优选运筹学排队论新
合集下载
运筹学ABC-4-3排队论

北京科技大学 经济管理学院
25
运筹学ABC —— 排队论
如采取第一种方法,缩短平均服务时间,每小时 服务的顾客数由原来的 48人提高到 60人,即每分钟
平均服务的顾客数从 0.8 人提高到 1 人,这时 仍然
是 0.6, 为 1。用前面公式计算得到下表数据:
数量指标 第一种方法 原系统
系统里没有顾客的概率
• (平均)等候时间: Wq = -
北京科技大学 经济管理学院
18
运筹学ABC —— 排队论
(5) 利特尔 ( Little ) 公式 — 排队论中重要公式
L=W
L q = Wq
W= Wq+1/u
L= Lq +/u
北京科技大学 经济管理学院
19
运筹学ABC —— 排队论
例:某港口,货轮到达服从 Poisson 分布,
(2) 负指数公布 如果随机变量T的概率密度为
(t)= e-t
则称T服从负指数分布。
其数学期望 E(T) = 1/ ,VAR[T]=1/ 2
可以证明:顾客相继到达的间隔时间相互独立,且为 同负指数分布,与输入过程为Poisson流是等价的。 假设对顾客的服务时间也服从负指数分布,这时其概 率密度函数为: (t)= ue-ut
平均排队的顾客人数 系统里的平均顾客数 一位顾客平均排队时间 一位顾客平均逗留时间 顾客到达系统必须等待排队的概率 系统里有 7 个或更多顾客的概率为
北京科技大学 经济管理学院
P0 = 0.4
Lq = 0.9(人) L = 1.5(人) Wq = 1.5(分钟) W = 2.5(分钟) Pw = 0.6 0.0279
北京科技大学 经济管理学院
《运筹学排队论》课件

资源分配
合理分配服务器资源,以提高系统的吞吐量 和响应时间。
最优服务策略问题
总结词
研究如何制定最优的服务策略,以最大化系 统的性能指标。
服务顺序策略
确定服务器的服务顺序,以最小化顾客的等 待时间和平均逗留时间。
服务中断策略
在服务器出现故障时,选择最优的服务中断 策略,以最小化对顾客的影响。
服务时间分布策略
等待队长
指在某一时刻,正在等待服务的顾客总数。
逗留时间与等待时间
逗留时间
指顾客从到达系统到离开系统所经过的时间 。包括接受服务和等待的时间。
等待时间
指顾客到达系统后到开始接受服务所经过的 时间。
忙期与空闲期
要点一
忙期
指系统连续有顾客到达并接受服务的时间段。在这个时间 段内,系统内的顾客数可能会超过系统的容量。
03
02
交通运输
分析铁路、公路、航空等交通系统 的调度和运输效率。
计算机科学
研究计算机网络、云计算、分布式 系统的性能和优化。
04
排队论的基本概念
服务器
提供服务的设施或 人员。
等待时间
顾客到达后到开始 接受服务所需的时 间。
顾客
需要接受服务的对 象。
队列
顾客按到达顺序等 待服务的排列。
服务时间
顾客接受服务所需 的时间。
《运筹学排队论》ppt课件
目录
• 排队论简介 • 排队系统的组成 • 排队模型的分类 • 排队模型的性能指标 • 排队论的优化问题 • 排队论的发展趋势与展望
01
排队论简介
排队论的定义与背景
1
排队论(Queueing Theory)是运筹学的一个重 要分支,主要研究排队系统(Queueing Systems)的行为特性。
合理分配服务器资源,以提高系统的吞吐量 和响应时间。
最优服务策略问题
总结词
研究如何制定最优的服务策略,以最大化系 统的性能指标。
服务顺序策略
确定服务器的服务顺序,以最小化顾客的等 待时间和平均逗留时间。
服务中断策略
在服务器出现故障时,选择最优的服务中断 策略,以最小化对顾客的影响。
服务时间分布策略
等待队长
指在某一时刻,正在等待服务的顾客总数。
逗留时间与等待时间
逗留时间
指顾客从到达系统到离开系统所经过的时间 。包括接受服务和等待的时间。
等待时间
指顾客到达系统后到开始接受服务所经过的 时间。
忙期与空闲期
要点一
忙期
指系统连续有顾客到达并接受服务的时间段。在这个时间 段内,系统内的顾客数可能会超过系统的容量。
03
02
交通运输
分析铁路、公路、航空等交通系统 的调度和运输效率。
计算机科学
研究计算机网络、云计算、分布式 系统的性能和优化。
04
排队论的基本概念
服务器
提供服务的设施或 人员。
等待时间
顾客到达后到开始 接受服务所需的时 间。
顾客
需要接受服务的对 象。
队列
顾客按到达顺序等 待服务的排列。
服务时间
顾客接受服务所需 的时间。
《运筹学排队论》ppt课件
目录
• 排队论简介 • 排队系统的组成 • 排队模型的分类 • 排队模型的性能指标 • 排队论的优化问题 • 排队论的发展趋势与展望
01
排队论简介
排队论的定义与背景
1
排队论(Queueing Theory)是运筹学的一个重 要分支,主要研究排队系统(Queueing Systems)的行为特性。
运筹学排队论-文档资料

系统服务类型 银行储蓄
飞机着陆或起飞 电话通话
卸货或装货 工序安排
计算机系统 机器维护
1
排队论的研究内容: (1)性态问题:研究排 各队 种系统的概率性, 规主 律要研究队长分等 布待 、时间 的分布和忙期分布等; (2)最优化问题:分态 为最 静优和动态最优者 ,指 前最优设计,后现 者有 指排队
Pn (t )表示在时刻 t、系统状态为 n的概率。
含 Pn (t )的关系式一般为微分差 分方程,其解成为瞬态 ( transient state )解 ;
lim
t
Pn
(t)
P(n 如果存在)称为稳态
( steady state )解,或称统计平衡状
3、排队模型的分类 按排队系统中的 影三 响个 最特 大征进1行 95年 分 3 , 类 D.G( .Kend) a:ll (1)相继顾客到间 达的 间分 隔布 时; (2)服务时间的分布; (3)(并列)服数 务。 台的个
7
相应的模型用 Kendall 记号表示: X /Y /Z
其中, X , Y , Z分别表述上述三个特征 。 例如: M — 负指数分布( M 为 Markov 的首字母) D — 确定型( determinis tic ) E k — k阶爱尔朗( erlang )分布 GI — 一般相互独立( general independen t)的间隔时间的分布 G — 一般( general )服务时间的分布 M / M / 1, D / M / c( c个并列服务平台,但顾 客是一队)
需要知道单位时间内的 顾客到达数或相继到达 的间隔时间分布。
4)顾客的到达可以是相 互独立的,也可以是有 关联的。
5)输入过程可以是平稳 的,或称对时间是齐次 的,是指相继到达的间 隔时间分布和
运筹学课件第十章排队论

第十章 排队论
第一节 引言
一、排队系统的特征及排队论 排队论研究排队系统的数学理论和方法, 是运筹学的一个重要分支。 排队问题表现:
到达的顾客 1、不能运转机器 2、病人 3、打电话 4、等待降落飞机 5、河水进入水库
要求的服务 修理 就诊 通话 降落 放水,调整水 位
服务机构 修理工人 医生 交换台 跑道指挥机构 水闸管理员
四、排队系统的主要数量指标和记号 描述一个排队系统运行状况的主要指标: 1、队长、排队长 队长:系统中的顾客数量(排队顾客+接受服务顾客)。
排队长:系统中的正在排队等待服务的顾客数量。
2、等待时间和逗留时间 等待时间:从顾客到达时刻起到他开始接受服务止这段时间 为等待时间。 逗留时间:从顾客到达时刻起到他接受服务完成这段时间为 逗留时间。
(i)队长有限:系统等待空间有限。 有限系统的空间为K, 顾客到达时的队长为L。若 L<K,则顾客进入队列等待服务,若L=K,则 顾客离去。 (ii) 等待时间有限: 顾客对等待时间具有不耐烦 性的系统。设最长等待时间是T0,某个顾客从 进入队列后的等待时间为 T。若T<T0,顾客继 续等待;若T=T0,则顾客脱离队列而离去。 (iii)逗留时间有限:等待时间与服务时间之和。
排队可以是人,也可以是物。 为了一致:将要求得到服务的对象统称为“顾客”,将提 供服务的服务者称为“服务员”或“服务机构”。
排队系统的一般描述; 顾客为了得到服务而到达系统,如果不能 立刻得到服务而又允许排队等待,则加入 等待队伍,待获得服务后离开系统。
顾客到达 队列 服务台 单服务台服务系统 服务完后离开
n 0
n ,n C 1 , 2 , 3 ,...... n u n p p , n 1 , 2 , 3 ,...... n 0
第一节 引言
一、排队系统的特征及排队论 排队论研究排队系统的数学理论和方法, 是运筹学的一个重要分支。 排队问题表现:
到达的顾客 1、不能运转机器 2、病人 3、打电话 4、等待降落飞机 5、河水进入水库
要求的服务 修理 就诊 通话 降落 放水,调整水 位
服务机构 修理工人 医生 交换台 跑道指挥机构 水闸管理员
四、排队系统的主要数量指标和记号 描述一个排队系统运行状况的主要指标: 1、队长、排队长 队长:系统中的顾客数量(排队顾客+接受服务顾客)。
排队长:系统中的正在排队等待服务的顾客数量。
2、等待时间和逗留时间 等待时间:从顾客到达时刻起到他开始接受服务止这段时间 为等待时间。 逗留时间:从顾客到达时刻起到他接受服务完成这段时间为 逗留时间。
(i)队长有限:系统等待空间有限。 有限系统的空间为K, 顾客到达时的队长为L。若 L<K,则顾客进入队列等待服务,若L=K,则 顾客离去。 (ii) 等待时间有限: 顾客对等待时间具有不耐烦 性的系统。设最长等待时间是T0,某个顾客从 进入队列后的等待时间为 T。若T<T0,顾客继 续等待;若T=T0,则顾客脱离队列而离去。 (iii)逗留时间有限:等待时间与服务时间之和。
排队可以是人,也可以是物。 为了一致:将要求得到服务的对象统称为“顾客”,将提 供服务的服务者称为“服务员”或“服务机构”。
排队系统的一般描述; 顾客为了得到服务而到达系统,如果不能 立刻得到服务而又允许排队等待,则加入 等待队伍,待获得服务后离开系统。
顾客到达 队列 服务台 单服务台服务系统 服务完后离开
n 0
n ,n C 1 , 2 , 3 ,...... n u n p p , n 1 , 2 , 3 ,...... n 0
运筹学-排队论

定长分布(D):每个顾客接受的 服务时间是一个确定的常数。
负指数分布(M):每个顾客接受
的服务时间相互独立,具有相同
的负指数分布:
b(t)=
e- t
t0
0
t<0
其中>0为一常数。
K阶爱尔朗分布(En):
b(t)=
k(kt)k-1
(K-1)!
e- kt
当k=1时即为负指数分布;k 30,近似
M/M/1 等待制排队模型
单服务台问题,又表示为M/M/1/ : 顾客相继到达时间服从参数为的负 指数分布;服务台数为1;服务时间 服从参数为的负指数分布;系统的 空间为无限,允许永远排队。
队长的分布
记 Pn=p{N=n} , n=0,1,2….为系统达到平衡状态后队 长的概率分布,
则 n=;n= ,= /<1, 有Pn= (1-)n n=0,1,2….
排队系统类型:
顾客到达
服务台串联排队系统
排队系统类型:
聚
散
服务机构
(输入)
(输出)
随机聚散服务系统
随机性——顾客到达情况与顾客 接受服务的时间是随机的。
一般来说,排队论所研究的排队 系统中,顾客相继到达时间间隔 和服务时间这两个量中至少有一 个是随机的,因此,排队论又称 随机服务理论。
顾客(单个或成批)相继到达的时
间间隔分布:这是刻划输入过程的
最重要内容。令T0=0,Tn表示第n顾
客到达的时刻,则有T0T1 T2…..
Tn ……
记Xn= Tn –Tn-1
n=1,2,…,则Xn是第n顾客与第n-1顾
客到达的时间间隔。
一般假定{Xn}是独立同分布,并 记分布函数为A(t)。
运筹学排队论2

现将上式参数 引入时间因素 t ,即将
换为 t ,得到
pn
(t)
(t)n
n!
et
,
t
0,
n
0,1,2,.
表示长为t的时间区间内到达n个顾客的概率为 pn (t) ,且服从泊松分布.这称为泊松流或泊松过 程或简单流. 设t时间内到达的顾客数为随机变量N(t),则有
E[N(t)] t, D[N(t)] t.
服务台
2.C个服务台,一个公共队伍
服务台1 服务台2 服务台C
3.C个服务台,C个队伍
服务台1 服务台2 服务台C
二.排队系统的三个组成部分
1.输入过程:指顾客按怎样的规律到达. ⑴顾客的总体数或顾客源:指可能到达服务机
构的顾客总数.顾客总体数可以是有限的,也可 以是无限的; ⑵顾客到达的类型:顾客是单个到达还是成批 到达; ⑶顾客相继到达时间间隔的分布,如按泊松 分布,定长分布还是负指数分布.
排队论的创始人是丹麦哥本哈根市电话局的 工程师爱尔朗(A.K.Erlang),他早期研究电话 理论,特别是电话的占线问题,就是早期排队 论的内容.
§2 排队论的基本概念
一.排队现象的共同特征:为了获得某种服务而 到达的顾客,如不能立即得到服务而又允许排 队等候,则加入等待的队伍,获得服务后离开.我 们把包含这些特征的系统称为排队系统. 排队系统的几种情况: 1.单服务台排队系统
例9.1 某仓库全天都可以进行发料业务,假设 顾客到达的时间间隔服从均值为1的负指数分 布现在有一位顾客正好中午12:00到达领料, 试求:
(1)下一个顾客将在下午1:00前到达的概率; (2)在下午1:00与2:00之间到达的概率: (3)在下午2:00以后到达的概率。
换为 t ,得到
pn
(t)
(t)n
n!
et
,
t
0,
n
0,1,2,.
表示长为t的时间区间内到达n个顾客的概率为 pn (t) ,且服从泊松分布.这称为泊松流或泊松过 程或简单流. 设t时间内到达的顾客数为随机变量N(t),则有
E[N(t)] t, D[N(t)] t.
服务台
2.C个服务台,一个公共队伍
服务台1 服务台2 服务台C
3.C个服务台,C个队伍
服务台1 服务台2 服务台C
二.排队系统的三个组成部分
1.输入过程:指顾客按怎样的规律到达. ⑴顾客的总体数或顾客源:指可能到达服务机
构的顾客总数.顾客总体数可以是有限的,也可 以是无限的; ⑵顾客到达的类型:顾客是单个到达还是成批 到达; ⑶顾客相继到达时间间隔的分布,如按泊松 分布,定长分布还是负指数分布.
排队论的创始人是丹麦哥本哈根市电话局的 工程师爱尔朗(A.K.Erlang),他早期研究电话 理论,特别是电话的占线问题,就是早期排队 论的内容.
§2 排队论的基本概念
一.排队现象的共同特征:为了获得某种服务而 到达的顾客,如不能立即得到服务而又允许排 队等候,则加入等待的队伍,获得服务后离开.我 们把包含这些特征的系统称为排队系统. 排队系统的几种情况: 1.单服务台排队系统
例9.1 某仓库全天都可以进行发料业务,假设 顾客到达的时间间隔服从均值为1的负指数分 布现在有一位顾客正好中午12:00到达领料, 试求:
(1)下一个顾客将在下午1:00前到达的概率; (2)在下午1:00与2:00之间到达的概率: (3)在下午2:00以后到达的概率。
运筹学排队论

降低平均服务时间
降低服务时间旳可变性
增长服务人员
降低平均到达人数
经过顾客预约等方法来降低到达旳可变性
集中使用服务资源
更加好地计划和调度
23
处理排队问题旳措施
2.其他措施
服务场合提供娱乐设施
医生等待室放报纸杂志
自动维修间用收音机或电视
航空企业提供空中电影
等待电梯处放镜子
超级市场把冲动性商品摆放在收款台附
排队论
1
2
•
排队论,又称随机服务系统理论(,是一
门研究拥挤现象(排队、等待)旳科学。详细
地说,它是在研究多种排队系统概率规律性
旳基础上,处理相应排队系统旳最优设计和
最优控制问题。
•排队论是1923年由丹麦工程师爱尔朗
(A.K.Erlang)在研究电活系统时创建旳.
3
案例-1 银行排队系统
4
案例-2 医院排队系统
用更快旳服务人员、机器或采用不同旳设施布局和政
策来影响顾客旳到达时间和服务时间。
9
1 排队论旳基本问题
1.1 排队论旳主要研究内容
• 数量指标
– 研究主要数量指标在瞬时或平稳状态下旳
概率分布及其数字特征,了解系统旳基本
运营特征。
• 统计推断
– 检验系统是否到达平稳状态;检验顾客到
达间隔旳独立性;拟定服务时间分布及参
数。
• 系统优化
– 系统旳最优设计和最优运营问题。
10
1.2排队论旳经济含义
• 排队问题旳关键问题实际上就是对不同
原因做权衡决策。管理者必须衡量为提
供更快捷旳服务(如更多旳车道、额外
旳降落跑道、更多旳收银台)而增长旳
运筹学——排队论

1 对于泊松流, λ表示单位时间内平均到 达的顾客数,因此, 就表示
λ
相继顾客到达的平均间 隔时间,这与 E[T ] =
1
λ
的意义正好相符。
18
服务时间v的分布 对一顾客的服务时间(也即在忙期相继离开系统的两顾客的间隔时间) 有时也服从负指数分布。这时设它的分布函数和密度函数分别为 Fv (t ) = 1 − e − µt , v的期望值 E (v) = 1 f v (t ) = µe − µt
期望值和方差相等,是泊松分布的一个重要特征,可以由此对一个 经验分布是否是泊松分布进行初步的识别。
16
3、负指数分布(negtive exponential distribution)
随机变量T的概率密度若是 λe −λt , t ≥ 0 fT (t ) = 0, t < 0 则称T服从负指数分布。T 分布函数是 1 − e −λt , t ≥ 0 FT (t ) = 0, t < 0 E[T ] = 1
∞
∑ P (t , t + ∆t ) = o( ∆t )
n=2 n
15
通过建立Pn (t )与Pn (t + ∆t )之间的关系方程并求解,得到
( λ t ) n − λt Pn (t ) = e n! t > 0, n = 0,1,2,L
Pn (t ) = Pn (0, t )表示长为t的时间区间内到达n个顾客的概率,并称随机变量 N (t )服从泊松分布,其数学期望和方差分别为 E[ N (t )] = λt Var[ N (t )] = λt
第12章 12章
排队论
排队论(随机服务系统理论)是研究由顾客、服务机构及其排队现象所构成的 排队系统的理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
顾客
服务台
人
理发师
人
出纳
人
ATM机
人
收银员
阻塞的管道 管道工
人
售票员
人
航空公司代理人
人
股票经纪人
运输服务系统
系统类型 公路收费站 卡车装货地 港口卸货区 等待起飞的飞机 航班服务 出租车服务 电梯服务 消防部门 停车场 急救车服务
顾客 汽车 卡车 轮船 飞机 人 人 人 火灾 汽车 人
服务台 收费员 装货工人 卸货工人 跑道 飞机 出租车 电梯 消防车 停车空间 急救车
(三)排队系统的主要数量指标
1. 队长和排队长 队长是指系统中的顾客数(排队等待的顾
客数与正在接受服务的顾客数之和)。 排队长是指系统中正在排队等待服务的顾
客数。
2.等待时间和逗留时间
从顾客到达时刻起到他开始接受服务止 这段时间称为等待时间,是随机变量。
从顾客到达时刻起到他接受服务完成止 这段时间称为逗留时间,也是随机变量。
(2) 服务方式。这是指在某一时刻 接受服务的顾客数,它有单个服务和 成批服务两种。
(3) 服务时间的分布。在多数情况 下,对每一个顾客的服务时间是一随 机变量,其概率分布有定长分布、负 指数分布、K级爱尔朗分布、一般分 布(所有顾客的服务时间都是独立同分 布的)等等。
(二)排队模型的分类
为了区别各种排队系统,根据输入过程、 排队规则和服务机制的不同,对排队模型进 行分类。D.G.Kendall在1953年提出了模 型分类方法,1971年在排队论符号标准化会 议上,将Kendall符号扩充为如下固定格式:
则表示顾客到达间隔时间为负指数分 布(泊松流);
服务时间为负指数分布; 有s(s>1)个服务台; 系统等待空间容量无限(等待制); 顾客源无限,采用先到先服务规则。 可简记为: M/M/s
某些情况下,排队问题仅用 上述表达形式中的前3个、4个、5 个符号。如不特别说明均理解为 系统等待空间容量无限;顾客源 无限,先到先服务,单个服务的 等待制系统。
(1) 顾客总体数组成(又称顾客源)是有限的, 也可以是无限的。例如,到售票处购票的顾 客总数可以认为是无限的,而某个工厂因故 障待修的机床则是有限的。
(2)顾客到达方式。描述顾客是怎样来到系统 的,他们是单个到达,还是成批到达。病人 到医院看病是顾客单个到达的例子。在库存 问题中如将生产器材进货或产品入库看作是 顾客,那么这种顾客则是成批到达的。
面对拥挤现象,如何做到既保证一定的 服务质量指标,又使服务设施费用经济合 理,恰当地解决顾客排队时间与服务设施 费用大小这对矛盾,这就是排队论所要研 究解决的问题之一。
第一节 基本概念
(一)排队系统的特征及组成
➢ 排队系统的共同特征: ① 有要求得到某种服务的人或物。排队 论里把要求服务的对象统称为“顾客” ② 有提供服务的人或机构。把提供服务 的人或机构称为“服务台”或“服务员” ③ 顾客的到达、服务的时间至少有一个 是随机的,服从某种分布。
Where the Time Goes ?
美国人一生中平均要花费--
6个月 停在红灯前 8个月 打开邮寄广告 1年 寻找放置不当的物品 2年 回电话不成功 4年 做家务 5年 排队等待 6年 饮食
商业服务系统
系统类型 理发店 银行出纳服务 ATM机服务 商店收银台 管道服务 电影院售票窗口 机场检票处 经纪人服务
(3)顾客流的概率分布,或称顾客相继到 达时间间隔的分布。这是求解排队系统 有关运行指标问题时,首先需要确定的 指标。
顾客流的概率分布一般有定长分布、 二项分布、泊松流(最简单流)、爱尔朗分 布等若干种。
2、排队规则 这是指服务台从队列中选取 顾客进行服务的顺序。
等待制
先到先服务 后到先服务 随机服务 优先权服务
一般的排队系统,都可由图12-1加以描述。
顾客源 顾客到来
排队结构 排队规则服服务规则务 机
构
离去
排队系统
图12-1
➢排队系统的组成
排队系统都有输入过程、排队规则和 服务台等3个组成部分:
1、输入过程 这是指要求服务的顾客是按怎 样的规律到达排队系统的过程,有时也把 它称为顾客流.一般可以从3个方面来描述 输入过程。
Y—表示服务时间分布,常用下列符号:
M—表示服务过程为泊松过程或负指数分布; D—表示定长分布; Ek—表示k阶爱尔朗分布; G—表示一般相互独立的随机分布。
X/Y/Z/A/B/C
Z—表示服务台(员)个数: “1”则表示单个服务台,“s”(s>1) 表
示多个服务台。
A—表示系统中顾客容量限额,或称等待空 间容量:
排队规则
损失制
混合制
队长有限 等待时间有限 逗留时间有限
3.服务台情况。服务台可以从3方面来描述: (1) 服务台数量及构成形式
图12-2 单队列-单服务台排队系统
图12-3 单队列——S个服务台并联的排队系统 图12-4 S个队列——S个服务台的并联排队系统
图12-5 单队——多个服务台的串联排队系统 图12-6 多队——多服务台混联、网络系统
X/Y/Z/A/B/C 各符号的意义为:
X/Y/Z/A/B/C
X—表示顾客相继到达间隔时间分布,常用下 列符号:
M—表示到达过程为泊松过程或负指数分布; D—表示定长输入; Ek—表示k阶爱尔朗分布; GI——表示一般相互独立的时间间隔分布; G——表示一般服务时间的分布。
X/Y/Z/A/B/C
∞ 时为等待制系统,此时∞一般省略不 写;若为有限整数时,为混合制系统。
X/Y/Z/A/B/C
B—表示顾客源限额。 分有限与无限两种,∞表示顾客源无限,
此时一般∞也可省略不写。
C—表示服务规则,常用下列符号: FCFS:表示先到先服务; LCFS:表示后到先服务; PR:表示优先权服务。
例如:某排队问题为 M/M/S/∞/∞/FCFS
优选运筹学排队论新
排队论(Queuing Theory),又称随机服务 系统理论(Random Service System Theory)。 1909年由丹麦工程师爱尔朗(A.K.Erlang)在 研究电话系统时创立的。具体地说,它是在研 究各种排队系统概率规律性的基础上,解决相 应排队系统的最优设计和最优控制问题。特别 是自二十世纪60年代以来,由于计算机的飞速 发展,使排队论的应用有了更广阔的前景。