高三磁场基础知识专题训练+答案(精选)

合集下载

高中物理 磁场计算专题(附答案详解)

高中物理  磁场计算专题(附答案详解)

专题:磁场计算题(附答案详解)1、如图所示,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l.不计重力影响和离子间的相互作用.求:(1)磁场的磁感应强度大小;(2)甲、乙两种离子的比荷之比.2、如图所示,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场.11H的质量为m,电荷量为q.不计重力.求:(1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强大小;(3)21H第一次离开磁场的位置到原点O的距离.3、一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N点的时间.4、如图所示,竖直放置的平行金属板板间电压为U,质量为m、电荷量为+q的带电粒子在靠近左板的P点,由静止开始经电场加速,从小孔Q射出,从a点进入磁场区域,abde是边长为2L的正方形区域,ab边与竖直方向夹角为45°,cf与ab平行且将正方形区域等分成两部分,abcf中有方向垂直纸面向外的匀强磁场B1,defc中有方向垂直纸面向里的匀强磁场B2,粒子进入磁场B1后又从cf 上的M点垂直cf射入磁场B2中(图中M点未画出),不计粒子重力,求:(1)粒子从小孔Q射出时的速度;(2)磁感应强度B1的大小;(3)磁感应强度B2的取值在什么范围内,粒子能从边界cd间射出.5、如图所示,在真空中xOy平面的第一象限内,分布有沿x轴负方向的匀强电场,场强E=4×104 N/C,第二、三象限内分布有垂直于纸面向里且磁感应强度为B2的匀强磁场,第四象限内分布有垂直纸面向里且磁感应强度为B1=0.2 T的匀强磁场.在x轴上有一个垂直于y轴的平板OM,平板上开有一个小孔P,在y轴负方向上距O点为 3 cm的粒子源S可以向第四象限平面内各个方向发射α粒子,且OS>OP.设发射的α粒子速度大小v均为2×105 m/s,除了垂直于x轴通过P点的α粒子可以进入电场,其余打到平板上的α粒子均被吸收.已知α粒子的比荷为qm=5×107 C/kg,重力不计,试问:(1)P点距O点的距离;(2)α粒子经过P点第一次进入电场,运动后到达y轴的位置与O点的距离;(3)要使离开电场的α粒子能回到粒子源S处,磁感应强度B2应为多大?6、如图25所示,在xOy平面的0≤x≤23a范围内有沿y轴正方向的匀强电场,在x>23a范围内某矩形区域内有一个垂直于xOy平面向里的匀强磁场,磁感应强度大小为B.一质量为m、电荷量为+q的粒子从坐标原点O以速度v0沿x轴正方向射入电场,从M点离开电场,M点坐标为(23a,a).再经时间t=3mqB进入匀强磁场,又从M点正上方的N点沿x轴负方向再次进入匀强电场.不计粒子重力,已知sin 15°=6-24,cos 15°=6+24.求:(1)匀强电场的电场强度;(2)N点的纵坐标;(3)矩形匀强磁场的最小面积.7、如图甲所示,竖直挡板MN左侧空间有方向竖直向上的匀强电场和垂直纸面的匀强磁场,电场和磁场的范围足够大,电场强度E=40 N/C,磁感应强度B随时间t变化的关系图象如图乙所示,选定磁场垂直于纸面向里为正方向.t=0时刻,一质量m=8×10-4 kg、电荷量q=+2×10-4 C的微粒在O点具有竖直向下的速度v=0.12 m/s,O′是挡板MN上一点,直线OO′与挡板MN垂直,g取10m/s2.求:(1)微粒再次经过直线OO′时与O点的距离;(2)微粒在运动过程中离开直线OO′的最大高度.(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O点间的距离应满足的条件.8、如图所示,在竖直平面内,水平x轴的上方和下方分别存在方向垂直纸面向外和方向垂直纸面向里的匀强磁场,其中x轴上方的匀强磁场磁感应强度大小为B1,并且在第一象限和第二象限有方向相反、强弱相同的平行于x轴的匀强电场,电场强度大小为E1,已知一质量为m的带电小球从y轴上的A(0,L)位置斜向下与y轴负半轴成60°角射入第一象限,恰能做匀速直线运动。

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)试题部分一、选择题:A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动2. 下列关于电磁感应现象的描述,错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向与磁场方向有关C. 感应电流的大小与导体运动速度成正比D. 感应电流的大小与导体长度成正比A. 电势能减小B. 电势能增加C. 电势增加D. 电势减小A. 电容器充电时,电场能转化为磁场能B. 电容器放电时,电场能转化为磁场能C. 电感器中的电流增大时,磁场能转化为电场能D. 电感器中的电流减小时,磁场能转化为电场能A. 电磁波在真空中传播速度为3×10^8 m/sB. 电磁波的传播方向与电场方向垂直C. 电磁波的传播方向与磁场方向垂直D. 电磁波的波长与频率成正比A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动A. 洛伦兹力的方向垂直于带电粒子的速度方向B. 洛伦兹力的大小与带电粒子的速度成正比C. 洛伦兹力的大小与磁感应强度成正比D. 洛伦兹力的方向与磁场方向垂直8. 一个闭合线圈在磁场中转动,下列关于感应电动势的说法,正确的是:A. 感应电动势的大小与线圈面积成正比B. 感应电动势的大小与磁场强度成正比C. 感应电动势的大小与线圈转速成正比D. 感应电动势的方向与磁场方向平行A. 变化的电场会产生磁场B. 变化的磁场会产生电场C. 静止的电荷会产生磁场D. 静止的磁场会产生电场A. 电场强度与磁场强度成正比B. 电场强度与磁场强度成反比C. 电场强度与电磁波频率成正比D. 电场强度与电磁波波长成正比二、判断题:1. 带电粒子在电场中一定受到电场力的作用。

()2. 电磁波在传播过程中,电场方向、磁场方向和传播方向三者相互垂直。

()3. 在LC振荡电路中,电容器充电完毕时,电场能最大,磁场能为零。

高中物理磁场习题200题(带答案)

高中物理磁场习题200题(带答案)

评卷人得分一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是()A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是()A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B 图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是()A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:安培力为:故:求和,有:故:故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则()A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:,又因为粒子在磁场中圆周运动的周期,可知粒子在磁场中运动的时间相等,故D正确,C错误;如图,粒子在磁场中做圆周运动,分别从P点和Q点射出,由图知,粒子运动的半径,又粒子在磁场中做圆周运动的半径知粒子运动速度,故A错误B正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式,周期公式,运动时间公式,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a、b、c处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c点的导线所受安培力的方向()A. 与ab边平行,竖直向上B. 与ab边垂直,指向右边C. 与ab边平行,竖直向下D. 与ab边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a在c处的磁场方向垂直ac斜向下,b在c处的磁场方向垂直bc斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c点所受安培力方向为与ab边垂直,指向左边,D正确;7.下列说法中正确的是()A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD错误;8.在如图所示的平行板电容器中,电场强度E和磁感应强度B相互垂直,一带正电的粒子q以速度v沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。

专题3 磁动力模型-2023年高考物理磁场常用模型精练(解析版)

专题3  磁动力模型-2023年高考物理磁场常用模型精练(解析版)

2023年高考物理《磁场》常用模型最新模拟题精练专题3.磁动力模型一.选择题1..(2023广东重点高中期末)如图为一款热销“永动机”玩具示意图,其原理是通过隐藏的电池和磁铁对小钢球施加安培力从而实现“永动”。

小钢球从水平光滑平台的洞口M 点静止出发,无磕碰地穿过竖直绝缘管道后从末端N 点进入平行导轨PP ʹ-QQ ʹ,电池、导轨与小钢球构成闭合回路后形成电流,其中电源正极连接导轨PQ ,负极连接P ʹQ ʹ;通电小钢球在底部磁场区域受安培力加速,并从导轨的圆弧段末端QQ ʹ抛出;然后小钢球恰好在最高点运动到水平光滑平台上,最终滚动至与挡板发生完全非弹性碰撞后再次从M 点静止出发,如此循环。

已知导轨末端QQ ʹ与平台右端的水平、竖直距离均为0.2m ,小钢球质量为40g ,在导轨上克服摩擦做功为0.04J ,其余摩擦忽略不计,重力加速度g 取10m/s 2,则()A .磁铁的N 极朝上B .取下电池后,小钢球从M 点静止出发仍能回到平台上C .小钢球从导轨末端QQ ʹ抛出时速度为2m/sD .为了维持“永动”,每个循环需安培力对小球做功大于0.04J【参考答案】.AD【名师解析】.由电路可知钢球中电流方向垂直于纸面向里,由左手定则可知磁铁上方轨道处磁场方向向上,故磁铁N 极朝上,故A 正确;取下电池后,小球缺少安培力做功,即使从导轨末端抛出,初速度减小也将导致不能到达平台,故B 错误;斜抛到最高点可反向看作平抛运动,则212y gt =,x x v t =解得0.2s t =,1m/s x v =所以2m/sy v gt ==所以抛出时的速度为225m/s x y v v v =+=,故C 错误;为了维持“永动”,每个循环安培力做的功应该补充机械能的损失,一部分是克服摩擦力做的功,还有一部分是碰撞挡板的损失,一定大于0.04J ,故D 正确。

2.(2022河北普通高中第一次联考)如图甲为市面上常见的一种电动车,图乙为这种电动车的电动机的工作示意图。

高考物理电磁学知识点之磁场知识点总复习附答案(6)

高考物理电磁学知识点之磁场知识点总复习附答案(6)

高考物理电磁学知识点之磁场知识点总复习附答案(6)一、选择题1.如图,放射源放在铅块上的细孔中,铅块上方有匀强磁场,磁场方向垂直于纸面向外.已知放射源放出的射线有α、β、γ三种.下列判断正确的是A.甲是α射线,乙是γ射线,丙是β射线B.甲是β射线,乙是γ射线,丙是α射线C.甲是γ射线,乙是α射线,丙是β射线D.甲是α射线,乙是β射线,丙是γ射线.其核心部分是分别与高频交流电源两极相连接的两2.回旋加速器是加速带电粒子的装置个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A.减小磁场的磁感应强度B.增大匀强电场间的加速电压C.增大D形金属盒的半径D.减小狭缝间的距离3.如图所示,边长为L的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab边中点和ac边中点,在虚线的下方有一垂直于导线框向里的匀强磁场,此时导线框通电处于静止状态,细线的拉力为F1;保持其他条件不变,现虚线下方的磁场消失,虚线上方有相同的磁场同时电流强度变为原来一半,此时细线的拉力为F2 。

已知重力加速度为g,则导线框的质量为A .2123F F g +B .212 3F F g -C .21F F g -D .21 F F g+ 4.如图甲是磁电式电流表的结构图,蹄形磁铁和铁芯间的磁场均匀辐向分布。

线圈中a 、b 两条导线长度均为l ,未通电流时,a 、b 处于图乙所示位置,两条导线所在处的磁感应强度大小均为B 。

通电后,a 导线中电流方向垂直纸面向外,大小为I ,则( )A .该磁场是匀强磁场B .线圈平面总与磁场方向垂直C .线圈将逆时针转动D .a 导线受到的安培力大小始终为BI l5.对磁感应强度的理解,下列说法错误的是( )A .磁感应强度与磁场力F 成正比,与检验电流元IL 成反比B .磁感应强度的方向也就是该处磁感线的切线方向C .磁场中各点磁感应强度的大小和方向是一定的,与检验电流I 无关D .磁感线越密,磁感应强度越大6.如图,一带电粒子在正交的匀强电场和匀强磁场中做匀速圆周运动。

高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E =2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE =微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d =1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=2.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos =0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin =0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%3.如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,此时速度方向与x轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴.求所加磁场磁感应强度B的大小和电子刚穿出圆形区域时的位置坐标;(3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B0的大小、磁场变化周期T各应满足的关系表达式.【答案】(1)(2)(3)(n=1,2,3…)(n=1,2,3…)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y=v0tanθ=v0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.4.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm= 又:1mv R Be =解得:00U tB dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=5.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P点时的速度大小和方向;(2)为使粒子从AC边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1)22mvE=;2v,速度方向沿y轴负方向(2)82225mv mvBqR qR≤≤(3)()22713mvqR-【解析】【分析】【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos4522cos45RL R R=-︒=︒1L vt=沿电场力方向做匀加速运动,加速度为a22sin452L R R=︒=2212L at=qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v'1v v =、2v at =,2tan v vθ=联立可得224mv E qR=进入磁场的速度22122v v v v =+='45θ=︒,速度方向沿y 轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A 点射出时,运动半径12Rr =由211mv qv B r =''得122mvB qR=当粒子从C 点射出时,由勾股定理得()222222R R r r ⎛⎫-+= ⎪⎝⎭解得258r R =由222mv qv B r =''得2825mvB qR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvB qR qR≤≤时,粒子从AC 边界射出(3)为使粒子不再回到电场区域,需粒子在CD 区域穿出磁场,设出磁场时速度方向平行于x 轴,其半径为3r ,由几何关系得222332R r r R ⎛⎫+-= ⎪⎝⎭解得()3714R r =由233mv qv B r =''得)322713mv B qR= 磁感应强度小于3B ,运转半径更大,出磁场时速度方向偏向x 轴下方,便不会回到电场中6.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-7.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d dr sin sin α===︒ 根据200mv qv B r =得023qBdv =粒子在第一象限中做类平抛运动,则有21602qE r cost m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得0322y v y tan x v α===由几何知识可得 y=r-rcosα= 132r = 则得23x d =所以粒子在第三、四象限圆周运动的半径为125323d d R sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度00432v qBdv v cos α===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动8.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN方向抛出各小球.其中第1个小球恰能通过MN上的C点第一次进入磁场,通过O点第一次离开磁场,OC=2h.求:(1)第1个小球的带电量大小;(2)磁场的磁感强度的大小B;(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q Eh tm=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B由2 1v q vBmR=得1mvRq B=由几何关系得:22sinR hθ=解得:2EBv=;(3)后面抛出的小球电量为q,磁感应强度B'①小球作平抛运动过程2hmx v t vqE==2yqEv hm=②小球穿过磁场一次能够自行回到A,满足要求:sinR xθ=,变形得:sinmvxqBθ'=解得:EBv'=.9.如图所示,在直角坐标系xOy平面内有两个同心圆,圆心在坐标原点O,小圆内部(I区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy平面向里的匀强磁场(图中未画出),I、Ⅱ区域磁场磁感应强度大小分别为B、2B。

3-1磁场1,2,3节精选习题(含答案)

3-1磁场1,2,3节精选习题(含答案)

高中物理3-1第三章磁场第1﹑2﹑3节精选习题大连市物理名师工作室门贵宝1 首先发现电流的磁效应的科学家是( B )(A)安培(B)奥斯特(C)库伦(D)麦克斯韦2 如上右图所示,直角三角形通电闭合线圈ABC处于匀强磁场中,磁场垂直纸面向里,则线圈所受磁场力的合力为( A )(A)大小为零(B)方向竖直向上(C)方向竖直向下(D)方向垂直纸面向里3 两个相同的圆形线圈,通以方向相同但大小不同的电流I1和I2,如图所示。

先将两个线圈固定在光滑绝缘杆上,问释放后它们的运动情况是-( B )(A)相互吸引,电流大的加速度大(B)相互吸引,加速度大小相等(C)相互排斥,电流大的加速度大(D)相互排斥,加速度大小相等4 如图所示,要使线框abcd在受到磁场力作用后,ab边向纸外,cd边向纸里转动,可行的方法是-( )(A)加方向垂直纸面向外的磁场,通方向为a→b→c→d→a的电流(B)加方向平行纸面向上的磁场,通方向为a→b→c→d→a电流(C)加方向平行于纸面向下的磁场,通方向为a→b→c→d的电流(D)加方向垂直纸面向内的磁场,通方向为a→d→c→b→a的电流5 长方体金属块放在匀强磁场中,有电流通过金属块,如图所示,则下面关于金属块上下表面电势高低的说法中,正确的是-( )(A)金属块上、下表面电势相等(B)金属块上表面电势高于下表面电势(C)金属块上表面电势低于下表面电势(D)无法比较上、下表面的电势高低6.在下图中,标出了磁场的方向、通电直导线中电流I的方向,以及通电直导线所受安培力F的方向,其中正确的是(C)8.在下图中,标出了磁场的方向、通电直导线中电流I的方向,以及通电直导线所受安培力F的方向,其中正确的是(C)9.关于磁感应强度,下列说法中正确的是 ( D )A .由可知,B 与F 成正比,与IL 成反比 B .通电导线放在磁场中的某点,那点就有磁感应强度,如果将通电导线拿走,那点的磁感应强度就为零C .通电导线不受安培力的地方一定不存在磁场,即B =0D .磁场中某一点的磁感应强度由磁场本身决定,其大小和方向是唯一确定的,与通电导线无关10.有关磁感应强度的方向,下列说法正确的是 (BCD )A .垂直于磁场放置的通电导线的受力方向就是磁感应强度的方向B .磁感线的指向就是磁感应强度的方向C .磁感应强度的大小、方向与放入其中的通电导线的电流大小、导线长度、导线取向等均无关D .磁感应强度的方向与放入该点的小磁针静止时N 极受力方向一致11.如图所示,在倾角为a 的光滑斜面上,垂直纸面放置一根长为L 、质量为m 的直导体棒。

专题11 磁场(1)(解析版)

专题11 磁场(1)(解析版)

专题11 磁场(1)-高考物理精选考点专项突破题集一、单项选择题:(在每小题给出的四个选项中,只有一项符合题目要求)1、超导是当今高科技的热点之一,当一块磁体靠近超导体时,超导体中会产生强大的电流,对磁体有排斥作用,这种排斥力可使磁体悬浮在空中,磁悬浮列车就采用了这项技术。

磁体悬浮的原理是()①超导体电流的磁场方向与磁体的磁场方向相同②超导体电流的磁场方向与磁体的磁场方向相反③超导体使磁体处于失重状态④超导体对磁体的磁力与磁体的重力相平衡A.①③B.①④C.②③D.②④【答案】D【解析】超导体中产生的是感应电流,根据楞次定律的“增反减同”原理,这个电流的磁场方向与原磁场方向相反,对磁体产生排斥作用力,这个力与磁体的重力达平衡,因此选项D正确。

故本题选D。

【考点】磁场的应用性【难度】中等2、中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也。

”进一步研究表明,地球周围地磁场的磁感线分布示意如图。

结合上述材料,下列说法不正确的是()A.地理南、北极与地磁场的南、北极不重合B.地球内部也存在磁场,地磁南极在地理北极附近C.地球表面任意位置的地磁场方向都与地面平行D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用【答案】C【解析】根据题意知地理南北极与地磁场存在一个夹角叫磁偏角,两者不重合,因此选项A正确。

地磁南极在地理的北极附近,地磁北极在地理南极附近,因此选项B正确。

由于地磁场磁场方向沿磁感线切线方向,故只有赤道处才与地面平行,因此选项C错误。

在赤道处磁场方向水平,而射线是带电的粒子,运动方向垂直磁场方向,根据左手定则可得射向赤道的粒子受到洛伦兹力作用,因此选项D正确。

故本题选C。

【考点】地磁场【难度】中等3、如图所示,一根通电直导线垂直放在磁感应强度为1T的匀强磁场中。

在以导线截面的中心为圆心,r为半径的圆周上有a、b、c、d四个点。

已知a点的实际磁感应强度为0,则下列正确的是()A.直导线中的电流方向垂直纸面向外B.b点的实际磁感应强度为 2 T,方向斜向上,与B的夹角为45°C.c点的实际磁感应强度也为0D.d点的实际磁感应强度与b点相同【答案】B【解析】a点的磁感应强度为0,说明通电导线在a点产生的磁场方向水平向左,由安培定则知直导线中的电流方向垂直纸面向里,因此选项A错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场专题训练(考试时间:60分钟,满分:100分)一、选择题:1、如图所示,以直角三角形AOC 为边界的有界匀强磁场区域,磁感应强度为B ,∠A=60°,AO=a 。

在O 点放置一个粒子源,可以向各个方向发射某种带负电粒子,粒子的电量大小为q ,质量为m ,发射速度大小都为v0,发射方向由图中的角度θ表示.不计粒子间的相互作用及重力,下列说法正确的是( ) A .若v0=,则以θ=0°方向射入磁场的粒子在磁场中运动的时间为B .若v0=,则以θ=60°飞入的粒子在磁场中运动时间最短C .若v0=,则以θ<30°飞入的粒子在磁场中运动的时间都相等D 若v0=,则在AC 边界上只有一半区域有粒子射出4、.如图所示,在半径为R 的圆形区域和边长为2R 的正方形区域里均有磁感应强度大小相同的匀强磁场,两个相同的带电粒子以相同的速率分别从M 、N 两点射入匀强磁场.在M 点射入的带电粒子,其速度方向指向圆心;在N 点射入的带电粒子,速度方向与边界垂直,且N 点为正方形边长的中点,粒子重力不计,则下列说法不正确的是( )A .带电粒子在磁场中飞行的时间可能相同B .从M 点射入的带电粒子可能先飞出磁场C .从N 点射入的带电粒子可能先飞出磁场D .从N 点射入的带电粒子不可能比M 点射入的带电粒子先飞出磁场5.如图所示,MN 为两个匀强磁场的分界面,两磁场的磁感应强度大小的关系为B 1=2B 2,一带电荷量为+q 、质量为m 的粒子从O 点垂直MN 进入磁感应强度为B 1的磁场,则经过多长时间它将向下再一次通过O 点 ( )A.2πm qB 1B.2πm qB 2C.2πm q (B 1+B 2) D.πmq (B 1+B 2)6.在赤道处,将一小球向东水平抛出,落地点为a ;给小球带上电荷后,仍以原来的速度抛出,考虑地磁场的影响,下列说法正确的是 ( )A .无论小球带何种电荷,小球仍会落在a 点B .无论小球带何种电荷,小球下落时间都会延长C .若小球带负电荷,小球会落在更远的b 点D .若小球带正电荷,小球会落在更远的b 点7.如图是某粒子速度选择器的示意图.在一半径为R =10cm 的圆柱形桶内有B =10-4T 的匀强磁场,方向平行于轴线,在圆柱桶某一直径的两端开有小孔,作为入射孔和出射孔.粒子束以不同角度入射,最后有不同速度的粒子束射出.现有一粒子源发射比荷为qm=2×1011C/kg 的阳离子,粒子束中速度分布连续.当角θ=45°时,出射粒子速度v 的大小是 ( )2×106m/s B .22×106m/s C .22×108m/s D .42×106m/s8、设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在静电力和洛伦兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 点时速度为零,C 点是运动的最低点,忽略重力,下述说法中正确的是 ( ) A .该离子必带正电荷 B .A 点和B 点位于同一高度C .离子在C 点时速度最大D .离子到达B 点后,将沿原曲线返回A 点9.如图所示,长为L 的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A.使粒子的速度v<BqL4mB.使粒子的速度v>5BqL4mC.使粒子的速度v>BqLmD.使粒子的速度BqL4m<v<5BqL4m10. 如图所示为圆柱形区域的横截面,在该区域加沿圆柱轴线方向的匀强磁场.带电粒子(不计重力)第一次以速度v1沿截面直径入射,粒子飞入磁场区域时,速度方向偏转60°角;该带电粒子第二次以速度v2从同一点沿同一方向入射,粒子飞出磁场区域时,速度方向偏转90°角.则带电粒子第一次和第二次在磁场中运动的( )A.半径之比为3∶1 B.速度之比为1∶ 3C.时间之比为2∶3 D.时间之比为3∶2二.实验题(15分)12.(10分)某实验小组研究两个未知元件X和Y的伏安特性,使用的器材包括电压表(内阻约为3kΩ),电流表(内阻约为1Ω),定值电阻等。

①使用多用电表粗测元件X的电阻。

选择“×1”欧姆挡测量,示数如图15(a)所示,读数为Ω。

据此应该选择图15中的(填“b”或“c”)的电路进行实验。

②连接所选电路,闭合S;滑动变阻器的滑片P从左向右滑动,电流表的示数逐渐( 填“增大”或“减小”);依次记录电流及相应的电压;将元件X换成Y,重复实验。

③该小组还借助X和Y中的线性元件和阻值R=21Ω的定值电阻,测量待测电池的电动势E和内阻r,电路如图16(b)所示所示。

闭合S1和S2,电压表读数为3.00V;断开S2,读数为1.00V.利用图16(a)可算得E= V,r = Ω(结果均保留两位有效数字,视电压表为理想电压表)二、计算题(45分)13.(12分)如图所示,直线MN上方有磁感应强度为B的匀强磁场.正、负电子同时从同一点O 以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?14、(12分)一匀强磁场,磁场方向垂直于xOy平面.在xOy平面上,磁场分布在以O为圆心的一个圆形区域内.一个质量为m、电荷量为q的带电粒子,由原点O开始运动,初速度为v,方向沿x轴正方向.后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30°,P点到O点的距离为L,如图所示.不计重力的影响,求磁场的磁感应强度B的大小和xOy平面上磁场区域的半径R.15.(11分)如图所示,在空间中固定放置一绝缘材料制成的边长为L 的刚性等边三角形框架△DEF ,DE 边上S 点⎝⎛⎭⎫DS =L 4处有一发射带正电的粒子源,发射粒子的方向皆在图中截面内且垂直于DE 边向下.发射的电荷量皆为q ,质量皆为m ,但速度v 有各种不同的值.整个空间充满磁感应强度大小为B ,方向垂直截面向里的均匀磁场.设粒子与△DEF 边框碰撞时没有能量损失和电荷量传递.求:(1)带电粒子速度的大小为v 时,做匀速圆周运动的半径;(2)带电粒子速度v 的大小满足什么条件时,可使S 点发出的粒子最终又垂直于DE 边回到S 点? (3)这些粒子中,回到S 点所用的最短时间是多少?16、(10分)如图所示,在空间有一坐标系xOy ,其第一象限内充满着两个匀强磁场区域Ⅰ和Ⅱ,直线OP 是它们的边界.区域Ⅰ中的磁感应强度为B ,方向垂直于纸面向外;区域Ⅱ中的磁感应强度为2B ,方向垂直于纸面向内,边界上的P 点坐标为(4L,3L ).一质量为m 、电荷量为q 的带正电粒子从P 点平行于y 轴负方向射入区域Ⅰ,经过一段时间后,粒子恰好经过原点O .忽略粒子重力,已知sin37°=0.6,cos37°=0.8,求: (1)粒子从P 点运动到O 点的时间至少为多少? (2)粒子的速度大小可能是多少?物 理 答案(17)第一题、选择题Y ③3.2 0.50[解析] 由公式轨道半径R =m v qB 和周期T =2πmqB知,它们的半径和周期是相同的.只是偏转方向相反.先确定圆心,画轨迹,后由几何关系求半径,由对称性知:射入、射出点和圆心恰好组成正三角形.所以两个射出点相距2R =2m veB.由图还可看出,经历时间相差2T3=4πm3eB.则v =v1=2.0×104 m/s14. [答案] 3m v qL 33L[解析] 粒子在磁场中受洛伦兹力作用,做匀速圆周运动,设其半径为r , q v B =m v 2r①据此并由题意知,粒子在磁场中的轨迹的圆心C 必在y 轴上,且P 点在磁场区域之外.过P 沿速度方向作反向延长线,它与x 轴相交于Q 点.作圆弧过O 点与x 轴相切,并且与PQ 相切,切点A 即粒子离开磁场区域的点.这样可得到圆弧轨迹的圆心C ,如图所示.由图中几何关系得L =3r .②由①②求得,B =3m v qL.③图中OA 即为圆形磁场区域的半径R ,由几何关系得R =33L . 15、答案] (1)m v qB (2)qBL 4(2n -1)m(n =0,1,2,3,…) (3)8πmqB[解析] (1)带电粒子从S 点垂直于DE 边以速度v 射出后,做匀速圆周运动,其圆心一定位于DE 边上,其半径R 可由q v B =m v 2R 求得,R =m vqB①(2)要求此粒子每次与△DEF 的三条边碰撞时都与边垂直,且能回到S 点,则R 和v 应满足以下条件:DS =L 4=(2n -1)R (n =1,2,3,…)② 由①②得v =qBL4(2n -1)m(n =1,2,3,…)③(3)这些粒子在磁场中做圆周运动的周期为 T =2πR v 将①式代入,得T =2πm qB④可见在B 及qm 给定时T 与v 无关.粒子从S 点出发最后回到S 点的过程中,与△DEF 的边碰撞次数越少,所经历的时间就越短,所以应取n =1,由图可看出该粒子的轨迹包括3个半圆和3个圆心角为300°的圆弧,故最短时间为t =3×T 2+3×5T 6=4T =8πm qB⑤16. [答案] (1)53πm 60qB (2)25qBL12nm(n =1,2,3,…)[解析] (1)设粒子的入射速度为v ,用R 1、R 2、T 1、T 2分别表示粒子在磁场Ⅰ区和Ⅱ区中运动的轨道半径和周期,则有q v B =m v 2R 1,q v ·2B =m v 2R 2, T 1=2πR 1v =2πm qB ,T 2=2πR 2v =πmqB .粒子先在磁场Ⅰ区中做顺时针的圆周运动,后在磁场Ⅱ区中做逆时针的圆周运动,然后从O 点射出,这样粒子从P 点运动到O 点所用的时间最短.粒子运动轨迹如图所示tan α=3L4L =0.75, 得α=37°,α+β=90°.粒子在磁场Ⅰ区和Ⅱ区中的运动时间分别为t 1=2β360°·T 1,t 2=2β360°·T 2,粒子从P 点运动到O 点的时间至少为t =t 1+t 2,由以上各式解得t =53πm60qB.(2)当粒子的速度大小满足一定条件时,粒子先在磁场Ⅰ区中运动,后在磁场Ⅱ区中运动,然后又重复前面的运动,直到经过原点O .这样粒子经过n 个周期性的运动到达O 点,每个周期的运动情况相同,粒子在一个周期内的位移为s =OP n =(4L )2+(3L )2n =5Ln(n =1,2,3,…).粒子每次在磁场Ⅰ区中运动的位移为s 1=R 1R 1+R 2s =23s ,由图中的几何关系可知 s 12R 1=cos α, 由以上各式解得粒子的速度大小为v =25qBL 12nm (n =1,2,3,…).。

相关文档
最新文档