高数知识点总结
高等数学知识点总结

高等数学知识点总结高等数学知识点总结【4篇】知识产业需要了解市场和消费者的需求和趋势,拥抱变革和技术进步。
知识的应用和创新需要进行有效的市场调查和市场分析,了解商业机会和风险。
下面就让小编给大家带来高等数学知识点总结,希望大家喜欢!高等数学知识点总结1一、不定积分计算方法1. 凑微分法2. 裂项法3. 变量代换法1) 三角代换2) 根幂代换3) 倒代换4. 配方后积分5. 有理化6. 和差化积法7. 分部积分法(反、对、幂、指、三)8. 降幂法二、定积分的计算方法1. 利用函数奇偶性2. 利用函数周期性3.参考不定积分计算方法三、定积分与极限1. 积和式极限2. 利用积分中值定理或微分中值定理求极限3. 洛必达法则4. 等价无穷小四、定积分的估值及其不等式的应用1. 不计算积分,比较积分值的大小1) 比较定理:若在同一区间[a,b]上,总有f(x) =g(x),则 =()dx2) 利用被积函数所满足的不等式比较之 a)b) 当0 x 兀 p= 兀 12. 估计具体函数定积分的值积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则 M(b-a) = =M(b-a)3. 具体函数的定积分不等式证法1) 积分估值定理2) 放缩法3) 柯西积分不等式≤ %4. 抽象函数的定积分不等式的证法1) 拉格朗日中值定理和导数的有界性2) 积分中值定理3) 常数变易法4) 利用泰勒公式展开法五、变限积分的导数方法高等数学知识点总结2A.Function函数(1)函数的定义和性质(定义域值域、单调性、奇偶性和周期性等)(2)幂函数(一次函数、二次函数,多项式函数和有理函数)(3)指数和对数(指数和对数的公式运算以及函数性质)(4)三角函数和反三角函数(运算公式和函数性质)(5)复合函数,反函数(6)参数函数,极坐标函数,分段函数(7)函数图像平移和变换B.Limit and Continuity极限和连续(1)极限的定义和左右极限(2)极限的运算法则和有理函数求极限(3)两个重要的极限(4)极限的应用-求渐近线(5)连续的定义(6)三类不连续点(移点、跳点和无穷点)(7)最值定理、介值定理和零值定理C.Derivative导数(1)导数的定义、几何意义和单侧导数(2)极限、连续和可导的关系(3)导数的求导法则(共21个)(4)复合函数求导(5)高阶导数(6)隐函数求导数和高阶导数(7)反函数求导数(8)参数函数求导数和极坐标求导数D.Application of Derivative导数的应用(1)微分中值定理(D-MVT)(2)几何应用-切线和法线和相对变化率(3)物理应用-求速度和加速度(一维和二维运动)(4)求极值、最值,函数的增减性和凹凸性(5)洛比达法则求极限(6)微分和线性估计,四种估计求近似值(7)欧拉法则求近似值E.Indefinite Integral不定积分(1)不定积分和导数的关系(2)不定积分的公式(18个)(3)U换元法求不定积分(4)分部积分法求不定积分(5)待定系数法求不定积分F.Definite Integral 定积分(1)Riemann Sum(左、右、中和梯形)和定积分的定义和几何意义(2)牛顿-莱布尼茨公式和定积分的.性质(3)Accumulation function求导数(4)反常函数求积分H.Application of Integral定积分的应用(1)积分中值定理(I-MVT)(2)定积分求面积、极坐标求面积(3)定积分求体积,横截面体积(4)求弧长(5)定积分的物理应用I.Differential Equation微分方程(1)可分离变量的微分方程和逻辑斯特微分方程(2)斜率场J.Infinite Series无穷级数(1)无穷级数的定义和数列的级数(2)三个审敛法-比值、积分、比较审敛法(3)四种级数-调和级数、几何级数、P级数和交错级数(4)函数的级数-幂级数(收敛半径)、泰勒级数和麦克劳林级数(5)级数的运算和拉格朗日余项、拉格朗日误差注意:(1)问答题主要考察知识点的综合运用,一般每道问答题都有3-4问,可能同时涵盖导数、积分或者微分方程的内容,解出的答案一般都是保留3位小数。
(完整版)高数知识点总结

高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数知识点总结

高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数重要知识点汇总

高数重要知识点汇总第一章 函数与极限一. 函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x )与g (x )是同阶无穷小。
(3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1高数重要知识点汇总准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.高数重要知识点汇总4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1( (2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.)()(lim )()(lim 00x F x f x F x f x x x x ''=→→例1计算极限0e 1lim x x x→-. 解 该极限属于“00”型不定式,于是由洛必达法则,得 0e 1lim x x x→-0e lim 11xx →==. 例2计算极限0sin lim sin x ax bx→. 解 该极限属于“00”型不定式,于是由洛必达法则,得 00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注 若(),()f x g x ''仍满足定理的条件,则可以继续应用洛必达法则,即()()()lim lim lim ()()()x a x a x a f x f x f x g x g x g x →→→'''==='''二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.例3计算极限lim (0)n x x x n e→+∞>. 解 所求问题是∞∞型未定式,连续n 次施行洛必达法则,有 lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.7.利用导数定义求极限)()(lim )()(lim 00x F x f x F x f x x x x ''=→→基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 8.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
大学高数知识点总结

大学高数知识点总结大学高数知识点总结一、代数:1、函数及其图象:定义域、值域、增函数、减函数、奇函数、偶函数、有界函数、无界函数、相交函数、无穷小量的概念、函数的极限及其性质。
2、不等式:一元不等式与多元不等式的性质、解不等式的方法以及在几何中的应用。
3、导数:函数的导数的定义、性质、计算、利用导数解析函数的最值问题;高阶导数的概念以及利用它确定函数图象的单调性。
4、曲线的积分:曲线的面积、积分的定义、计算方法、利用积分求曲线面积、平面曲线的积分、特殊函数的积分。
5、复数:复数的概念、运算规则、虚部抽象概念、复数函数、复数解析函数及其图象、利用几何性质解决复数问题。
6、三角函数:三角函数的概念、函数表达式、图象、关系式、函数的性质、函数的变换、求解三角函数的方法、应用。
7、统计:概率的概念、抽样理论、统计分布、误差分析、检验理论。
二、初等数论:1、素数及其分解:素数的概念、素数的分解法、素数的基本性质、素数的充要条件。
2、同余理论:同余方程的概念、同余方程的解法、同余方程的性质、模的概念及其性质。
3、欧几里德算法:求最大公约数、求最小公倍数、求逆元、斯特林公式、欧几里得定理及其应用。
4、置换:置换的概念、置换的性质、置换的构成、置换的表示法、置换的应用。
5、图论:图的概念、图的构成、图的性质、图的表示法、图的生成算法、图的应用。
三、几何:1、几何形体:正n边形、正多边形、空间几何体、椭圆、圆锥、圆柱、圆台等几何形体的性质及其应用。
2、切线、切面:曲线的切线、曲面的切面、曲线的法线方向、曲面的法线方向、曲线的曲率、曲面的曲率及其定义。
3、投影:正射投影、透视投影、锥体投影等投影的概念及其应用。
4、立体视角:立体视角的概念、立体视角的定义及其应用。
四、空间几何:1、几何性质:投影的性质、平面的性质、空间的性质、直线的性质、平行线的性质、平面的性质、直线的性质、平行线的性质、面的性质、曲线的性质、曲面的性质、四边形的性质等。
高数知识点总结

fx
2 2
法线的方向余弦
ቤተ መጻሕፍቲ ባይዱ
cos
1 fx f y
, cos
fy 1 fx f y
2 2
,
cos
切平面方程
1 1 fx f y
2 2
z z0 f x ( x0 , y0 ) ( x x0 ) f y ( x0 , y0 ) ( y y0 )
u u x u y s x s y s u u x u y t x t y t
一、内容总结
1、隐函数的导数:
• 一个方程的情形
定 理 1
设 函 数
在
U (X0)
定 F(x,yz) 理 2 F (x , y z ) 0 '
4、函数的幂级数和傅里叶级数展开法 (1). 函数的幂级数展开法
• 直接展开法 — 利用泰勒公式 • 间接展开法 — 利用已知展式的函数及幂级数性质
高数知识点总结电子版

高数知识点总结电子版一、函数、极限与连续函数的基本概念:包括函数的定义、性质、表示方法以及常见函数类型(如一次函数、二次函数、指数函数、对数函数、三角函数等)。
极限的定义与性质:涉及函数极限的概念、性质,无穷小量与无穷大量的关系,以及夹逼准则等。
函数的连续性:包括连续的定义、连续函数的性质,以及间断点的分类等。
二、导数与微分导数的概念与性质:涉及导数的定义、几何意义、计算方法以及高阶导数等。
微分的定义与运算:包括微分的几何意义、计算方法以及性质等。
三、微分中值定理与泰勒公式微分中值定理:涉及罗尔定理、拉格朗日中值定理等。
泰勒公式:包括泰勒公式的定义、应用以及误差分析等。
四、不定积分与定积分不定积分的概念与性质:涉及原函数的概念、不定积分的计算方法以及性质等。
定积分的概念与计算:包括定积分的定义、性质、计算方法以及定积分的应用(如几何意义、物理应用等)。
五、空间解析几何与向量代数空间解析几何的基本概念:涉及空间直角坐标系、向量的概念与运算等。
曲面与曲线的方程:包括常见曲面(如球面、柱面、锥面等)和曲线的方程以及性质。
六、多元函数的微分学多元函数的基本概念:包括多元函数的定义、性质以及偏导数等。
多元函数的极值与最值:涉及多元函数的极值定理、条件极值以及最值的求法等。
七、无穷级数常数项级数的概念与性质:包括级数的定义、收敛与发散的概念以及常见级数(如等比级数、调和级数等)的性质。
函数项级数的概念与运算:涉及函数项级数的定义、收敛与一致收敛的概念以及运算等。
八、微分方程微分方程的基本概念:包括微分方程的定义、分类以及解的概念等。
一阶与二阶微分方程的解法:涉及常见的一阶与二阶微分方程的解法以及应用。
请注意,以上仅为高数知识点总结的一部分,完整的高数知识点还包括更多细节和深入的内容。
在实际学习过程中,建议结合教材和参考书进行系统学习和巩固。
同时,电子版的形式可以根据个人需求进行编辑和调整,以便更好地适应自己的学习风格和进度。
大一高数知识点总结可复制

大一高数知识点总结可复制大一高数知识点总结1. 函数与极限函数的定义:函数是一种映射关系,将一个自变量映射到一个因变量上。
极限的定义:当自变量无限接近某个值时,函数的值也无限接近于一个确定的值。
2. 导数与微分导数的定义:导数描述了函数在某一点的变化率。
微分的定义:微分表示函数在某一点的局部线性近似。
3. 积分与微积分基本定理积分的定义:积分计算了函数在一定区间上的累积效果。
微积分基本定理:微积分基本定理将导数与积分联系在一起,通过积分可以找到函数的原函数。
4. 微分方程微分方程的定义:微分方程描述了一个函数与其导数之间的关系。
常微分方程与偏微分方程:常微分方程中的未知函数只是一个变量的函数,而偏微分方程中的未知函数是多个变量的函数。
5. 无穷级数收敛与发散:无穷级数可以有收敛和发散两种情况。
收敛级数的判别法:常见的判别法有比较判别法、比值判别法、根值判别法等。
6. 多项式函数与有理函数多项式函数的定义:多项式函数由常数与自变量的幂次方的乘积组成。
有理函数的定义:有理函数是多项式函数与整式函数的商。
7. 三角函数与反三角函数三角函数的定义:三角函数描述了角度与边长之间的关系。
反三角函数的定义:反三角函数可以计算出一个已知比值的角度。
8. 一元函数的极值与最值极值点与最值的定义:函数在某个点附近取得的最大值或最小值。
导数与极值的关系:当函数的导数为零或不存在时,可能存在极值点。
9. 常微分方程的基本解法常微分方程的解法:常微分方程可以通过变量分离、齐次方程、一阶线性方程等方法求解。
10. 空间解析几何空间直线与平面的方程:直线可以用点向式、对称式、参数式等来表示,平面可以用一般式、点法式等形式来表示。
空间曲线与曲面的方程:曲线可以用参数式、隐式方程等表示,曲面可以用隐式方程、参数式等表示。
11. 重积分二重积分的计算方法:可以使用直角坐标系和极坐标系进行计算。
三重积分的计算方法:可以使用直角坐标系和柱面坐标系进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
高数重点知识总结
1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)
2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim
020==+→→x x
x
x x x x 4、两个重要极限:()e x e
x x
x
x
x x
x x =⎪⎭
⎫
⎝⎛+=+=∞
→→→11lim 1lim )2(1
sin lim )1(1
0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[]
)
()(lim )
(0
)(1lim x g x f x g x x x x e
x f →=+→
例如:()33lim 10
031lim -⎪⎭
⎫ ⎝⎛-→==-→e e
x x x x
x x
5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()00
00
')
()(lim
)
(')
()(lim
x f x x x f x f x f x
x f x x f x x x =--=∆-∆+→→∆
7、复合函数求导:
[][])(')(')(x g x g f dx
x g df •= 例如:x
x x x x x x y x x y ++=++
=
+=2412221
1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx
例如:y
x
dx dy ydy xdx y x
y yy x y x -
=⇒+-=⇒=+=+22,),2('0'22,),1(1
22左右两边同时微分法左右两边同时求导
解:法 9、由参数方程所确定的函数求导:若⎩⎨
⎧==)
()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[]
)
(')('/)('/)/(/22
t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin
11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:x
x y sin =
(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭
⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),x
y 1=(x=0是函数的无穷间断点) 12、渐近线:
水平渐近线:c x f y x ==∞
→)(lim
铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f a
x =∞=→
斜渐近线:[]ax x f b x
x f a b ax y x x -==+=∞→∞
→)(lim ,)
(lim
,即求设斜渐近线为
例如:求函数1
1
223-+++=x x x x y 的渐近线
13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
14、极值点:令函数y=f(x),给定x0的一个小邻域u(x0,δ),对于任意x ∈u(x0,δ),都有f(x)≥f(x0),称x0是f(x)的极小值点;否则,称x0是f(x)的极大值点。
极小值点与极大值点统称极值点。
15、拐点:连续曲线弧上的上凹弧与下凹弧的分界点,称为曲线弧的拐点。
16、拐点的判定定理:令函数y=f(x),若f"(x0)=0,且x<x0,f"(x)>0;x>x0时,f"(x)<0或x<x0,f"(x)<0;x>x0时,f"(x)>0,称点(x0,f(x0))为f(x)的拐点。
17、极值点的必要条件:令函数y=f(x),在点x0处可导,且x0是极值点,则f'(x0)=0。
18、改变单调性的点:0)('0=x f ,)('0x f 不存在,间断点(换句话说,极值点可能是驻点,也可能是不可导点)
19、改变凹凸性的点:0)("0=x f ,)(''0x f 不存在(换句话说,拐点可能是二阶导数等于零的点,也可能是二阶导数不存在的点)
20、可导函数f(x)的极值点必定是驻点,但函数的驻点不一定是极值点。
21、中值定理:
(1)罗尔定理:)(x f 在[a,b]上连续,(a,b)内可导,则至少存在一点ξ,使得0)('=ξf (2)拉格朗日中值定理:)(x f 在[a,b]上连续,(a,b)内可导,则至少存在一点ξ,使得
)(')()()(ξf a b a f b f -=-
(3)积分中值定理:)(x f 在区间[a,b]上可积,至少存在一点ξ,使得
)()()(ξf a b dx x f b
a
-=⎰
22、常用的等价无穷小代换:
3
332
3
1
~tan ,61~sin ,21~sin tan 21
~cos 1)
1ln(~)11(2~1~tan ~arctan ~arcsin ~sin ~x x x x x x x x x x x x x e x x x x x x ----+-+- 23、对数求导法:例如,x x y =,()1ln '1ln '1
ln ln +=⇒+=⇒
=x x y x y y
x x y x 解: 24、洛必达法则:适用于“
00”型,“∞
∞”型,“∞•0”型等。
当∞→∞→→/0)(,/0)(,0x g x f x x ,)('),('x g x f 皆存在,且0)('≠x g ,则
)(')('lim )()(lim 00x g x f x g x f x x x x →→= 例如,2
1
2sin lim 002cos lim 001sin lim 0020=+---→→→x e x x e x x e x x x x x x 25、无穷大:高阶+低阶=高阶 例如, ()()()422lim 2321lim 53
25
3
2==+++∞→+∞
→x
x x x x x x x 26、不定积分的求法
(1)公式法
(2)第一类换元法(凑微分法)
(3)第二类换元法:哪里复杂换哪里,常用的换元:1)三角换元:22x a -,可令
t a x sin =;22a x +,可令t a x tan =;22a x -,可令t a x sec = 2)当有理分式函
数中分母的阶较高时,常采用倒代换t
x 1
=
27、分部积分法:⎰
⎰-=vdu uv udv ,选取u 的规则“反对幂指三”,剩下的作v 。
分部积分出现循环形式的情况,例如:dx x xdx e x ⎰
⎰3sec ,cos。