最新人教版高中数学必修二圆的标准方程公开课优质教案
人教版高中数学教案圆的标准方程

人教版高中数学教案圆的标准方程教学目标:1. 理解圆的标准方程的概念和意义。
2. 学会利用圆的标准方程解决实际问题。
3. 掌握圆的标准方程的推导和应用方法。
教学内容:1. 圆的标准方程的定义和意义。
2. 圆的标准方程的推导过程。
3. 圆的标准方程的应用实例。
教学步骤:第一章:圆的标准方程的概念和意义1.1 引入圆的概念:引导学生回顾初中阶段学习的圆的概念,复习圆的性质和特点。
1.2 圆的标准方程的定义:介绍圆的标准方程的定义,解释圆的标准方程的意义。
1.3 圆的标准方程的意义:引导学生理解圆的标准方程在数学中的重要作用,以及它在实际问题中的应用。
第二章:圆的标准方程的推导过程2.1 圆的参数方程:介绍圆的参数方程的概念,引导学生理解参数方程与圆的标准方程的关系。
2.2 圆的标准方程的推导:引导学生通过转化思想,将圆的参数方程转化为标准方程。
2.3 圆的标准方程的简化:引导学生学会简化圆的标准方程,理解圆的标准方程的不同形式。
第三章:圆的标准方程的应用实例3.1 圆的方程与圆的性质:引导学生利用圆的标准方程研究圆的性质,如半径、直径等。
3.2 圆的方程与圆的位置关系:引导学生利用圆的标准方程研究圆与圆的位置关系,如相离、相切等。
3.3 圆的方程与圆的面积:引导学生利用圆的标准方程计算圆的面积,理解圆的面积与半径的关系。
教学评价:1. 通过课堂讲解和练习,评价学生对圆的标准方程的概念和意义的理解程度。
2. 通过课后作业和练习题,评价学生对圆的标准方程的推导和应用能力。
3. 通过小组讨论和问题解答,评价学生对圆的标准方程的实际应用和创新能力。
教学资源:1. 教学PPT:制作精美的教学PPT,展示圆的标准方程的概念和意义,以及推导和应用过程。
2. 练习题库:准备丰富的练习题库,包括不同难度和类型的题目,以供学生课后练习和巩固知识。
3. 教学案例:提供一些与圆的标准方程相关的实际案例,引导学生将理论知识应用于实际问题中。
高中数学4.1.1圆的标准方程教案新人教A版必修2

四、教学策略选择与设计
(1)突出重点抓住关键突破难点
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,在突出重点的同时突破了难点.
(2)A=0,表示点(a,b)
(3)A<0,不表示任何图形
培养学生积极动脑思考,探索未知的能力,以及数形结合的能力
提问式教学,培养观察能力,总结归纳能力
(10分钟)
练习一:
1.说出下列圆的方程:
(1)圆心在原点,半径为3.
(2)圆心在点C(3, -4),半径为7.
部分学生上黑板上演算,教师巡视所有学生答题情况
二、教学目标
知识与技能
1.掌握圆的标准方程;
2.会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
3.利用圆的标准方程解决简单的实际问题.
过程与方法
1.进一步培养学生用代数方法研究几何问题的能力;
2.加深对数形结合思想的理解以及对待定系数法2.选择恰当的坐标系解决与圆有关的实际问题.
六、教学过程
教师活动
学生活动
设计意图
复习引入:请同学们复习一下上节课学习的求轨迹方程的步骤
学生回答:
1.建系设点M (x,y)
2.找等量
3.列方程
4.化简为f(x,y)=0
5.注意x,y的取值范围
复习巩固,为新课做准备
新课讲授:
问题一:圆的定义?
问题二:平面直角坐标系中,如何确定一个
化简可得:
圆的标准方程:
圆心C(a,b),半径r
最新人教版高中数学必修2第四章《圆的标准方程》教学设计

教学设计4.1.1圆的标准方程整体设计一、教学背景分析1.教材结构分析圆是学生比较熟悉的一类曲线,而且是一种对称、和谐的图形,具有很多优美的几何性质.本节内容首先通过圆的定义,求解圆的标准方程,进而变化出圆的一般方程,其次运用代数的方法探讨直线与圆,圆与圆的位置关系,进一步提高学生对解析几何问题研究方法的深入理解.2.教材地位与作用圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.本节内容安排在学生学习直线方程之后,旨在更加深刻的体会曲线和方程的关系,为后继学习做好准备.同时有关圆的问题,特别是圆和直线的位置关系问题,是解析几何的基本问题.这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.圆的方程也属于解析几何学的基础知识,是研究二次曲线的开始,对后继直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有积极的意义.所以本节内容在解析几何中起着承前启后的作用.3.学情分析学生在初中已经学习了圆的概念和基本性质,在高中又掌握了求直线方程的一般方法,但由于学生以往注重从几何的角度理解圆的性质,而且学习解析几何的时间还不长、学习程度较浅,尚未建立牢固的数形结合的思想,对于解析法运用还不够熟练,在学习过程中难免会出现困难.另外学生在探索问题的能力,合作交流的意识等方面有待加强.4.教学目标(1)知识目标:①在平面直角坐标系中,探索并掌握圆的标准方程;②会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.(2)能力目标:①进一步培养学生用解析法研究几何问题的能力;②使学生加深对数形结合思想和待定系数法的理解;③增强学生用数学的意识.(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.5.教学重点、难点(1)教学重点:圆的标准方程的求法及其应用.(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题.二、教法分析高一学生,在教师的引导下,已经具备一定探究与研究问题的能力.所以在设计问题时应考虑全面性和灵活性,采用对比、启发、探究等方式,师生共同探讨,共同参与、共同研究,让学生积极思考,主动学习.在教学过程中采取小组讨论法,向学生提供具备启发性和思考性的问题.因此,要求学生在课堂上小组讨论,然后小组汇报讨论成果,提高学生的探究、推理、想象、表达、分析和总结归纳等方面的能力.因为本节课是在学生对圆的基本性质认识的基础上,再对圆进行代数研究.针对学生的学习过程、认知水平,在遵循参与式教学的基础上,调动全班学生积极参与,认真思考,努力体现学生学习的主体性地位.在学习过程中让学生积极思考,动手计算,不仅在“思维中参与”而且在“行动中参与”,养成主动性的学习习惯.三、学法分析为了重点培养学生分析问题、解决问题的能力.因此,要求学生在学习中遇到问题时,不要急于求成,而是通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过推导圆的标准方程,加深用解析法求轨迹方程的理解.还要会根据问题提供的信息回忆所学知识,采用转化思想、数形结合的思想,选择最佳方案解决.四、教学基本流程及其说明结合教材与新课程标准本节课采用以下流程(一)、教师在理解教材的编写意图的基础上,应发挥主观能动性,对教材资源进行再加工、再创造,这样教学方法更有利于学生的认知结构,也有利于学生从深层次理解和掌握圆的标准方程.(二)、在整个教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机结合起来,教师的每项措施都是力求给学生创造一种思维情境,动手、动脑、动口并且主动参与学习的机会,激发学生求知欲望,促使学生在不知不觉中掌握知识,解决问题.(三)、培养思维,提高能力,激励创新在问题的设计中,利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生注意,使能力与知识的形成相伴而行.五、教学情境设计圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识.另外,为了培养学生的理性思维,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.本节课设计了六个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想.应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维、提高了能力、培养了兴趣、增强了信心.。
高中数学必修二《圆的标准方程》优秀教学设计

4.1.1圆的标准方程教学设计1.内容和内容解析:内容:圆的标准方程。
内容解析:解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,体现数形结合的重要思想方法。
其中圆的标准方程的教学目标主要是:一是经历通过平面直角坐标系建立圆的代数方程的过程,在这个过程中进一步体会坐标法研究几何问题的思想和步骤;二是用两种方法求解圆的方程。
圆是解析几何中一类重要的曲线,在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,处于直线与方程和点,直线与圆的关系的结合点和交汇点上。
学好圆的方程可以为圆锥曲线的学习奠定基础,有利于学生进一步体会数形结合的思想,形成用代数法解决几何问题的能力。
也是培养学生运用能力和运算能力的重要素材。
从知识的结构和内容上都起到相当重要的作用。
2.教学目标:知识与技能(1)在平面直角坐标系中,探索并掌握圆的标准方程;(2)能根据圆心坐标、半径及其特殊情况熟练地写出圆的标准方程;(3)会根据条件选择并求出圆的方程;过程与方法(1)通过平面直角坐标系建立圆的代数方程的过程,让学生进一步体会坐标法在研究几何问题的思想和步骤;(2)通过类比直线方程的学习,发现并理解圆的方程与直线方程学习中相同的知识结构,进一步体会类比的思想;(3)通过求解圆标准的方程,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想;情感态度与价值观通过与直线方程的对比,体会类比思想的应用,让学生学会用联系的观点分析问题,认识事物之间的相互联系与转化;3.教学重难点:重点:(1)类比直线方程的学习,掌握圆的标准方程;难点:(1)圆的代数方程的建立过程;(2)圆的标准方程的灵活应用;落实的途径:(1)通过表格,建立直线与方程,圆与方程的结构图,在复习旧知的同时帮助学生经历坐标法建立圆的代数方程的如下过程:首先将几何问题代数化,用代数语言描述几何要素及其关系,进而将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题。
《圆的标准方程》省优质课比赛优秀教案

圆的标准方程一、教材分析本小节是人教版数学必修2第四章的起始节,只安排一个课时.本节的学习是建立在初中已经学习的圆的有关知识以及前面几节内容的基础之上的.同时由于圆是一种特殊的圆锥曲线,所以学习了圆的方程,也为后面学习其他的圆锥曲线的方程奠定了必要的基础.本节内容在教材体系中起到承上启下的作用,有着不可忽视的重要地位,同时在实际生活中也有着很广泛的应用.本节的学习将培养学生的数学应用意识和数学探究能力.二、教学目标分析1.知识与能力:掌握圆的标准方程并依据不同条件求得圆的方程;培养学生观察、发现和解决问题的能力.2.过程与方法:理解圆的标准方程的推导过程,体会数形结合思想,形成代数方法处理几何问题的思维方式.3.情感、态度与价值观:通过圆在实际问题中的应用,激发学习的热情和兴趣;欣赏和体验圆的对称性,培养数学美感.三、教学重、难点分析重点:圆的标准方程的推导过程和圆的标准方程特点的明确.难点:根据不同条件求圆的标准方程.由于本节内容具有很强的基础性,为了激发学生的学习主动性,建议采用“引导探究”的教学方式进行教学设计.师生的有效互动将使学生容易理解圆的标准方程的推导过程,明确圆的标准方程的特点.教学时充分利用课本上提供的两个例题,引导学生做好总结,通过例题的妥善解决使学生初步熟悉根据不同条件求圆的标准方程的一般方法.四、学情分析由于本节课用到初中的圆的知识和前面几节的内容,因此在课前必须先做好充分的预习,让学生带着疑问听课,以提高听课效率.采取学生共同探究问题的学习方法,先让学生带着问题预习课文,对圆的方程有个初步的认识,在教学过程中,主要采用启发性原则,发挥学生的思维能力、空间想象能力.在教学中,还不时补充练习题,以巩固学生对新知识的理解,并紧紧与考试相结合.五、教学环境分析由于本节的内容具有基础性,学生比较熟悉且容易接受,因此不需要采用多媒体课件辅助.建议在普通教室教学即可.六、教学过程(一)直接导入引言:我们知道直线可以用一个方程表示,那么圆是否也可以用一个方程表示呢?那么圆的方程如何求呢?【设计意图】通过直线想到圆,引出课题——圆的标准方程.(二)新课探究1.旧知回顾:(1)已知两点A (1,-2),B (3,5),如何求它们之间的距离?若已知C (3,-8),D (x ,y ),又如何求C 、D 的距离?(2)具有什么性质的点的轨迹称为圆?(3)在平面直角坐标系中,确定一条直线的条件是什么?那么确定一个圆的条件是什么呢?【设计意图】复习已经学过的有关知识,为圆的标准方程的推导做铺垫.2.新知探究:探究1:已知圆C 的圆心坐标C (a ,b ),圆的半径为r ,我们能否写出圆C 的方程?师生活动:学生自主探究圆C 的方程,教师引导提示.学生不难找出圆的方程为222)()(r b y a x =-+-.(*)【设计意图】引导学生根据上面复习过的有关知识推导圆的标准方程.培养学生的自主学习能力和探究能力.教师引导学生讨论:(1)若点),(y x M 在圆C 上,则点M 的坐标满足方程(*)吗?(2)若点),(y x M 坐标满足方程(*),则点M 在圆C 上吗?【设计意图】让学生验证探究出来的圆的方程具有充分性和完备性两个方面.教师指出:方程(*)就是圆心在C (a ,b ),半径为r 的圆的标准方程.探究2:圆的标准方程有什么特点?师生活动:学生观察求出的方程(*),找出它所具有的特征.可以请学生合作交流.个别学生展示答案,教师总结归纳.【设计意图】让学生明确圆的标准方程的特点,为识记和熟练应用做准备.培养学生的观察能力、分析能力和合作交流能力.探究3:如果要求一个圆的标准方程,必须知道哪些条件?怎样确定一个圆的标准方程呢?师生活动:学生自主分析、总结.教师请个别学生回答,及时鼓励评价.【设计意图】进一步明确圆的标准方程的特点,分析寻找圆的标准方程的思路,为圆的标准方程的熟练应用做铺垫.探究4:在直角坐标平面内,点与圆的位置关系有几种?如何判断呢?师生活动:教师引导学生结合图形分析:点到圆心的距离d和圆的半径之间的大小关系对点与圆的位置关系的影响.学生总结点与圆的位置关系的三种情形及判断方法.【设计意图】让学生明确圆的标准方程在判断点与圆的位置关系时的方便之处,体会到圆的标准方程的优点和魅力.(三)应用分析例1.写出下列各圆的标准方程.(1)圆心坐标为(-4,-3)半径为6;(2)圆心坐标为(2,5)半径为3;(3)经过点P(1,2),且圆心在(2,-1);(4)圆心在C(1,3),且和直线0+yx相切.-1=师生活动:(1)(2)学生口答,教师给予积极的评价.(3)(4)可以让学生思考作答,教师在需要时给予提示.教师展示学生解答,并板书详细过程.【设计意图】熟悉圆的标准方程的简单应用.提高分析解决问题的能力.例2.写出圆心在A(-2,1),半径为2的圆的标准方程,并判断点M(0,2)和N(-1,1)和圆的位置关系.师生活动:学生自主完成本题.教师巡查指导解决疑难.【设计意图】巩固判断点与圆的位置关系的方法,进一步熟悉圆的标准方程的简单应用.例3.△ABC的三个顶点坐标分别为A(5,1),B(7,-3)),C(2,-8),求它的外接圆的方程.师生活动:学生先思考,找出思路,教师分析总结.学生写出解答过程,教师展示个别学生答案,并给予评价和鼓励.然后教师板书完整解答过程.最后教师总结提炼方法——待定系数法.【设计意图】让学生体会待定系数法在求圆的方程的应用.培养学生分析和解决综合问题的能力和计算能力,培养学生用代数方法解决几何问题的思维方式.(四)练习巩固本节练习1、2.师生活动:学生独立完成,教师巡查指导,展示答案,及时评价.【设计意图】及时巩固本节所学的知识,提升分析问题、解决问题的能力.(五)课堂小结(1)本节课你学习了哪些知识点?(2)本节课你学会了哪些数学思想方法?(3)你还有什么疑问或者还有什么话想说吗?师生活动:学生总结,教师及时评价鼓励.【设计意图】回顾本节所学的知识点和数学方法,让学生养成及时总结反思的好习惯,提高学生的总结、反思能力.(六)作业巩固习题4.1第2、3、4题.【设计意图】课后复习巩固本节所学的知识,提升迁移能力.七、教学反思:新课标倡导积极主动、勇于探索的学习方式,强调形成积极主动的学习态度,使获得知识与技能的过程成为学会学习、形成正确价值观的过程.因此在教学中,我设计一系列探究问题,引导学生自主探索、积极思考、主动学习,适时安排小组讨论活动,让他们阐述自己的见解.本节课的设计通过适当的创设情境,调动学生的学习兴趣,然后以问题做链,环环相扣,运用前段时间学习的求曲线的方法引导学生探索方程,使学生的探究活动贯穿始终.从圆的标准方程的推导到标准方程的求解都是在问题的指引下,通过我的适度引导、侧面帮助、不断肯定,由学生探究完成并走向成功.。
人教高中数学 必修二 4.1.1圆的标准方程(公开课教案)

《4.1.1 圆的标准方程》教案
授课时间:授课地点:授课教师:
一、教材分析:圆是解析几何中一类重要的曲线,是在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,在学习中使学生进一步体会数形结合的思想,形成用代数方法解决几何问题的能力,是进一步学习圆锥曲线的基础。
对于知识的后续学习,具有相当重要的意义.
二、教学目标:
1、知识与技能:①掌握圆的标准方程,能根据圆心、半径写出圆的标准方程;反之,
会根据圆的标方程,求圆心和半径;
②会判断点和圆的位置关系;
③会用待定系数法和几何法求圆的标准方程;
2、过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思
想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问
题、发现问题和解决问题的能力.
3、情感态度和价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习
数学的热情和兴趣.
三、内容分析:
重点:圆的标准方程的求法及其应用
难点:会根据不同的已知条件求圆的标准方程
四、教具学具的选择:多媒体、圆规、直尺、课件.
五、教学方法:采用“问题-探究”教学法.
六、教学过程:。
人教课标版高中数学必修2《圆的标准方程》教学设计

4.1圆的方程4.1.1圆的标准方程一、教学目标(一)核心素养通过本节课的学习,掌握圆的定义,并根据此定义得出圆的标准方程.(二)学习目标掌握圆的定义及圆的标准方程,会利用条件求圆的标准方程.(三)学习重点利用各种条件求圆的标准方程.(四)学习难点根据圆的定义推导圆的标准方程以及求圆的标准方程.二、教学设计(一)课前设计1.预习任务读一读:阅读教材第118页到119页,填空:确定一个圆的最基本的要素是圆心和半径;圆心为点(,)a b ,半径为r 的圆的标准方程为222()()x a y b r -+-=.2.预习自测(1)圆心在点(1,2),半径为5的圆的标准方程为( )A.22(1)(2)5x y +++=B.22(1)(2)25x y +++=C.22(1)(2)5x y -+-=D.22(1)(2)25x y -+-=【知识点】圆的标准方程.【解题过程】由条件知1,2,5a b r ===,代入标准方程得:22(1)(2)25x y -+-=【思路点拨】熟记圆的标准方程,明确各字母的具体含义.【答案】D(2)若点(15,)M a a +在圆22(1)26x y -+=上,则实数a =( )A.1B. 1±C.2D.【知识点】点与圆的位置关系.【解题过程】由条件,将点M 的坐标代入圆的方程得21a =,故1a =±【思路点拨】点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:(1)点0M 在圆C 上⇔22200()()x a y b r -+-=;(2)点0M 在圆C 内⇔22200()()x a y b r -+-<;(3)点0M 在圆C 外⇔22200()()x a y b r -+->;【答案】B(3)已知点(1,1),(1,1)A B --,则以线段AB 为直径的圆的标准方程为( )A.221x y +=B. 22x y +=C. 222x y +=D. 224x y +=【知识点】圆的标准方程.【解题过程】由线段AB 为直径,所以圆心为(0,0),半径12r AB ==圆的标准方程为222x y +=【思路点拨】求圆的标准方程就是要找出圆心坐标和半径.【答案】C(二)课堂设计1.知识回顾:(1)在直角坐标平面中确定一条直线的方法有哪些?两点可以确定一条直线;一点和倾斜角可以确定一条直线;横、纵截距可以确定一条直线等等. (2)直角坐标平面中两点间的距离公式:设点1122(,)(,)A x y B x y 、,则这两点间的距离AB =2.问题探究探究一 圆的定义•活动① 在直角坐标平面中,如何确定一个圆?显然,当圆心位置和半径大小确定后,这个圆也就唯一确定了.因此,确定一个圆的最基本的要素就是圆心和半径.【设计意图】通过和直线的类比,引导学生分析出圆的基本要素,为后面圆的定义打基础.•活动② 当圆心位置C 和半径r 的大小确定后,如何定义一个圆?平面上到定点C 的距离等于半径r 的点M 的集合,叫做以C 为圆心,为半r 径的圆.【设计意图】从理性分析到感性认识,得出圆的定义.探究二 圆的标准方程•活动① 如果圆心C 的坐标为(a,b ),半径大小为r ,那么圆的方程是什么?设圆上任意一点M (x,y ),则M 到圆心C 的距离等于半径r ,圆心为C 的集合就是{}P M MC r ==,由两点间的距离公式,点M 适合的条件可以表示为22()()x a y b r -+-=两边平方,得:222()()x a y b r -+-=……………………⑴ 若点M (x,y )在圆上,由上述讨论可知,点M 的坐标适合方程(1);反之,若点M (x,y )的坐标适合方程(1),这说明点M 到圆心C 的距离等于半径r ,即点M 在圆心为C 的圆上.我们就把方程(1)称为圆心为C (a,b ),半径为r 的圆的标准方程.【设计意图】利用两点间的距离公式和圆的定义推导出圆的标准方程,实现从几何到代数的转化.探究三 点和圆的位置关系•活动① 由探究二我们知道,如果点000(,)M x y 在圆222()()x a y b r -+-=上,则满足22200()()x a y b r -+-=.那么点000(,)M x y 在圆222()()x a y b r -+-=内又要满足什么条件呢?在圆222()()x a y b r -+-=外呢?点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:(1)点0M 在圆C 上22200()()x a y b r ⇔-+-=;(2)点0M 在圆C 内22200()()x a y b r ⇔-+-<;(3)点0M 在圆C 外22200()()x a y b r ⇔-+->;【设计意图】掌握点与圆的位置关系和刻化方法.巩固基础,检查反馈例1. 圆22(2)(3)2x y ++-=的圆心坐标和半径分别为( )A. (2,3),-B. (2,3),2-C. (2,3),-D. (2,3),2-【知识点】圆的圆心坐标和半径.【解题过程】由圆的标准方程可知圆心坐标为(2,3)-,半径r =【思路点拨】比较该方程与圆的标准方程即可.【答案】A同类训练 圆22(1)(2)5x y -++=的圆心到直线y x =的距离为( )A. B. C. D. 5 【知识点】由圆的方程得圆的圆心坐标以及点到直线距离公式的使用.【解题过程】由圆的方程可知该圆的圆心为(1,2)-,由点到直线的距离公式得所.【思路点拨】比较方程和圆的标准方程得出圆心坐标,再利用点到直线的距离公式即可求解.【答案】C例2.已知点A (0,-1),B (2,1),则以线段AB 为直径的圆的标准方程为( )A.22(1)1x y -+=B.221)1x y ++=(C.221)2x y -+=(D.22(1)2x y ++=【知识点】求出圆心坐标和半径,进而写出圆的标准方程.【解题过程】因为线段AB 为直径,所以圆心坐标为(1,0),半径12r AB ==所以圆的方程为221)2x y -+=( 【思路点拨】找圆心坐标和半径大小是求得方程的关键.【答案】C同类训练 圆心在直线:230l x y --=上,且过点(5,2)(3,2)A B -和的圆的标准方程为( )A.22(2)(1)10x y -+-=B.22(2)(1)x y -+-=C.22(2)(1)10x y +++=D. 22(2)(1)x y +++=【知识点】求出圆心坐标和半径,进而写出圆的标准方程.【解题过程】∵圆过点(5,2)(3,2)A B -和,所以圆心必在线段AB 的垂直平分线上,即在直线:24l x y '+=上. 由条件圆心必为l 与l '的交点,所以由23022401x y x x y y --==⎧⎧⇒⎨⎨+-==⎩⎩,所以圆心为(2,1)C ,半径r AC ==,所以所求圆的方程为22(2)(1)10x y -+-=【思路点拨】如果圆过两个点,那么圆心一定在过这两点的弦的中垂线上.【答案】A强化提升、灵活应用例3、已知圆与x 轴相切,圆心在直线y =2x 上,且被直线x +y -3=0平分周长,求该圆的标准方程.【知识点】由条件确定圆心坐标和半径大小,进而确定圆的方程.【解题过程】∵圆被直线平分周长,∴圆心必在直线x +y -3=0上,所以由条件可知圆心为直线y =2x 和x +y -3=0的交点,即圆心C (1,2);又圆与x 轴相切,所以半径即为圆心纵坐标,即r =2,故圆的标准方程为22(1)(2)4x y -+-=【思路点拨】直线平分圆周长,则圆心必在该直线上.【答案】22(1)(2)4x y -+-=例4. 已知点1)A 在圆22()(1)15x m y m ++-=-的外部,则实数m 的取值范围是( )A.32m -<<-B.23m <<C.32m m <->-或D.1325m m <--<<或 【知识点】圆的标准方程以及点与圆的位置关系. 【解题过程】条件等价于2150715m m m->⎧⎨+>-⎩,解得:1325m m <--<<或 【思路点拨】要注意圆的标准方程中等号后面是半径的平方(容易遗漏)【答案】D同类练习 已知过点(1,2)A 的直线始终与圆222()()2C x a y a a -++=:相交,则实数a 的取值范围是___________.【知识点】点与圆的位置关系.【解题过程】条件等价于点A 在圆C 的内部,所以有222(1)(2)2a a a -++<,解得52a -≤ 【思路点拨】过定点的直线始终与圆相交等价于定点必在圆内部. 【答案】52a -≤ 3.课堂总结知识梳理(1)确定圆的基本要素是圆心和半径;(2)圆心为C (a,b ),半径为r 的圆的标准方程为222()()x a y b r -+-= (3)点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:点0M 在圆C 上22200()()x a y b r ⇔-+-=;点0M 在圆C 内22200()()x a y b r ⇔-+-<;点0M 在圆C 外22200()()x a y b r ⇔-+->重难点归纳(1)圆的标准方程的推导思想和过程;(2)在各种条件下会求圆的圆心坐标和半径大小,进而求出圆的方程.(三)课后作业基础性 自主突破1.经过点(5,1)P ,圆心为(8,3)C -的圆的方程为( )A.22(8)(3)25x y +++=B.22(8)(3)25x y -++=C.22(8)(3)25x y -+-=D.22(8)(3)25x y ++-=【知识点】圆的标准方程【解题过程】有条件知,圆的半径为5r PC ==,所以圆的方程为22(8)(3)25x y -++=【思路点拨】圆上一点到圆心的距离即为半径.【答案】B2.已知圆22(1)(2)5x y -++=,则点(1,0)M 与该圆的位置关系是( )A.M 在圆内B. M 在圆上C. M 在圆外D.以上都不对【知识点】点和圆的位置关系.【解题过程】由于22(11)(02)45-++=<,所以M 在圆内.【思路点拨】点和圆的位置关系由点到圆心的距离和半径的关系决定.【答案】A3.圆22(3)(2)5x y -+-=关于原点(0,0)对称的圆的方程为( )A.22(3)(2)5x y -+-=B.22(3)(2)5x y ++-=C.22(3)(2)5x y +++=D.22(3)(2)5x y -++=【知识点】圆关于点的对称圆.【解题过程】圆22(3)(2)5x y -+-=的圆心(3,2)关于原点(0,0)的对称点(3,2)--即为所求圆的圆心,半径保持不变任为,故所求圆的方程为22(3)(2)5x y +++=【思路点拨】圆关于点的对称圆只是圆心对称,半径不变.【答案】C4.已知点(51,12)A a a +在圆22(1)1x y -+=的内部,则( ) A.1a < B.113a < C.15a < D. 113a < 【知识点】点与圆的位置关系 【解题过程】由点与圆的位置关系可知221(5)(12)113a a a +<⇒< 【思路点拨】点和圆的位置关系由点到圆心的距离和半径的关系决定.【答案】D5.已知圆C 的圆心在直线270x y --=上,且圆C 与y 轴交于两点(04)(02)A B --,、,,则圆C 的标准方程为( )A.22(2)(3)5x y -++=B.22(2)(3)25x y -++=C.22(3)(2)5x y ++-=D.22(3)(2)25x y ++-=【知识点】圆的标准方程【解题过程】∵线段AB 为圆的弦,∴圆心C 在线段AB 的中垂线3y =-上,又圆心C 在直线270x y --=上,∴圆心为(2,3)C -,半径r AC ==,∴圆C 的标准方程为22(2)(3)5x y -++=【思路点拨】求圆的方程就是想办法确定圆心坐标和半径大小.【答案】A6.已知ABC ∆的三个顶点分别为(05),(12),(34)A B C ---,,,,则ABC ∆的外接圆的方程为( )A.22(3)(1)25x y -++=B.22(3)(1)5x y -++=C.22(3)(1)25x y ++-=D.22(3)(1)5x y ++-=【知识点】线段的垂直平分线和圆的标准方程.【解题过程】∵线段AB BC 、为所求圆的两条弦,∴圆心在AB BC 、的垂直平分线的交点,即在直线7100x y -+=和250x y ++=的交点(3,1)M -,半径5r AM ==,所以所求圆的方程为22(3)(1)25x y ++-=【思路点拨】圆的圆心必在弦的垂直平分线上.【答案】C能力型 师生共研7.与圆22(2)(3)16x y -++=有相同的圆心,且过点(11)P -,的圆的标准方程为( )A.22(2)(3)25x y ++-=B.22(2)(3)25x y -++=C.22(2)(3)16x y ++-=D.22(2)(3)16x y -++=【知识点】同心圆问题.【解题过程】由条件知所求圆的圆心为(2,3)C -,半径为5r PC ==另解:由条件设圆的方程为222(2)(3)x y r -++=,将点(11)P -,代入可求得225r = 【思路点拨】同心圆问题可以直接找圆心和半径求解,也可以用同心圆系方程222(2)(3)x y r -++=解决.【答案】B8.圆22:(3)(1)10M x y -++=关于直线20x y -=的对称圆的方程为( )A.22(1)(3)10x y -+-=B.22(1)(3)x y -+-=C.22(1)(3)10x y -++=D.22(1)(3)x y -++=【知识点】圆关于直线的对称圆问题.【解题过程】设对称圆的圆心为(,)a b ,则由条件有31201221323a b a b b a +-⎧-=⎪=⎧⎪⇒⎨⎨+=⎩⎪=-⎪-⎩,【思路点拨】圆关于直线的对称圆,只需将圆心对称,半径不变.【答案】A探究型 多维突破9.已知圆C 过点(12)P ,和(23)Q -,,且圆C 在两坐标轴上的截得的弦长相等,则圆C 的方程为( )A.22(1)(1)5x y ++-=B.22(2)(2)25x y +++=C.22(1)(1)5x y ++-=或22(2)(2)25x y +++=D.22(1)(1)25x y ++-=或22(2)(2)25x y +++=【知识点】圆的标准方程和弦长问题.【解题过程】如图,由于截得的弦长相等,即AD EG =,所以它们的一半也相等,即AB GF =,又AC GC =,所以直角ABC GFC ∆∆≌,BC FC =∴,设圆心(,)C a b ,则a b =……①,又圆心(,)C a b 在线段PQ 的垂直平分线34y x =+上,所以34b a =+……②,联立①②解得:11a b =-⎧⎨=⎩或22a b =-⎧⎨=-⎩,半径r =或5.【思路点拨】根据几何关系,用待定系数法求圆心坐标是关键.【答案】C10.已知四点(20),(100),(113),(61)M N P Q ,,,,,那么这四点共圆吗?如果共圆,求出圆的方程;如果不共圆,说明理由.【知识点】圆的方程和点共圆问题.【解题过程】设MNP ∆的外接圆的标准方程为222()()x a y b r -+-=,把点,,M N P 的坐标代入得到:222222222(2)()6(10)()3(11)(3)5a b r a a b r b a b r r ⎧-+-==⎧⎪⎪-+-=⇒=⎨⎨⎪⎪-+-==⎩⎩,即外接圆为22(6)(3)25x y -+-=,将(6,1)Q 代入圆的方程得22(66)(13)425-+-=≠,即点Q 不在圆上,故,,,M N P Q 四点不共圆.【思路点拨】多点共圆问题可以先求三点所共的圆的方程,在用点与圆的位置关系判断其他的点在不在圆上.【答案】不共圆自助餐1.已知点(32),(54)A B --,,,则以线段AB 为直径的圆的方程为( ) A.22(1)(1)25x y -++= B.22(1)(1)25x y ++-=C.22(1)(1)100x y -++=D.22(1)(1)100x y ++-=【知识点】圆的标准方程.【解题过程】由于线段AB 为直径,所以圆心为(32),(54)A B --,,的中点即(1,1)-,半径152r AB ==,所以圆的方程为22(1)(1)25x y ++-= 【思路点拨】【答案】B2.过点(11),(11)A B --,,,且圆心在直线20x y +-=上的圆的方程为( ) A.22(3)(1)4x y -++= B.22(3)(1)4x y ++-=C.22(1)(1)4x y -+-=D.22(1)(1)4x y +++=【知识点】圆的标准方程.【解题过程】线段AB 的垂直平分线y x =与直线20x y +-=的交点(1,1)M 即为所求圆的圆心,半径2r AM ==,所以圆的方程为22(1)(1)4x y -+-=【思路点拨】圆的弦的垂直平分线必过圆心.【答案】C3.若点(2,2)在圆22()()16x a y a ++-=的内部,则实数a 的取值范围是( )A.22a -<<B. 02a <<C. 2a <-或2a >D.2a =±【知识点】点与圆的位置关系.【解题过程】由条件有22(2)(2)1622a a a ++-<⇒-<<【思路点拨】点在圆内即点到圆心的距离小于半径.【答案】A4.已知圆221:(1)(1)1C x y ++-=,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A.22(2)(2)1x y ++-=B.22(2)(2)1x y -++=C.22(2)(2)1x y +++=D.22(2)(2)1x y -+-=【知识点】圆关于直线的对称圆.【解题过程】设圆2C 的圆心为(,)a b ,则依题意有11102221211a b a b b a -+⎧--=⎪=⎧⎪⇒⎨⎨-=-⎩⎪=-⎪+⎩,对称圆的半径保持不变任为1,故圆2C 的方程为22(2)(2)1x y -++=【思路点拨】圆关于直线的对称圆,即为圆心的对称,半径不变.【答案】B5.设点(00),(11),(42)A B C ,,,,若线段AD 为ABC ∆外接圆的直径,则点D 的坐标为( )A.(8,6)-B. (8,6)-C. (4,6)-D. (4,3)-【知识点】圆的标准方程和点与圆的位置关系.【数学思想】【解题过程】线段AB 的垂直平分线10x y +-=与线段AC 的垂直平分线250x y +-=的交点即为圆心(4,3)-,直径为10,易得点D 的坐标为(8,6)-【思路点拨】圆的弦的垂直平分线一定过圆心.【答案】B6.若圆22()()8x a y a -+-=,则实数a 的取值范围是( )A.(3,1)(1,3)--B.(3,3)-C. [1,1]-D. (3,1][1,3)--【知识点】圆的定义.【解题过程】若0a ≥,由条件可知圆上距原点最近点d <,最远点d <<,∴最近点(2,2)a a --,最远点(2,2)a a ++,<,<<,解得13a <<;同理当0a <时有31a -<<-【思路点拨】根据圆的定义把存在为题转化为距离问题.【答案】A。
人教版高中必修2《圆的方程》教学设计

人教版高中必修2《圆的方程》教学设计《人教版高中必修2《圆的方程》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教材分析1.教学内容普通高中课程标准实验教科书《数学》必修2第二章平面解析几何初步中2﹒2节圆与方程。
本节主要研究圆的方程,直线与圆的位置关系,圆与圆的位置关系,以及他们在生活中的简单运用。
2.教材的地位与作用圆是最简单的曲线之一,这节教材安排在学习了直线之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论为后继学习作好准备。
同时有关圆的问题,特别是直线与圆的位置问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法。
应此教学中应加强练习,使学生确实掌握这单元的知识和方法。
初中教材中对圆的内容降低最低要求。
本课是单元的第一课,和直线方程一样,教学中先设计一个问题情景,让学生讨论,并引导学生观察圆上点在运动时,不变的是什么,抓住圆的本质,突破难点。
3.三维目标(1)知识与技能A.掌握圆的标准方程,并根据方程写出圆的坐标和圆的半径。
B.会选择适当的坐标系来解决与圆有关的实际问题。
(2)过程与方法A.实际问题引入,师生共同探讨。
B.探究曲线方程的基本方法。
(3)情感态度与价值观培养用坐标法研究几何问题的兴趣。
4.教学重点圆的标准方程及运用5.教学难点求圆的标准方程的条件的确定。
二.教法分析高一学生,在老师的引导下,已经具备一定探究与研究问题的能力。
所以在设计问题时应考虑周全和灵活性,采用启发式探索式教学,师生共同探讨,共同研究,让学生积极思考,主动学习。
在教学过程中采用讨论法,向学生提供具备启发式和思考性的问题。
因此,要求学生在课上讨论,提高学生的探索,推理,想象,分析和总结归纳等方面的能力。
三.学法分析从高考发展的趋势看,高考越来重视学生的分析问题解决问题的能力。
因此,要求学生在学习中遇到问题时,不要急于求成,而要根据问题提供的信息回忆所学知识,采用转化思想,数形结合的思想,选择最佳方案加以解决“瞎撞,乱撞”的不良思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
课堂估计: 一种是非尺规作图 (指出数学作图的严谨性 );一种作出后有同学觉得不够美 (点评 :其实每
个人心中都有一个自己的太阳 ,每个人都有自己的审美观点 ).
然后上升到数学层次:
不同的圆心和半径对应着不同的圆 ,进而对应着不同的圆的方程 .
从用圆规作图复习初中所学圆的定义:到定点的距离等于定长的点的轨迹
,坐标法不仅是研究几何问题的
重要方法 ,而且是一种广泛应用于其他领域的重要数学方法
,通过坐标系把点和坐标、曲线和方程联系起
来 ,实现了形和数的统一 ,因此在教学过程中 ,要始终贯穿坐标法这一重要思想 ,不怕反复 .用坐标法解决几
何问题时 ,先用坐标和方程表示相应的几何元素 :点、 直线、 圆 ;然后对坐标和方程进行代数运算 ;最后把运
研究点与圆、直线与圆、圆与圆的位置关系
,了解空间直角坐标系 ,以便为今后的坐标法研究空间的几何
对象奠定基础 ,这些知识是进一步学习圆锥曲线方程、导数和微积分的基础
,在这个过程中进一步体会数
形结合的思想 ,形成用代数方法解决几何问题的能力 .
通过方程 ,研究直线与圆、圆与圆的位置关系是本章的重点内容之一
2.过程与方法 进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际
问题的学习,注意培养学生观察问题发现问题和解决问题的能力
.
3.情感态度与价值观
通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣
.
三、教学重点与难点
教学重点: 圆的标准方程的推导过程和圆的标准方程特点的明确
,进一步运用解
析法研究圆的方程 ,它与其他图形的位置关系及其应用 .同时 ,由于圆也是特殊的圆锥曲线 ,因此 ,学习了圆
的方程 ,就为后面学习其他圆锥曲线的方程奠定了基础
.也就是说 ,本节内容在教材体系中起到承上启下的
作用 ,具有重要的地位 ,在许多实际问题中也有着广泛的应用 .由于 “圆的方程 ”一节内容的基础性和应用的
广泛性 ,对圆的标准方程要求层次是 “掌握 ”为,了激发学生的主体意识 ,教学生学会学习和学会创造 ,同时
培养学生的应用意识 ,本节内容可采用 “引导探究 ”型教学模式进行教学设计 ,所谓 “引导探究 ”是教师把教
学内容设计为若干问题 ,从而引导学生进行探究的课堂教学模式
,教师在教学过程中 ,主要着眼于 “引 ”启,
.
那么在给定圆心和半径的基础上 ,结合我们前面所学的直线方程的求解 ,应该如何建立圆的方程?教
师板书本节课题 :圆的标准方程 .
思路 2.同学们 ,我们知道直线可以用一个方程表示 ,那么 ,圆可以用一个方程表示吗?圆的方程怎样来
求呢 ?这就是本堂课的主要内容 ,教师板书本节课题 :圆的标准方程 .
(二)推进新课、新知探究、提出问题
第四章 圆与方程
本章教材分析
上一章 ,学生已经学习了直线与方程 ,知道在直角坐标系中 ,直线可以用方程表示 ,通过方程 ,可以研究
直线间的位置关系、 直线与直线的交点坐标、 点到直线的距离等问题 ,对数形结合的思想方法有了初步体
验 .本章将在上章学习了直线与方程的基础上 ,学习在平面直角坐标系中建立圆的代数方程 ,运用代数方法
①已知两点 A(2,-5),B(6,9), 如何求它们之间的距离 ?若已知 C(3,-8),D(x,y), 又如何求它们之间的距离 ?
②具有什么性质的点的轨迹称为圆?
③图 1 中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?
精品资料,祝您成功。
图1
④我们知道 ,在平面直角坐标系中 ,确定一条直线的条件是两点或一点和倾斜角
⑤确定圆的基本条件是圆心和半径 ,设圆的圆心坐标为 C(a,b),半径为 r(其中 a、 b、 r 都是常数 ,r> 0).
设 M(x,y) 为这个圆上任意一点 ,那么点 M 满足的条件是 (引导学生自己列出 )P={M||MA|=r}, 由两点间的距
发学生 “探 ”把,“引 ”和 “探 ”有机的结合起来 . 教师的每项教学措施 ,都是给学生创造一种思维情境 ,一种动
脑、动手、动口并主动参与的学习机会 ,激发学生的求知欲 ,促使学生解决问题 .
二、教学目标
1.知识与技能
(1)掌握圆的标准方程,能根据圆心、半径写出圆的标准方程
.
(2)会用待定系数法求圆的标准方程 .
.
精品资料,祝您成功。
教学难点 :会根据不同的已知条件 ,利用待定系数法求圆的标准方程 .
四、课时安排
1 课时
五、教学设计
(一)导入新课
思路 1.课前准备: (用淀粉在一张白纸上画上海和山 )
说明 :在白纸上要表演的是一个小魔术 ,名称是《日出》 ,所以还缺少一个太阳 ,请学生帮助在白纸上画
出太阳 .要求其他学生在自己的脑海里也构画出自己的太阳
( x1 x2 ) 2 ( y1 y2 ) 2 ,得
②平面内与一定点距离等于定长的点的轨迹称为圆
, 定点是圆心 ,定长是半径 (教师在黑板上画一个
圆 ).
③圆心 C 是定点 ,圆周上的点 M 是动点 ,它们到圆心距离等于定长 |MC|=r, 圆心和半径分别确定了圆的
位置和大小 .
④确定圆的条件是圆心和半径 ,只要圆心和半径确定了 ,那么圆的位置和大小就确定了 .
算结果 “翻译 ”成相应的几何结论 .这就是坐标法解决几何问题的三步曲 .坐标法还可以与平面几何中的综
合方法、向量方法建立联系 ,同时可以推广到空间 ,解决立体几何问题 .
本章教学时间约需 9 课时 ,具体分配如下 (仅供参考 ):
4.1.1
圆的标准方程
1 课时
4.1.2
圆的一般方程
1 课时
4.2.2
圆与圆的位置关系
2 课时
4.3.1
空间直角坐标系
1 课时
4.3.2
空间两点间的距离公式
1 课时
本章复习
精品资料,祝您成功。
1 课时
一、教材分析
§4.1 圆的方程 §4.1.1 圆的标准方程
在初中曾经学习过圆的有关知识 ,本节内容是在初中所学知识及前几节内容的基础上
,那么 ,决定圆的条件
是什么 ?
⑤如果已知圆心坐标为 C(a,b), 圆的半径为 r,我们如何写出圆的方程 ?
⑥圆的方程形式有什么特点?当圆心在原点时
,圆的方程是什么?
讨论结果: ①根据两点之间的距离公式
|AB|= ( 2 6) 2 (9 5)2 212 , |CD|= ( x 3) 2 ( y 8) 2 .