1)2d =n 2-6n .(2)因为a m a m +1a m +2=(a m +2-4)(a m +2-2)a m +2=a m +2-6+8a m +2为数列{a n }中的项,故8a m +2为整数.又由(1)知a m +2为奇数, 所以a m +2=2m -3=±1,即m =1,2. 经检验,符合题意的正整数只有m =2. 赏析 试题考查了等差数列的有关知识,起点较低,落点较高,难度控制得恰到好处.第(2)问要求考生有一定的分析问题解决问题的能力.。

人教新课标版数学高二必修五2.3.2等差数列的前n项和(二)

人教新课标版数学高二必修五2.3.2等差数列的前n项和(二)

等差数列的前n 项和(二)等差数列的内容内涵丰富,通项公式与前n 项和公式是其核心内容,我们对其进行合理整合、变形,可以得到诸多的性质,它们的应用使解题变得轻松愉悦,与常规方法相比较,过程要简捷得多.【性质1】 已知等差数列{a n },m 、p 、q ∈N *,若存在实数λ使λλ++=1qp m (λ≠-1), 则λλ++=1q p m a a a .证明:由等差数列{a n }的通项公式a n =dn +a 1-d 的几何意义:点(p,a p )、(m,a m )、(q,a q )共线,由斜率公式得mq a a pm a a m q p m --=--,因为λλ++=1qp m ,所以λ=--q m m p . 所以λ(a m -a q )=a p -a m .所以(1+λ)a m =a p +λa q ,即λλ++=1q p m a a a .评析:特别地,当λ=1时,2a m =a p +a q ,我们不妨将性质1称为等差数列的定比分点公式.【性质2】 等差数列{a n },n i ,m i ∈N *,i=1,2,3,…,k,若∑∑===ki ik i i mn 11.则∑∑===ki m ki ma a11.证明:设等差数列{a n }的公差为d .根据a n i =a mi +(n i -m i )d ,i=1,2,3,…,k,则∑∑∑∑∑======-+=k i mi k i k i k i i i mi ki nia d m n a a11111)(.所以∑∑===ki mi k i ni a a 11推论:等差数列{a n },n i ,m ∈N *,i=1,2,3,…,k,若∑==k i i n km 1.则∑==ki n m i a ka 1.评析:本性质实质上是等差中项性质的推广.【性质3】 等差数列{a n }的前n 项和为S n ,公差为d .n ,m ∈N *, 则d n m n S m S n m )(21-=-.证明:因为mn mS nS n S m S nm n m -=- =mnd n n na m d m m ma n ]2)1([]2)1([11-+--+=mndn mn mna d m mn mna 2)1(2)1(11----+=d mn mnmn mn n m 222+--=d mnmn n m 222- =d mn n m mn 2)(-=d n m )(21- 所以d n m n S m S n m )(21-=-.评析:实质上数列⎭⎬⎫⎩⎨⎧n S n 是公差为2d 的等差数列.【性质4】 等差数列{a n }的前n 项和为S n ,公差为d .n ,m ∈N *,则S m+n =S m +S n +mnd . 证明:因为S m+n =S n +(a n +1+a n +2+…+a n +m ) =S n +(a 1+nd )+(a 2+nd )+…+(a m +nd ) =S n +(a 1+a 2+…+a m )+m nd=S m +S n +m nd , 所以S m+n =S m +S n +mnd .【性质5】 等差数列{a n }前n 项和为S n ,若m=p+q(m 、p 、q ∈N *且p≠q),则有qp S S m S qp m --=. 证明:设等差数列{a n }的公差为d . 因为S p -S q =p a 1+21p(p-1)d -q a 1-21 q(q-1)d =(p-q)[a 1+21(p+q-1)d ],所以d q p a q p S S qp )1(211-++=--.又因为d m a m S m )1(211-+=且m=p+q ,所以有qp S S m S qp m --=. 推论:等差数列{a n }前n 项和为S n ,若m+t=p+q(m 、t 、p 、q ∈N *且m≠t,p≠q),则qp S S t m S S q p t m --=--.【性质6】 等差数列{a n }前n 项和为S n . (1)当n =2k(k ∈N *)时,S 2k =k(a k +a k+1); (2)当n =2k-1(k ∈N *)时,S 2k-1=k a k .。

数列知识点总结及例题讲解

数列知识点总结及例题讲解

人教版数学必修五第二章数列重难点解析第二章课文目录2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和【重点】1、数列及其有关概念,通项公式及其应用。

2、根据数列的递推公式写出数列的前几项。

3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。

4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。

5、等比数列的定义及通项公式,等比中项的理解与应用。

6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。

2、理解递推公式与通项公式的关系。

3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。

4、灵活应用等差数列前n项公式解决一些简单的有关问题。

5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。

6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。

一、数列的概念与简单表示法1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….3.数列的一般形式:aj,az,ag, …,an, …,或简记为{a},其中a。

是数列的第n项4.数列的通项公式:如果数列{a}的第n项a。

与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意: (1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0, …它的通项公式可以是,也可以是; 1.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第召项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:数列可以看成以正整数集N(或它的有限子集{1,2,3,…,n})为定义域的函数an= f(n),当自变量从小到大依次取值时对应的一列函数值。

人教版高中数学必修五同课异构课件:2.3 等差数列的前n项和 2.3.2 精讲优练课型 (精品文档)

人教版高中数学必修五同课异构课件:2.3 等差数列的前n项和 2.3.2 精讲优练课型 (精品文档)

【解析】选A.由S3,S6-S3,S9-S6,…,S18-S15成等差 数列,可知 S18=S3+S6-S3+S9-S6+…+S18-S15
6(-6 18) 36. 2
【补偿训练】一个等差数列的前10项之和为100,前
100项之和为10,求前110项之和.
【解析】方法一:设该等差数列的公差为d,
由于Sn=
所以
na1

n(n-1)d, 2
Sn n

a1

d 2
(n-1),
所以数列{Sn } 是等差数列,其公差为 d .
n
2
所以 (100-10) d S100 -S10 10 -100 -99,
所以
2 100 10 100 10 10
d - 11 .
所以 2 100
所以S1S11111000=-1S011000101.0
的值为( )
S8 3
S16
1
1
1
3
A.
B.
C.
D.
3.8(2015·唐3 山高二9检测)设等10差数列{an}的前n项和为
Sn,Sm-1=-2,Sm=0,Sm+1=3,则m=( )
A.3
B.4
C.5
D.6
【解题探究】1.典例1中,a5 如何转化为 Sn 的形式?
b5
Tn
提示:
9a1 a9
解得
d 5, a1 2.
方法二:S偶-S奇=(a2+a4+…+a12)-(a1+a3+…+a11) =(a2-a1)+(a4-a3)+…+(a12-a11)=6d,

新人教A版必修5高中数学2.3等差数列的前n项和(2)学案(二)

新人教A版必修5高中数学2.3等差数列的前n项和(2)学案(二)

高中数学 2.3等差数列的前n 项和(2)学案新人教A 版必修5学习目标1. 进一步熟练掌握等差数列的通项公式和前n 项和公式;2. 了解等差数列的一些性质,并会用它们解决一些相关问题;3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值.学习重难点1.重点:数列前n 项和公式的研究应用2.难点:前 n 项和的公式n S 的最值.一、课前预习习1:等差数列{n a }中, 4a =-15, 公差d =3,求5S .习2:等差数列{n a }中,已知31a =,511a =,求和8S .二、新课探究 ※ 学习探究问题:如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?※ 试一试例1已知数列{}n a 的前n 项为212n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?变式:已知数列{}n a 的前n 项为212343n S n n =++,求这个数列的通项公式.小结:数列通项n a 和前n 项和n S 关系为: n a =11(1)(2)nn S n S S n -=⎧⎨-≥⎩,由此可由n S 求n a .例2 已知等差数列2454377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值.变式:等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.小结:等差数列前项和的最大(小)值的求法.(1)利用n a : 当n a >0,d <0,前n 项和有最大值,可由n a ≥0,且1n a +≤0,求得n 的值; 当n a <0,d >0,前n 项和有最小值,可由n a ≤0,且1n a +≥0,求得n 的值(2)利用n S :由21()22n d dS n a n =+-,利用二次函数配方法求得最大(小)值时n 的值.※ 模仿练习练1. 已知232n S n n =+,求数列的通项n a .练2. 有两个等差数列2,6,10,…,190及2,8,14,…200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,求这个新数列的各项之和.三、总结提升 ※ 学习小结1. 数列通项n a 和前n 项和n S 关系;2. 等差数列前项和最大(小)值的两种求法. ※ 知识拓展等差数列奇数项与偶数项的性质如下:1°若项数为偶数2n ,则: S S nd 偶奇-=;1(2)n n S an S a +≥奇偶=;2°若项数为奇数2n +1,则: 1n S S a +奇偶-=;1n S na +=偶;1(1)n S n a ++奇=;1S n S n +偶奇=. 当堂检测1. 下列数列是等差数列的是( ).A. 2n a n =B. 21n S n =+C. 221n S n =+D. 22n S n n =-2. 等差数列{n a }中,已知1590S =,那么8a =( ). A. 3 B. 4 C. 6 D. 123. 等差数列{n a }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ). A. 70 B. 130 C. 170 D. 2104. 在小于100的正整数中共有 个数被7除余2,这些数的和为 .5. 在等差数列中,公差d =12,100145S =,则13599...a a a a ++++= .课后作业1. 在项数为2n +1的等差数列中,所有奇数项和为165,所有偶数项和为150,求n 的值.2. 等差数列{n a },10a <,912S S =,该数列前多少项的和最小?课后反思。

高中数学同步学习 等差数列的前n项和学案含解析

高中数学同步学习 等差数列的前n项和学案含解析

2.2 等差数列的前n 项和第1课时 等差数列的前n 项和内 容 标 准学 科 素 养 1.理解等差数列的前n 项和公式的推导方法.2.掌握等差数列的前n 项和公式,会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题.强化图形应用 严格公式代换 抽象数学模型授课提示:对应学生用书第11页[基础认识]知识点一 等差数列的前n 项和公式 预习教材P 15-18,思考并完成以下问题1.你知道高斯求和的故事吗?请同学们交流一下,高斯是怎样求1+2+3+…+100的结果的? 提示:对于这个问题,著名数学家高斯十岁时就能很快求出它的结果,当时他的思路和解答方法是:S =1+2+3+…+99+100,把加数倒序写一遍S =100+99+98+…+2+1.所以有2S =(1+100)+(2+99)+…+(99+2)+(100+1)=100×101,∴S=50×101=5 050. 2.你能用高斯的计算方法求1+2+3…+n 的值吗? 提示:设S n =1+2+3+…+(n -1)+n,① 又S n =n +(n -1)+(n -2)+…+2+1,②两式相加得2S n =(1+n)+(2+n -1)+…+(n +1)=n(n +1), ∴S n =n (n +1)2.3.我们把高斯的这种计算方法称为倒序求和法.你能用这种方法推得等差数列{a n }的前n 项和S n 吗? 提示:S n =a 1+a 2+a 3+…+a n -1+a n =a 1+(a 1+d)+(a 1+2d)+…+[a 1+(n -2)d]+[a 1+(n -1)d], S n =a n +a n -1+a n -2+…+a 2+a 1=a n +(a n -d)+(a n -2d)+…+[a n -(n -2)d]+[a n -(n -1)d], ∴2S n =(a 1+a n )×n , ∴S n =n (a 1+a n )2.③4.问题(2)中求出的S n 是已知等差数列首项、末项与项数时求前n 项和S n 的公式,如果用a n =a 1+(n -1)d 替换末项,问题3中求出的S n 会变形为怎样的形式呢? 提示:S n =na 1+12n(n -1)d.知识点二 a 1n n 思考并完成以下问题(1)两个公式共涉及a 1,d,n,a n 及S n 五个基本量,它们分别表示等差数列的首项,公差,项数,通项和前n 项和.(2)依据方程的思想,在等差数列前n 项和公式中已知其中三个量可求另外两个量,即“知三求二”. 知识点三 等差数列前n 项和的最值 思考并完成以下问题等差数列前n 项和的最值与{S n }的单调性有关.(1)若a 1>0,d <0,则数列的前面若干项为正项(或0),所以将这些项相加即得{S n }的最大值. (2)若a 1<0,d >0,则数列的前面若干项为负项(或0),所以将这些项相加即得{S n }的最小值.(3)若a 1>0,d >0,则{S n }是递增数列,S 1是{S n }的最小值;若a 1<0,d <0,则{S n }是递减数列,S 1是{S n }的最大值.[自我检测]1.在等差数列{a n }中,若其前13项的和S 13=52,则a 7为( ) A .4 B .3 C .6D .12解析:∵在等差数列{a n }中,其前13项的和S 13=52, ∴S 13=132(a 1+a 13)=13a 7=52,解得a 7=4.故选A.答案:A2.已知等差数列{a n }的前n 项和为S n ,若7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( ) A .5 B .6 C .7D .8解析:由7a 5+5a 9=0得a 1d =-173,又a 9>a 5,所以d >0,a 1<0,因为函数y =d 2x 2+⎝ ⎛⎭⎪⎫a 1-d 2x 的图像的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取最小值时n 的值为6.答案:B3.在等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =________.解析:设等差数列的公差为d,则a 3+a 5=2a 1+6d =2+6d =14,∴d=2.则S n =n +n (n -1)2×2=n 2.令S n =100,即n 2=100. 解得n =10或n =-10(舍). 答案:10授课提示:对应学生用书第12页 探究一 等差数列前n 项和公式的基本应用[P17练习1第3题]在等差数列{a n }中, (1)已知S 8=48,S 12=168,求a 1和d ; (2)已知a 6=10,S 5=5,求a 8和S 8. (3)已知a 3+a 15=40,求S 17. 解析:设{a n }中首项为a 1,公差为d,(1)⎩⎪⎨⎪⎧S 8=8a 1+28d =48S 12=12a 1+66d =168,解得⎩⎪⎨⎪⎧a 1=-8,d =4. (2)⎩⎪⎨⎪⎧a 6=a 1+5d =10S 5=5a 1+10d =5,解得⎩⎪⎨⎪⎧a 1=-5d =3. ∴a 8=a 1+7d =-5+21=16, S 8=8a 1+28d =-40+84=44.(3)S 17=17×(a 1+a 17)2=17×(a 3+a 15)2=17×402=340.[例1] 已知一个等差数列{a n }的前10项的和是310,前20项的和是1 220,由这些条件能确定这个等差数列的前n 项和的公式吗?[解析] 法一:由题意知,S 10=310, S 20=1 220,将它们代入公式S n =na 1+n (n -1)2d,得到⎩⎪⎨⎪⎧10a 1+45d =310,20a 1+190d =1 220,解方程组得⎩⎪⎨⎪⎧a 1=4,d =6.∴S n =n×4+n (n -1)2×6=3n 2+n.法二:∵S 10=10(a 1+a 10)2=310,∴a 1+a 10=62,①∵S 20=20(a 1+a 20)2=1 220,∴a 1+a 20=122,② ②-①,得,a 20-a 10=60, ∴10d=60,∴d=6,a 1=4. ∴S n =na 1+n (n -1)2d =3n 2+n.方法技巧 两种思想方法在等差数列前n 项和公式中的应用(1)方程思想:等差数列的通项公式及前n 项和公式中“知三求二”的问题,一般是由通项公式和前n 项和公式联立方程(组)求解.(2)整体代换:在具体求解过程中应注意已知与未知的联系及整体代换思想的运用. 跟踪探究 1.(2019·珠海市模拟)已知{a n }为等差数列,前n 项和为S n ,若a 2+a 5+a 8=π4,则sin S 9=( ) A.12 B.22 C .-12D .-22解析:∵a 2+a 5+a 8=π4,a 2+a 8=2a 5=a 1+a 9,∴3a 5=π4,a 5=π12,∴a 1+a 9=π6,∴S 9=9(a 1+a 9)2=92×π6=3π4,sin S 9=22.故选B.答案:B探究二 等差数列前n 项和的最值问题[P18练习2第1题]已知数列{2n -11},那么S n 的最小值是( ) A .S 1 B .S 5 C .S 6D .S 11解析:由a n =2n -11,令a n ≤0,得n≤5.5,又∵n∈N +, 所以该数列前5项均为负数,从第6项开始为正数, 故S n 的最小值为S 5. 答案:B[例2] 在等差数列{a n }中,a 10=18,前5项的和S 5=-15, (1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和S n 的最小值,并指出何时取最小值. [解题指南] (1)根据题意列关于a 1和d 的方程(组)→解出a 1和d →写出a n 的表达式(2)法一:写出S n 的表达式→分析S n 的最值 法二:分析{a n }中项的变化规律→确定S n 最小时n 的值→求S n[解析] (1)设公差为d,则⎩⎪⎨⎪⎧a 1+9d =18,5a 1+52×4×d=-15, 解得⎩⎪⎨⎪⎧a 1=-9,d =3,则a n =3n -12.(2)法一:S n =n (a 1+a n )2=12(3n 2-21n)=32⎝ ⎛⎭⎪⎫n -722-1478,所以n =3或4时,前n 项的和S n 取得最小值为-18. 法二:要使数列{a n }前n 项的和取得最小值,则⎩⎪⎨⎪⎧a n =3n -12≤0,a n +1=3(n +1)-12≥0,得3≤n≤4,又n∈N +,所以n =3或4,S 3=S 4=-18.所以数列{a n }前n 项的和取得最小值为-18.方法技巧 求等差数列前n 项和的最值问题的两种方法(1)在等差数列{a n }中,当a 1>0,d <0时,S n 有最大值,使S n 取到最值的n 可由不等式组⎩⎪⎨⎪⎧a n ≥0,a n +1≤0确定.当a 1<0,d >0时,S n 有最小值,使S n 取到最值的n 可由不等式组⎩⎪⎨⎪⎧a n ≤0,a n +1≥0确定.(2)因为S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n,若d≠0,则从二次函数的角度看:当d >0时,S n 有最小值;当d <0时,S n 有最大值;且n 取最接近对称轴的正整数时,S n 取到最值.跟踪探究 2.在等差数列{a n }中,若a 1=25,且S 9=S 17,求S n 的最大值. 解析:法一:∵S 9=S 17,a 1=25,∴9×25+9(9-1)2d =17×25+17(17-1)2d,解得d =-2.由⎩⎪⎨⎪⎧a n =-2n +27≥0,a n +1=-2(n +1)+27≤0,得⎩⎪⎨⎪⎧n≤1312,n≥1212,又∵n∈N +,∴当n =13时,S n 有最大值169. 法二:同方法一,求出公差d =-2. 设S n =An 2+Bn. ∵S 9=S 17,∴二次函数对称轴为x =9+172=13,且开口方向向下,∴当n =13时,S n 取得最大值169. 探究三 等差数列前n 项和的实际应用[阅读教材P18例11及解答]九江抗洪指挥部接到预报,24 h 后有一洪峰到达,为确保安全,指挥部决定在洪峰来临前筑一道堤坝作为第二道防线.经计算,除现有的部队指战员和九江干群连续奋战外,还需调用20台同型号翻斗车,平均每辆工作24 h,但目前只有一辆车投入施工,其余的需从昌九高速公路沿线抽调.每隔20 min 能有一辆车到达,指挥部最多可调集25辆车,那么在24 h 内能否构筑成第二道防线? 题型:等差数列前n 项和的实际应用. 方法步骤:①从实际问题中抽象出等差数列. ②确定数列首项a 1及公差d. ③求出等差数列的前n 项和. ④判断并得出结论.[例3] 从4月1日开始,有一新款服装投入某商场销售.4月1日该款服装售出20件,第二天售出35件,第三天售出50件,以后每天售出的件数分别递增15件,直到4月12号日销售量达到最大,然后,每天售出的件数分别递减10件.(1)记从4月1日起该款服装日销售量为a n ,销售天数为n,1≤n≤30,求a n 与n 的关系; (2)求4月份该款服装的总销售量.[解题指南] 解答本题可先确定a n 与n 的关系,然后用等差数列的前n 项和公式求总销量.[解析] (1)设从4月1日起该款服装的日销售量构成数列{a n }.由题意知,数列a 1,a 2,…,a 10是首项为20,公差为15的等差数列,所以a 9=15n +5(1≤n≤12且n∈N +). 而a 13,a 14,a 15,…a 30是首项为a 13=a 12-10=175, 公差为-10的等差数列.所以a n =175+(n -13)×(-10)=-10n +305(13≤n≤30且n∈N +).所以a n =⎩⎪⎨⎪⎧15n +5,1≤n≤12且n∈N +,-10n +305,13≤n≤30且n∈N +.(2)4月份该款服装的总销售量为12(a 1+a 12)2+18a 13+(30-12)×(30-12-1)×(-10)2=12×(20+185)2+18×175+18×17×(-10)2=2 850(件).延伸探究 本例中,条件不变,求“按规律,当该商场销售此服装超过1 300件时,社会上就开始流行,当此服装的销售量连续下降,且日销售量低于110件时,则此服装在社会上不再流行.试问:该款服装在社会上流行是否超过10天?说明理由.” 解析:4月1日至4月12日的销售总量为 12(a 1+a 12)2=12×(20+185)2=1 230<1 300,所以4月12日前该款服装在社会上还没有流行.4月1日至4月13日的销售总量为1 230+a 13=1 230+175=1 405>1 300, 故4月13日该款服装在社会上已开始流行. 由-10n +305<110,得n >392,所以第20天该款服装在社会上不再流行. 所以该款服装在社会上流行没有超过10天. 方法技巧 解应用题的基本程序跟踪探究 3.一名技术人员计划用下面的办法测试一种赛车:从时速10 km/h 开始,每隔2 s 速度提高20 km/h.如果测试时间是30 s,测试距离是________km. 解析:由于每隔2 s 速度提高20 km/h,所以该赛车在每个2 s 内的速度构成等差数列{a n },且a 1=10,d =20. 测试时间是30 s,则最后一个2 s 内的速度是a 15,测试距离S =(a 1+a 2+…+a 15)×23 600=(15×10+15×142×20)×23 600=1.25(km).答案:1.25授课提示:对应学生用书第14页[课后小结](1)推导等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.(2)等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n,d 五个量.若已知其中三个量,通过方程思想可求另外两个量.在利用求和公式时,要注意整体思想的应用,注意下面结论的运用: 若m +n =p +q,则a n +a m =a p +a q (n,m,p,q∈N +); 若m +n =2p,则a n +a m =2a p .(3)求等差数列前n 项和S n 的最值的常用方法有两种: ①用二次函数的性质求解;②明确数列中的正项与负项,用负项之和最小,正项之和最大来解决. (4)解决数列应用题时应分清: ①是否为等差数列问题; ②是通项问题还是求和问题.[素养培优]忽略数列中为零的项致错设等差数列{a n }的前n 项和为S n ,且满足a 1>0,S 11=S 18,则当n 为何值时S n 最大?易错分析 在求解等差数列前n 项和S n 的最值时,容易忽略数列中为零的项而致错.利用不等式组⎩⎪⎨⎪⎧a n ≥0a n +1≤0(或⎩⎪⎨⎪⎧a n ≤0a n +1≥0)求n 的范围或利用二次函数的图像求解均可避免出错,考查图形应用的学科素养. 自我纠正 法一:由S 11=S 18 将11a 1+55d =18a 1+153d. 即a 1=-14d >0,所以d <0,构建不等式组⎩⎪⎨⎪⎧a n =a 1+(n -1)d≥0a n +1=a 1+nd≤0.即⎩⎪⎨⎪⎧-14d +(n -1)d≥0,-14d +nd≤0 解得14≤n≤15.故当n =14或n =15时,S n 最大.法二:由S 11=S 18知a 1=-14d.所以S n =na 1+n (n -1)2d =-14dn +n (n -1)2 d=d 2⎝ ⎛⎭⎪⎫n -2922-8418d,由于n∈N +,结合S n 对应的二次函数的图像知, 当n =14或n =15时S n 最大.法三:由S 11=S 18知,a 12+a 13+a 14+a 15+a 16+a 17+a 18=0,即7a 15=0, 所以a 15=0,又a 1>0,所以d <0. 故当n =14或n =15时,S n 最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 等差数列的前n 项和(二)
【学习目标】
1.熟练掌握等差数列的通项公式和前n 项和公式及其二者的关系;
2.会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值.
【典型例题】
例1已知数列{}n a 的前n 项为212
n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?
解:⑴ ①当n ≥2时,n a =n S -1-n S =____________________________ ;
②当n=1时,1a =21131122
S =+⨯=; ③经检验, ___________________ . ∴n a = ____________________.
变式:已知数列{}n a 的前n 项为221n S n n =--,求这个数列的通项公式.
小结:数列通项n a 和前n 项和n S 关系为n a =11(1)(2)n
n S n S S n -=⎧⎨-≥⎩,由此可由n S 求n a .最后书写通项公式时,根据检验的结果再看能否合并.
问题:一般地,如果一个数列{}n a 的前n 项和为2.n S pn qn r =++其中p 、q 、r 为常数,
且p ≠0,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是什么?
例2 已知等差数列{n a }中,1a =13,3S =11S ,那么n 取何值时,n S 取最大值. 解法1:利用二次函数求解:
解法2:利用符号转折项求解:
小结:等差数列前项和的最大(小)值的求法.
(1)利用n a : 当10,0a d ><时,前n 项和有最大值,可由10,0n n a a +≥≤且求得n 的值;
当10,0a d <>时,前n 项和有最小值,可由10,0n n a a +≤≥且求得n 的值
(2)利用n S :由21()22
n d d S n a n =+-,利用二次函数配方法求得最大(小)值时n 的值. 【目标检测】
1.已知下列各数列{}n a 的前n 项和n S 的公式,求{}n a 的通项公式
(1) 223;n S n n =- (2)2123;43
n S n n =++ ⑶n S =n 3-2.
2*.设等差数列{n a }的前n 项和为n S ,已知3a =12,12S >0,13S <0.
(1) 求公差d 的取值范围;(2) 指出1S , 2S , 3S , ……, 12S 中哪一个最大,说明理由
【总结提升】
1. 数列通项n a 和前n 项和n S 关系;
2. 等差数列前项和最大(小)值的两种求法.。

相关文档
最新文档