二次根式、勾股定理知识点复习

合集下载

初三数学知识点梳理

初三数学知识点梳理

初三数学知识点梳理初三数学学问点梳理第一篇二次根式、勾股定理、四边形、一次函数和数据的分析。

(1)二次根式(2)勾股定理:解直角三角形,解直角三角形的学问是近几年各地中考命题的热点之一,考察题型为选择题,填空题,应用题为主,分值一般8-12分,难易度为难。

【考察内容】①常见锐角的三角函数值的计算②依据图形计算距离,高度,角度的应用题③依据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的学问解决问题。

(3)四边形:初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。

【考察内容】①多边形的内角和,外角和等问题②图形的镶嵌问题③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。

(4)一次函数:一次函数图像与性质是中考必考的内容之一。

中考试题中分值约为10分左右题型多样,形式敏捷,综合应用性强。

甚至有存在探究题目出现。

【考察内容】①会画一次函数的图像,并把握其性质。

②会依据已知条件,利用待定系数法确定一次函数的解析式。

③能用一次函数解决实际问题。

④考察一次函数与二元一次方程组,一元一次不等式的关系。

(5)数据的分析二次函数、一元二次方程、旋转、圆和概率初步。

(1)二次函数:二次函数的图像和性质是中考数学命题的热点,难点。

试题难度一般为难。

常见选择,填空题分值为3-5分,综合题分值为10-12分。

【考察内容】①能通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

②能用数形结合,归纳等熟识思想,依据二次函数的表达式(图像)确定二次的开口方向,对称轴和顶点的坐标,并获得更多信息。

③综合运用方程,几何图形,函数等学问点解决问题。

(2)一元二次方程:中考分值约为3-5分,题型主要以选择,填空为主,极少出现简答,难易度为易。

【考察内容】①方程及方程解的概念②依据题意列一元一次方程③解一元一次方程。

(3)旋转:图形的平移,旋转是中考题的新题型,热点题型,在试题比重,逐年上升。

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结二次根式是高中数学中重要的知识点之一,它在解决一元二次方程、求解勾股定理以及图形的面积计算等问题中起到了重要的作用。

本文将对二次根式的定义、性质以及相关的数学运算进行总结,并探讨其在实际问题中的应用。

一、二次根式的定义二次根式是指形如√a的代数式,其中a为非负实数。

它可以表示为一个单独的根号表达式,也可以是两个或多个二次根式之间的运算。

二、二次根式的性质1. 二次根式与有理数的关系:二次根式可以是有理数或无理数。

当根号内的数可以化简为有理数时,二次根式即为有理数;否则,二次根式为无理数。

2. 二次根式的相等性:两个二次根式相等的条件是它们的被开方数相等。

3. 二次根式的大小比较:对于非负实数a和b,若a > b,则有√a >√b。

4. 二次根式的运算性质:对于非负实数a和b,有以下运算性质:- 加法:√a + √b = √(a + b)- 减法:√a - √b = √(a - b),其中a ≥ b- 乘法:√a * √b = √(a * b)- 除法:√a / √b = √(a / b),其中b ≠ 0三、二次根式的化简当二次根式存在可以化简的情况时,可以通过以下方法进行化简:1. 提取因子法:将根号内的数分解为两个数的乘积,其中一个数是完全平方数,并提取出完全平方数的根号作为整体。

2. 有理化分母法:对于含有二次根式的分数,可以通过有理化分母的方法化简,即将分母有理化为一个有理数或二次根式。

四、二次根式的应用1. 解一元二次方程:一元二次方程的形如ax^2 + bx + c = 0,其中a ≠ 0。

通过二次根式的求解方法,可以求得方程的解,并通过图像分析得到方程的根的性质。

2. 求解勾股定理:在平面几何中,勾股定理是指在直角三角形中,直角边的平方等于两个其他边的平方之和。

通过二次根式的运算,可以准确计算出直角三角形的边长。

3. 计算图形的面积:在几何问题中,经常需要计算图形的面积,而某些图形的面积计算涉及到二次根式。

数学八年级下册知识点总结

数学八年级下册知识点总结

数学八年级下册知识点总结那咱们就开始总结八年级下册的数学知识点吧。

在八年级下册的数学里呀,有好多有趣又重要的东西呢。

一、二次根式。

二次根式这部分呀,就像一个个小怪兽,不过只要掌握了规律就很好搞定。

形如√(a)(a≥0)这样的式子就是二次根式啦。

这里面有个很重要的性质哦,那就是(√(a))^2 = a(a≥0)。

比如说√(4),它就等于2,那(√(4))^2当然就是4啦。

还有√(ab)=√(a)·√(b)(a≥0,b≥0),就像拆礼物一样,把一个复杂的根式拆成简单的相乘的形式。

不过要注意哦,反过来√(a)·√(b)=√(ab)这个规则可是有条件的,a和b都得是非负数呢。

二、勾股定理。

勾股定理可是个超级明星知识点。

直角三角形的两条直角边的平方和等于斜边的平方,也就是a^2 + b^2 = c^2。

比如说一个直角三角形,两条直角边分别是3和4,那斜边就是√(3^2 + 4^2)=√(9 + 16)=√(25)=5。

这个定理可以用来求直角三角形的边长,还能判断一个三角形是不是直角三角形呢。

如果一个三角形的三条边满足a^2 + b^2 =c^2,那这个三角形就是直角三角形。

这就像是一个小密码,能解开很多三角形的秘密。

三、平行四边形。

平行四边形就像一个规规矩矩的小房子。

它的两组对边分别平行且相等。

比如说一个平行四边形ABCD,那AB就平行且等于CD,AD也平行且等于BC。

平行四边形的对角线互相平分,就像把这个小房子从中间分开,两边是对称的呢。

而且平行四边形的对角相等,邻角互补。

如果我们知道平行四边形的一个角是60度,那它的对角也是60度,邻角就是120度。

四、一次函数。

一次函数y = kx + b(k,b为常数,k≠0)就像一个小火车在数轴上跑。

k是斜率,它决定了这个小火车的倾斜程度。

如果k>0,那这个函数图像就是上升的,就像小火车在爬坡;如果k<0,那图像就是下降的,小火车在下山喽。

勾股定理(知识点+题型分类练习)

勾股定理(知识点+题型分类练习)

ABCabc弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。

常用关系式由三角形面积公式可得:AB·CD=AC·BC2. 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

3. 勾股数:①满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等③用含字母的代数式表示n组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4)如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)5.直角三角形的性质(1)直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90°B(2)在直角三角形中,30°角所对的直角边等于斜边的一半。

二次根式与勾股定理

二次根式与勾股定理

图5
例 7 如图 6,在 △ABC 中, AB AC 2 , BC 边上有 100 个不同的点 P1,P2,…,P100 ,
记 mi APi 2 BPi PiC(i 1,2,,100),求 m1 m2 … m100 的值.
A
B Pi D
C
图6
学高为师、身正为范!
专注个性化教育
二次根式
学高为师、身正为范!
专注个性化教育
5、勾股定理及其逆定理的应用(重点)
①用于求线段的长;②用于求角的度数;③用于求面积;④用于判定三角
C
形的形状;⑤用于证明两线段垂直;⑥用于证明几条线段间的等量关系;
⑦用于求值 B
6、“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图
DA
形及性质掌握非常熟练,能够灵活应用。目前“双垂图”需要掌握的知识点有:3 个直角三角
例 5 如图 4,正方形 ABCD中, AE BE,AF 1 AD ,求证: CE EF . 4
AF
D
E
B
C
图4
用于证明几条线段间的等量关系 例 6 如图 5,在△ABC 中, BAC 90,AB AC , D 是 BC 上的点. 求证: BD2 CD2 2AD2 .
A
用于求值
B
E
D
C
60
2
D
1 30
B
C
E
图3
用于判定三角形的形状
例 4 若 三 角 形 的 三 条 边 a,b,c 满 足 关 系 式 a4 b2c2 a2c2 b4 0 , 则 此 三 角 形 形 状


学高为师、身正为范!
变式:若直角三角形的三边长分别是 n+1,n+2,n+3,求 n。

勾股定理、方根专题知识点整理

勾股定理、方根专题知识点整理

勾股定理、平方根专题知识点整理第一节勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n 的线段二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。

二次根式,勾股定理,四边形,一次函数.doc

二次根式,勾股定理,四边形,一次函数.doc

二次根式,勾股定理,四边形,一次函数知识点:二次根式1、二次根式二次根式必须满足:含有二次根号,被开方数a必须是非负数。

2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

4、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

第十七章勾股定理知识点:直角三角形的性质1、直角三角形的两个锐角互余,2、在直角三角形中,30°角所对的直角边等于斜边的一半。

3、直角三角形斜边上的中线等于斜边的一半,4、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,知识点:直角三角形的判定1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

知识点:锐角三角函数的概念1、在△ABC中,∠C=90°①锐角A的对边与斜边的比叫做∠A的正弦,记为sinA,②锐角A的邻边与斜边的比叫做∠A的余弦,记为cosA,③锐角A的对边与邻边的比叫做∠A的正切,记为tanA,④锐角A的邻边与对边的比叫做∠A的余切,记为cotA,2、锐角三角函数的概念------锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数,3、各锐角三角函数之间的关系:(1)互余关系sinA=cos(90°—A),cosA=sin(90°—A)tanA=cot(90°—A),cotA=tan(90°—A),(2)倒数关系tanAtan(90°—A)=14、锐角三角函数的增减性:当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小),(2)余弦值随着角度的增大(或减小)而减小(或增大),(3)正切值随着角度的增大(或减小)而增大(或减小),(4)余切值随着角度的增大(或减小)而减小(或增大),知识点:解直角三角形1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

二次根式及勾股定理的知识点总结

二次根式及勾股定理的知识点总结

二次根式的知识点知识点一:二次根式的概念形如√a(a≥0)的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a≥0是√a为二次根式的前提条件,如√5,√(x2+1),√(x-1) (x≥1)等是二次根式,而√(-2),√(-x2-7)等都不是二次根式。

知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a≥0时√a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,√a没有意义。

知识点三:二次根式√a(a≥0)的非负性√a(a≥0)表示a的算术平方根,也就是说,√a(a≥0)是一个非负数,即√a≥0(a≥0)。

注:因为二次根式√a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a≥0)的算术平方根是非负数,即√a≥0(a≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若√a+√b=0,则a=0,b=0;若√a+|b|=0,则a=0,b=0;若√a+b2=0,则a=0,b=0。

知识点四:二次根式(√a)的性质(√a)2=a(a≥0)文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式(√a)2=a(a≥0)是逆用平方根的定义得出的结论。

上面的公式也可以反过来应用:若a≥0,则a=(√a)2,如:2=(√2)2,1/2=(√1/2)2.知识点五:二次根式的性质√a2=|a|文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

注:1、化简√a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即√a2=|a|=a (a≥0);若a是负数,则等于a的相反数-a,即√a2=|a|=-a (a﹤0);2、√a2中的a的取值范围可以是任意实数,即不论a取何值,√a2一定有意义;3、化简√a2时,先将它化成|a|,再根据绝对值的意义来进行化简。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章:二次根式
一、二次根式的意义及性质:
题组1:
0a ≥),叫做二次根式)
1.下列各式中,是二次根式的有_________________________。

(填序号)









题组2:0a ≥))
1.当a 是怎样的实数时,下列各式在实数范围内有意义?
(1;(
2;(
3
;(4_______;
(5)。

(6)
;(7
2.已知5y ,则
2x y -的值是_______________。

题组3:
0) 1.若|2|0x
+
的值是_________;
题组4:
(二次根式的性质:2
(0)a a =≥
,||a =)
1.计算:
2
=_____
;(2
=_______
;(2
=______;2
⎛ ⎝=_______;
2.在实数范围内因式分解:(1)22x -=_______________
;(2)49x -=________________。

3;。

4.若
21x -,则x 的取值范围是____________。

题组5:(最简二次根式和同类二次根式)
1.在根式①22b a + ②
5
x ③xy x -2
④ abc 27中,最简二次根式是( )
A .①②
B .③④
C .①③
D .①④ 2.下列二次根式中,可以合并的是 ( ) A .23a a a 和
B .232a a 和
C .a
a a a 132
和 D .24
23a a
和 二、二次根式的运算:
题组6
:⇔(0a ≥
,0b ≥)

0a ≥,0b >)
) 1.


2
-
.-
4、
÷
(
-
(
7.先化简,再求值:1
1
212222--÷+++-+x x x x x x x ,其中23-=x .
第十七章:勾股定理
一、知识点
1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2
+b 2
=c 2。

常见勾股数:3、4、5;6、8、10;5、12、13;8、15、17;7、24、25 2.勾股定理逆定理:
如果三角形三边长a,b,c 满足a 2
+b 2
=c 2
,那么这个三角形是直角三角形。

判断步骤:(1)比较a 、b 、c 大小,找最长边;
(2)计算两条短边的平方和,看是否与最长边的平方相等。

3、命题、定理、
a 、命题的概念 :判断一件事情的语句,叫做命题。

b 、题设、结论正好相反的两个命题叫做互逆命题。

C 、经过证明被确认正确的命题,叫做定理。

4.直角三角形的性质
(1)、直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90° (2)、在直角三角形中,30°角所对的直角边等于斜边的一半。

(3)、直角三角形斜边上的中线等于斜边的一半 5、直角三角形的判定
1、有一个角是直角的三角形是直角三角形。

2、如果三角形的三边长a ,b ,c 有关系2
2
2
c b a =+,那么这个三角形是直角三角形。

6、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

7、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

二、练习
1、下列四组线段中,可以构成直角三角形的是( ) A 、4,5,6 B 1.5,2,2.5 C 、2,3,4 D 、1,
,3
2、如图,Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,AB =10cm ,则CD 的长为 cm .
3、已知一个直角三角形的两边的长分别是3和4,则第三边长为 .
4、如图,在Rt △ABC 中,∠C =90°,D 为AB 的中点,DE ⊥AC 于点E .∠A =30°,
AB =8,则DE 的长度是 .
5、如图,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,
则1S 、2S 、3S 的关系是( )
(A )321S S S =+ (B )232221S S S =+ (C )321S S S >+ (D ) 321S S S <+ 6、△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )
A .42
B .32
C .42 或 32
D .37 或 33 7、如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60°的方向,
前进20海里到达B 点,此时,测得海岛C 位于北偏东30°的方向,求海岛C 到航线AB 的距离.
8、如图所示,在矩形ABCD 中,AB=3,BC=4. (1)求BD 的长
(2)将该矩形沿对角线BD 折叠,判断△B ED 的形状; (3)求BE ,AE 的长 (4)求△B ED 的面积
A
C
D C。

相关文档
最新文档