电路分析答案第三章

合集下载

电路分析基础作业参考解答

电路分析基础作业参考解答
解得
对于第二个分解电路,由分流公式有
由叠加定理得
4-8 题4-8图所示电路中 , ,当开关 在位置1时,毫安表的读数为 ;当开关 合向位置2时,毫安表的读数为 。如果把开关 合向位置3,则毫安表的读数为多少
题4-8图
解:将上图可知,产生毫安表所在支路电流的原因有电流源和电压源,电流源一直保持不变,只有电压源在变化,由齐次定理和叠加定理,可以将毫安表所在支路电流 表示为
题3-20图
解:选取参考节点如图所示,其节点电压方程为
整理得
因为
, ,
所以


3-21 用节点电压法求解题3-21图所示电路中电压 。
解:选取参考节点如图所示,其节点电压方程为
其中
解得 。

题3-21图
3-22 用节点电压法求解题3-13。
题3-22图
解:(1)选取参考节点如图(a)所示,其节点电压方程为

故电压源的功率为
(发出)
电流源的功率为
(发出)
电阻的功率为
(吸收)
1-8 试求题1-8图中各电路的电压 ,并分别讨论其功率平衡。
(b)解:标注电流如图(b)所示。
由 有

由于电流源的功率为
电阻的功率为
外电路的功率为

所以电路的功率是平衡的,及电路发出的功率之和等于吸收功率之和。
1-10 电路如题1-10图所示,试求:
1. 求电感电流初始值
由换路前电路可得
换路后,将电感开路,求其戴维宁等效电路
2.求开路电压
如下图所示,有
所以
3. 求等效电阻
如上图所示
因为
所以

4. 求电感电流终值 及时间常数

数字电路第三章习题答案

数字电路第三章习题答案
S 1 S 0(A B A B )
数字电路第三章习题答案
3-10
F S 1 A S 0 B A S 0 B A B S 0 A B S 1 S 0 A B F F S 1 A S 0 B A S 0 B A B S 0 A B S 1 S 0 A B
数字电路第三章习题答案
3-11
试用六个与非门设计一个水箱控制电路。图为水箱示意图。A、B、C是三个电极。 当 电极被水浸没时,会有信号输出。水面在A,B间为正常状态,点亮绿灯G;水面在B、 C间或在A以上为异常状态,点亮黄灯Y;水面在C以下为危险状态.点亮红灯R。
3531736半加器的设计1半加器真值表2输出函数3逻辑图输入输出被加数a加数b4逻辑符号31837ab改为用与非门实现函数表达式变换形式
3-1 分析图示电路,分别写出M=1,M=0时的逻辑函数表达式
即M=1时,对输入取反,M=0时不取反。
数字电路第三章习题答案
3-2 分析图示补码电路,要求写出逻辑函数表达式,列出真值表。
3-10 试用与非门设计一个逻辑选择电路。
S1、S0为选择端,A、B为数据输入端。 选择电路的功能见下表。选择电路可 以有反变量输入。
数字电路第三章习题答案
3-10
F S 1 A S 0 B A S 0 B A B S 0 A B S 1 S 0 A B F F S 1 A S 0 B A S 0 B A B S 0 A B S 1 S 0 A B FS 1 S 0A B S 1 S 0(A B )S 1 S 0(A BA)B
数字电路第三章习题答案
3-5
Ai 0 0 0 0 1 1 1 1
Si Ai BiCi Ai BiCi Ai BiCi Ai BiCi

电路分析答案第三章

电路分析答案第三章

第三章习题3.1 如题3.1图所示梯形电路。

⑴ 已知24u V =,求1u 、i 和S u 。

⑵ 已知27S u V =,求1u 、2u 和i 。

⑶ 已知 1.5i A =,求1u 和2u 。

解:根据线性电路的性质,设:211u k u = 22u k i = 23s u k u =令: 2V u 2= 可推出 6V u 2= 1A i = 27V u s = 因而可得: 3k 1= 0.5k 2= 27/2k 3= ⑴ 当24u V =时,有: 12V 43u 1=⨯= 2A 40.5i =⨯= 56V 4227u s =⨯=⑵ 当27S u V =时,有: 2V 27272u k 1u s 32=⨯==1A 20.5u k i 22=⨯== 6V 23u k u 211=⨯== ⑶ 当 1.5i A =时,有: 3V 1.50.51i k 1u 22=⨯==9V 33u k u 211=⨯==3.2 如题3.2图所示电路,已知9S u V =,3S i A =,用叠加定理求电路i 。

解:S u 单独作用时,有: 1163Su i A ==+ S i 单独作用时,有: 23163S i i A =-=-+根据叠加定理可得: 12110i i i =+=-=3.3 如题3.3图所示电路,求电压u 。

如独立电压源的值均增至原值的两倍,独立电流源的值下降为原值的一半,电压u 变为多少?解:根据KVL 列一个回路113132(32)4u i V A A i =Ω⨯++⨯Ω+-⨯Ω两个电压源支路可列方程:1131(3)610i i +=-+由此可得: 13i A =代入上式得: 33132(323)44u V =⨯++⨯+-⨯⨯=若独立电压源的值均增至原值的两倍,独立电流源的值下降为原值的一半,由上式可知:1132(1.5)620i i +=-+ 解得 13i A = 有: 332 1.52(1.523)44u V =⨯++⨯+-⨯⨯=-3.4 如题3.4图所示电路,N 为不含独立源的线性电路。

电子电路基础习题册参考答案-第三章

电子电路基础习题册参考答案-第三章

2、串联负反馈都是电流负反馈,并联负反馈都是电压反馈。

(错)3、将负反馈放大器的输出端短路,则反馈信号也随之消失。

(错)4、在瞬时极性法判断中,+表示对地电压为正,—表示对地电压为负。

(错)5、在串联反馈中,反馈信号在输入端是以电压形式出现,在并联反馈中,反馈信号在输入端是以电流形式出现。

(对)三、选择题1、反馈放大短路的含义是(C )。

A.输入与输出之间有信号通路 B.电路中存在反向传输的信号通路C.除放大电路外,还有反向传输的信号通路2.图3-1-1所示为某负反馈放大电路的一部分,Re1引入(C ),Re2引入(B )。

A.交流反馈B.直流反馈C.交直流反馈3、判断是串联反馈还是并联反馈的方法是(C )。

A.输出端短路法B.瞬时极性法C.输入端短路法4、将放反馈放大器的输出端短路,若反馈信号仍存在则属(B )。

A.电压负反馈B.电流负反馈C.串联负反馈D.并联负反馈5.电路如图3-1-2a所示,反馈类型为(D )。

A.电压并联直流负反馈B.电压并联交直流负反馈C.电流串联交直流负反馈D.电流并联交直流负反馈6、电路如图3-1-2b所示,反馈类型为(C )。

A.电流串联负反馈B.电压并联正反馈C.电压串联负反馈D.电流并联正反馈四、简答题1、什么是正反馈?什么是负反馈?主要用途是什么?略2、图3-1-3所示电路中,所引入的分别是直流单奎还是交流反馈?是正反馈还是负反馈?3、图2-1-4所示电路中,在不增加电路元件的情况下,如何改变接线方式,可达到稳定静态工作点,减小失真的目的?4、在图3-1-5所示各电路中,指出哪些是反馈元件?判断个电路的反馈类型(如系多级放大器,只判断级间反馈类型)。

设图中所有电容对交流信号均可视为短路。

§3-2负反馈对放大器性能影响一、填空题1、放大器引入负反馈使得放大器的放大倍数下降,放大倍数的稳定性提高,非线性失真减小,同频带展宽,改变了放大器的输入输出电阻。

电路分析基础第3章

电路分析基础第3章

于一个电流源is和多个正电阻组成的电路,有: |ik/is|≤1 式中ik为任一支路电流。
作业: 3-5
3-6
3-11
3-15
2、网络函数 网络函数:对单一激励的线性时不变电路指定响应与激励之比定义为
网络函数。记为:H
H=响应/激励
策动点函数:响应与激励在同一端口,称为策动点函数 转移函数:响应与激励不在同一端口,称为转移函数
由于响应和激励都可以是电流或电压,可以在同一端口或在不同端口,所以网络 函数可分为六种情况。如表3-1所示(P91)。 响应 策动点函数 电流 电压 电流 转移函数 电压 电流 电压 激励 电压 电流 电压 电流 电流 电压 名称及专用符号 策动点电导Gi 策动点电阻Ri 转移电导GT 转移电阻RT 转移电流比Hi 转移电压比Hu
R2
R1 u ' o is1 Ro R1 R 2 Ro
is1
R1
R0
由图(b),运用分流公式后,可求得:
is 2
R2
R2 u ' ' o is 2 Ro R1 R 2 Ro
R1
R0
由图(c),运用分压公式可得:
R1 R 2 u ' ' ' o us R1 R 2 Ro
即:由两个激励所产生的响应,表示为每一激励单独作用时所产生的响应之和
上述特性,在电路理论中称之为“叠加性”。同理,该电路中的其它
电流或电压对us和is的响应,也都存在类似的线性关系。
例3—3:利用叠加定理求解图中电路的电压。
is 2
is1
R1
R 2 R0
us
解:绘出每一独立源单独作用时的电路图,如图(a),(b),(c)所示。 由图(a) ,运用分流公式可求得:

数字集成电路分析与设计 第三章答案

数字集成电路分析与设计 第三章答案

CHAPTER 3P3.1. The general approach for the first two parameters is to figure out which variables shouldremain constant, so that when you have two currents, you can divide them, and every variable but the ones you want to calculate remain. In this case, since the long-channel transistor is in saturation for all values of V GS and V DS , only one equation needs to be considered:()()2112DS N OX GS T DS W I C V V V Lμλ=-+ For the last two parameters, now that you have enough values, you can just choose oneset of numbers to compute their final values.a. The threshold voltage, V T0, can be found by choosing two sets of numbers with the same V DS ’s but with different V GS ’s. In this case, the first two values in the table can be used.()()()()()()211122222201022001121121.2 1.210000.82800.8DS N OX GS T DS DS N OX GS T DS T DS T DS T T W I C V V V L W I C V V V LV I V I V V μλμλ=-+=-+-⎛⎫-===⎪--⎝⎭ 00.35V T V ∴=b. The channel modulation parameter, λ, can be found by choosing two sets of numberswith the same V GS ’s but with different V DS ’s. In this case, the second and third values in the table can be used.()()221 1.225010.8247DS DS I I λλ+==+ -10.04V λ∴=c. The electron mobility, µn , can now be calculated by looking at any of the first three sets of numbers, but first, let’s calculate C OX .631062-31m 10μm22?.210μm1m 10 0.0351 1.610/2.210OX OX t C F cm--=⨯⨯===⨯Now calculate the mobility by using the first set of numbers.()()()()()()()()()()()()22111021262101111 1.21 1.222210002cm 348V-s 1.610(4.75)1.20.3510.04 1.21DS N OX GS T DS N OX T DS N OX GS T DS W W I C V V V C V L LA I W C V V V L μλμλμμλ-=-+=-+===⨯-+-+d. The body effect coefficient gamma, γ, can be calculated by using the last set of numbers since it is the only one that has a V SB greater than 0V.()()()()244124414411221 1.20.468VDS N OX GS T DS DS GS T N OX DS GS T T GS W I C V V V LI V V W C V LV V V V μλμλ=-+-=+-==-==12000.6VT T T T V V V V γγγ=+-====P3.2. The key to this question is to identify the transistor’s region of operation so that gatecapacitance may be assigned appropriately, and the primary capacitor that will dischargedat a rate of V It C ∂∂= by the current source may be identified. Then, because the nodes arechanging, the next region of operation must be identified. This process continues until the transistor reaches steady state behavior. Region 1:Since 0V GS V = the transistor is in the cutoff region. The gate capacitance is allocated to GB C . Since no current will flow through the transistor, all current will come from the source capacitor and the drain node remains unchanged.68-151010V V 6.67100.6671510s nsSB V I I t C C -∆⨯====⨯=∆⨯ The source capacitor will discharge until 1.1V GS T V V == when the transistor enters thesaturation region. This would require that the source node would be at 3.3 1.1 2.2V S G GS V V V =-=-=.()15961510 3.3 2.2 1.6510s 1.65ns 1010C t V I ---⨯∆=∆=-=⨯=⨯ Region 2:The transistor turns on and is in saturation. The current is provided from the capacitor atthe drain node, while the source node remains fairly constant. The capacitance at the drain node is the same as the source node so the rate of change is given by:68-151010V V 6.67100.6671510s nsSB V I I t C C -∆⨯====⨯=∆⨯ Since the transistor is now in the saturation region, GS V can be computed based on thecurrent flowing through the device.()22 1.1 1.37V 3.3 1.37 1.93VGS T GST S G GS kW I V V LV V V V V =-==+==-=-=This is where the source node settles. This means that most of the current is discharged through the transistor until the drain voltage reaches a value that puts the transistor at the edge of saturation.3.3 1.1 2.2VDS GS TD G T V V V V V V =-=-=-=If we assume that all the current comes from the transistor, and the source node remains fixed, the drain node will then discharge at a rate equal to that of the source node in the first region. Region 3:The transistor is now in the linear region the gate capacitance is distributed equally to both GS C and GD C . and both capacitors will discharge at approximately the same rate.-151510V0.28621510510nsV I A t C μ-∆===∆⨯⨯+⨯The graph is shown below.00.511.522.533.5024681012Time (ns)V o l t a g e (V )P3.3. The gate and drain are connected together so that DS GS V V = which will cause thetransistor to remain in saturation. This is a dc measurement so capacitances are not required. Connect the bulk to ground and run SPICE. P3.4. Run SPICE. P3.5. Run SPICE. P3.6. Run SPICE. P3.7. Run SPICE.P3.8. First, let’s look at the various parameters and identify how they affect V T .∙ L – Shorter lengths result in a lower threshold voltage due to DIBL. ∙ W – Narrow width can increase the threshold voltage.∙ V SB – Larger source-bulk voltages (in magnitude) result in a higher threshold voltage. ∙ V DS –Larger drain-source voltages (in magnitude) result in a lower threshold voltage due to DIBL. The transistor with the lowest threshold voltage has the shortest channel, larger width, smallest source-bulk voltage and largest drain-source voltage. This would be the first transistor listed.The transistor with the highest threshold voltage has the longest channel, smallest width,largest source-bulk voltage and smallest drain-source voltage. This would be the last transistor listed. P3.9. Run SPICE.P3.10. Run SPICE. The mobility degradation at high temperatures reduces I on and the increasemobile carriers at high temperatures increase I off . P3.11. The issues that prompted the switch from Al to Cu are resistance and electromigration.Copper wires have lower resistances and are less susceptible to electromigration problems. Copper on the other hand, reacts with the oxygen in SiO 2 and requires cladding around the wires to prevent this reaction.For low-k dielectrics, the target value future technologies is 2.High-k dielectrics are being developed as the gate-insulator material of MOSFET’s. This is because the current insulator material, SiO 2, can not be scaled any longer due to tunneling effects.P3.12. Self-aligned poly gates are fabricated by depositing oxide and poly before the source anddrain regions are implanted. Self-aligned silicides (salicides) are deposited on top of the source and drain regions using the spacers on the sides of the poly gate. P3.13. To compute the length, simply use the wire resistance equation and solve for L .LR TWRTWL ρρ==First convert the units of ρ to terms of μm. Aluminum:2.7μΩρ=cm 6Ω10μΩ⨯610μm100cm ⨯()()()0.027Ωμm1000.812963μm 2.96mm0.027RTWL ρ=====Copper:1.7μΩρ=cm 6Ω10μΩ⨯610μm100cm ⨯()()()0.017Ωμm1000.814706μm 4.71mm0.017RTWL ρ=====P3.14. Generally, the capacitance equation in terms of permittivity constants and spacing is:k C WL tε=a. 4k = ()()()()230048.8510 3.541100SiO k k C WL TL t S S Sεε-====b. 2k = ()()()()30028.8510 1.771100k k C WL TL t S SSεε-====The plots are shown below.Capacitance vs. Spacing01234567800.511.522.533.544.555.5Spacing (um)C a p a c i t a n c e (f F)。

电路分析基础第四版课后习题答案

电路分析基础第四版课后习题答案
1-23 在图题所示电路中,试求受控源提供的电流以及每一元件吸收的功率,
i
i1
+ 1V −

i3
i2

2i
+ 2V −
解:在图中标出各支路电流,可得
(1 − 2)V (1 − 2)V = −0.5A, i2 = = −1A 2Ω 1Ω 受控源提供电流 = 2i = −1A i=
p2 Ω = i 2 × 2 = 0.5W
为确定 R,需计算 i4 ,
uce = ucd + ude = 0 ⇒ ude = −ucd = −10u1 = −10V

i3 =
udc = −2.5A, i4 = is − i3 = (−3.5 + 2.5)A = −1A 4 R = 0Ω 由此判定
1-33
试用支路电流法求解图题所示电路中的支路电流 i1 , i2 , i3 。
又受控源控制量 i 与网孔电流的关系为 i = i1 − i2
⎧25i1 − 20i2 − 5i3 = 50 ⎪ 代入并整理得: ⎨−5i1 + 9i2 − 4i3 = 0 解得 ⎪−5i − 4i + 10i = 0 2 3 ⎩ 1
受控源电压 受控源功率
⎧i1 = 29.6A ⎨ ⎩i2 = 28A
i2

i3
gu
2−5

设网孔电流为 i1 , i2 , i3 ,则 i3 = − gu A = −0.1u A ,所以只要列出两个网孔方程
27i1 − 18i2 = 42 −18i1 + 21i2 − 3(−0.1u A ) = 20
因 u A = 9i1 ,代入上式整理得
−15.3i1 + 21i2 = 20

电路分析基础(英文版)课后答案第三章

电路分析基础(英文版)课后答案第三章
0 = ¡5i1 + 125i2 ¡ 90i3
0 = ¡26i1 ¡ 90i2 + 124i3
[a] Solving, i1 = 5 A; therefore the 80 V source is delivering 400 W to the circuit.
[b] Solving, i3 = 2:5 A; therefore p8− = (6:25)(8) = 50 W
v1 + v1 ¡ v2 = 4:5
1
8
53
54 CHAPTER 3. Techniques of Circuit Analysis
v2 + v2 ¡ v1 + v2 ¡ 30 = 0
12 8
4
Solving, v1 = 6 V v2 = 18 V Thus, i = (v1 ¡ v2)=8 = ¡1:5 A v = v2 + 2i = 15 V
DE 3.8 Use the lower node as the reference node. Let v1 = node voltage across the 7.5 − resistor and v2 = node voltage across the 2.5 − resistor. Place the dependent voltage source inside a supernode between the node voltages v and v2. The node voltage equations are
3
Techniques of Circuit Analysis
Drill Exercises
DE 3.1 [a] 11,8 resistors, 2 independent sources, 1 dependent source
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章习题3.1 如题3.1图所示梯形电路。

⑴ 已知24u V =,求1u 、i 和S u 。

⑵ 已知27S u V =,求1u 、2u 和i 。

⑶ 已知 1.5i A =,求1u 和2u 。

解:根据线性电路的性质,设:211u k u = 22u k i = 23s u k u =令: 2V u 2= 可推出 6V u 2= 1A i = 27V u s = 因而可得: 3k 1= 0.5k 2= 27/2k 3= ⑴ 当24u V =时,有: 12V 43u 1=⨯= 2A 40.5i =⨯= 56V 4227u s =⨯=⑵ 当27S u V =时,有: 2V27272u k 1u s 32=⨯==1A 20.5u k i 22=⨯== 6V 23u k u 211=⨯== ⑶ 当 1.5i A =时,有: 3V1.50.51i k 1u 22=⨯==9V 33u k u 211=⨯==3.2 如题3.2图所示电路,已知9S u V =,3S i A =,用叠加定理求电路i 。

解:S u 单独作用时,有:1163S u i A ==+Si 单独作用时,有: 23163S i i A=-=-+根据叠加定理可得: 12110i i i =+=-=3.3 如题3.3图所示电路,求电压u 。

如独立电压源的值均增至原值的两倍,独立电流源的值下降为原值的一半,电压u 变为多少?解:根据KVL 列一个回路113132(32)4u i V A A i =Ω⨯++⨯Ω+-⨯Ω两个电压源支路可列方程:1131(3)610i i +=-+由此可得: 13i A =代入上式得: 33132(323)4u V =⨯++⨯+-⨯⨯=若独立电压源的值均增至原值的两倍,独立电流源的值下降为原值的一半,由上式可知:1132(1.5)620i i +=-+ 解得 13i A = 有: 3321.52(1.523)4u V =⨯++⨯+-⨯⨯=-3.4 如题3.4图所示电路,N 为不含独立源的线性电路。

已知:当12S u V =、4S i A =时,0u V=;当12S u V =-、2S i A =-时,1u V =-;求当9S u V =、1S i A=-时的电压u 。

解:根据线性电路的叠加定理,有:12S Su k u k i =+将已知数据代入,有:120124k k =+ 121122k k -=-- 联立解得: 116k = 212k =-因而有: 1162S Su u i =-将9S u V =、1S i A =-代入可得: 119(1)262u V=--=3.5 如题3.5图所示电路,已知当开关S 在位置1时,I=40mA ;当S 在位置2时,I=-60mA ;求当S 在位置3时的I 解:设电源S U 和S I 对电流I 的贡献为I 根据线性电路的叠加定理,有:/I I kU=+其中U 为开关外接电源的作用。

开关S 在位置1时,有 /400I k =+⨯ 此时可将U 视为0开关S 在位置2时,有/604I k -=- 由上可解得: 25k = /40I = 当S 在位置3时,6U V =,则有:/40256190I I k U m A =+=+⨯=3.6 如题3.6图所示电路,若/8x i i =,求电阻x R解:运用置换定理将电路变为如下图所示。

根据叠加定理电压x u 可看成电流源8x i 和x i 共同 作用,即 ///x x xu u u =+/x u 由电流源8x i 单独作用,//xu 电流源x i 单独作用。

根据分流关系,有:/158108552416815101510x x xx x x i i u i i i ⨯⨯=⨯-⨯=-=++//1510[(105)//(55)]61510x x x xu i i i ⨯=-++⨯=-⨯=-+因而有:///862x x x x x xu u ui i i =+=-=故得: 2x x xu R i ==Ω3.7 如题3.7图所示电路,当L R 分别为1Ω、2Ω和5Ω时,求其上电流L I 分别为多少?解:将电流源变换为电压源形式,再根据 叠加原理,有:22//R 2//R 222//R 2//R 10U U U L L L L L2L1L +++=+=整理可得: LLL R 16RU +=当Ω=1R 时,有: 3A R 16R U I LL L L =+==当Ω=2R 时,有: 2A R 16R U I LL L L =+==当Ω=1R 时,有: 1A R 16R U I LLL L =+==3.8 如题 3.8图所示电路,N 为不含独立源的线性电路,已知输出电压/2S u u =;若在输出端接上5Ω电阻,则/3S u u =。

问在输出端接3Ω电阻时,输出电压u 与输入电压S u 的关系如何?解:从输出端进行戴文宁等效,有/s Ls L u R R R u +=当∞→L R 时,/2S u u =,可得 /2u u s /s = 当Ω=5R L 时,/3S u u =,代入上式可求得:Ω=52.R s 因此,当Ω=3R L 时,有s s /s Ls L u 1132u 2.533u R R R u =⨯+=+=3.9 如题3.9图所示电路,当R=12Ω时其上电流为I 。

若要求I 增至原来值的3倍,而电路中除R 外的其他部分均不变,则此时的电阻R 为多少?解:从R 两端进行戴文宁等效,可得等效 电源 s /s u 61u -=,等效电阻Ω=3R 0根据等效电路,当Ω=12R 有 s 0/su 901-RR uI =+=而 0/s R Iu R -=,若3I I →,则有:Ω=-⨯=23u 9013-u 61-R ss解:对图(a)电路进行诺顿等效,求ab 两端的短路电流,如图可知: 21OC I I I += 而 6A 424I 1==A16333//6624I 2=+⨯+=可得: 7A I I I 21OC =+=求电压源短路时,ab 两端的等效电阻: Ω=+=28//)63//6//(4R 0 对图(b)电路进行戴文宁等效,3.11 如题3.11(a)图所示线性有源二端电路N ,其伏安关系如题3.11(b)图所示。

试求它的戴维宁等效电路。

解:根据戴文宁等效电路,端口 电压、电流的约束关系为:OC0u u +R i= 当i 0=时,有 O C u -15V = 当u 0=时,有 O C 0u R =0.5i=Ω3.12 如题3.12图所示线性时不变电阻电路,已知当2cos(10)S i t A =、2L R =Ω时,电流[4(10)2]L i cod t A =+;当4S i A =、4L R =Ω时,电流8L i A =;问当5S i A =、10L R =Ω时,电流L i 为多少?解:从负载两端进行诺顿等效,根据线性 电路的齐次性,等效电流源为:SSC ki i =则有: S L00SC L00L ki R R R i R R R i +=+=t=0时,2A i S =,6A i L =,2L R =Ω代入上式 有 k 2R R 2600+= ①再将4S i A =、4L R =Ω时,8L i A =代入上式 有 k 4R R 4800+= ②联解①式和②式,可得: 6k = Ω=2R 0因而有: S LL i R 226i +=当5S i A =,10L R =Ω时,可得5A510226i L =+=3.13 如题3.13图所示电路,已知8u V =,求电阻R 。

解:从电阻R 两端进行戴文宁等效,其 开路电压为:OC 3(24)//62u =18183+2+43(24)//62412V+⨯+⨯⨯+++ =()//6等效电阻为:0R =4//(26//3)2+=Ω则可得:R RR O Cu u =+解得: R 4=Ω3.14 如题 3.14图所示电路,N 为含有独立源的线性电阻电路。

已知当9L R =Ω时其上获得最大功率为1W ,求N 的戴维宁等效电路。

解:将电路等效为如图所示,根据功率 最大传输定理,有:0L 0010R R R //1010R ==+可解得: 0R 90=Ω 又有: 2Lm a xLuP 4R =u 为L R 两端的开路电压,可解得:L u =6V=± 根据等效电路可知: O C 010u u -10+10R +10=()解得: O C u -30V = 或 OC u -150V =3.15 如题3.15图所示电路,L R 可任意改变,问L R 等于多大时其上获得最大功率,并求出该最大功率。

解:对L R 两端进行戴文宁等效,首先 求开路电压OC U ,有:O C R U =25U +20⨯+而 R R U =2-0.1U 10⨯()解得 R U =10V 可得:OC U =40V 再求等效电阻0R ,如右图所示,有:RU =5IU⨯+ 而此时 R R U =I-0.1U 10⨯() 解得 R U =5I 故得 0U R ==10IΩ根据最大功率传输定理,当L 0R =R =10Ω时, 可获得最大功率,为:22O m a x LU 40P ===40W4R 410C ⨯3.16 如题3.16图所示电路,S U 、S I 均未知,已知当4L R =Ω时电流2L I A =。

若L R 可任意改变,问L R 等于多大时其上获得最大功率,并求出该最大功率。

解:从L R 两端进行戴文宁等效可知 0R 2//2+1=2=Ω 又有 O C L 0Lu I R +R =代入已知数据可得: O C u 12V =根据最大功率传输定理,有当 L 0R R =2=Ω 时可获得最大功率 为 2O C L m ax Lu 12P ==18W4R 42=⨯3.17 如题3.17图所示电路,N 为含独立源的线性电阻电路。

已知当受控电流源系数1β=时,电压20u V =;当1β=-时,电压12.5u V =。

求β为何值时外部电路从N 获得最大功率,并求出该功率。

解:将电路N 进行戴文宁等效,并将受控源 转换为电压源形式,有O C 110u -10I I 20+10+Rβ=得: O C10u I 30+10+Rβ=又有: 11u 10I +(20+10)I β= 得: 1uI 10+30β=可得:OCu u 30+10+R10+30ββ=将1β=,20u V =;1β=-,12.5u V =代入,有O C 0u 2040+R40=和O C 0u 12.520+R20=联立求解可得: O C u 50V = 0R 60=Ω 再求电路N 的等效电阻L R11u-10I I 20+10β=可求得: L 1u R =30+10I β=当L 0R R =60=Ω 时可获得最大功率,则有: L R =30+10=60β解得:=3β 最大功率为: 2O C L m ax Lu 50P ==10.42W4R 460=⨯3.18如题3.18图所示电路,R N 仅由线性电阻组成。

相关文档
最新文档