随机过程课后习题
随机过程(北航著)北京航空航天大学出版社第1章习题课后答案

第一章概论第1题某公共汽车站停放两辆公共汽车A 和B ,从t=1秒开始,每隔1秒有一乘客到达车站。
如果每一乘客以概率21登上A 车,以概率21登上B 车,各乘客登哪一辆车是相互统计独立的,并用j ξ代表t=j 时乘客登上A 车的状态,即乘客登上A 车则j ξ=1,乘客登上B 车则jξ=0,则,21}0{,21}1{====j j P P ξξ当t =n 时在A 车上的乘客数为n n j j n ηξη,1∑==是一个二项式分布的计算过程。
(1)求n η的概率,即;,...,2,1,0?}{n k k P n ===η(2)当公共汽车A 上到达10个乘客时,A 即开车(例如t =21时921=η,且t =22时又有一个乘客乘A 车,则t =22时A 车出发),求A 车的出发时间n 的概率分布。
解(1):nn k n k P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==21}{η 解(2):nn n n P P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−==−2191212191A)10n 9A 1-n (}n A {1名乘客登上车时刻第名乘客;在有时刻,车在开车在时刻车第2题设有一采用脉宽调制以传递信息的简单通信系统。
脉冲的重复周期为T ,每一个周期传递一个值;脉冲宽度受到随机信息的调制,使每个脉冲的宽度均匀分布于(0,T )内,而且不同周期的脉宽是相互统计独立的随机变量;脉冲的幅度为常数A 。
也就是说,这个通信系统传送的信号为随机脉宽等幅度的周期信号,它是以随机过程)(t ξ。
图题1-2画出了它的样本函数。
试求)(t ξ的一维概率密度)(x f t ξ。
解:00(1)()()(){()}{()0}[(1),],(0,){()}{[(1),]}{[(1)]}1(1)(1)1({()0}1{()}t A A n n n Tt n T f x P x A P x P t A P P t P t n T nT n T P t A P t n T nT P t n T d TT t n T T nT t T t n Tt n T T t n P t P t A ξδδξξηξηηηξξ−−=−+====∈−∈==∈−+=>−−=−+−=−==−−−=−−−==−==∫是任意的脉冲宽度01)(1)()()()()(1)()t A T tn T Tf x P x A P x t t n x A n x T T ξδδδδ=−−∴=−+⎛⎞⎛⎞=−−+−−⎜⎟⎜⎟⎝⎠⎝⎠第3题设有一随机过程)(t ξ,它的样本函数为周期性的锯齿波。
(整理)随机过程课后习题

(整理)随机过程课后习题习题⼀1.设随机变量X 服从⼏何分布,即:(),0,1,2,...k P X k pq k ===。
求X 的特征函数、EX 及DX 。
其中01,1p q p <<=-是已知参数。
2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和⽅差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。
3.设X 是⼀随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数;(2)Z=ln F()X ,并求()k E Z (k 为⾃然数)。
4.设12,,...,n X X X 相互独⽴,具有相同的⼏何分布,试求的分布。
5.试证函数为⼀特征函数,并求它所对应的随机变量的分布。
6.试证函数为⼀特征函数,并求它所对应的随机变量的分布。
7.设12,,...,n X X X 相互独⽴同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协⽅差矩阵,再求的概率密度函数。
8.设X 、Y 相互独⽴,且(1)分别具有参数为(m, p)及(n, p)的⼆项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。
求X+Y 的分布。
9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。
10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协⽅差矩阵为B σ?kl 44=(),求(X ,X ,X ,X E 1234)。
11.设X 1,X 2 和X 3相互独⽴,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。
12.设X 1,X 2 和X 3相互独⽴,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --?>?Γ??≤?=0,0b p >>1nkk X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ?+--<(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。
随机过程课后习题答案

随机过程课后习题答案随机过程课后习题答案随机过程是概率论和数理统计中的一个重要分支,研究的是随机事件在时间上的演变规律。
在学习随机过程的过程中,习题是不可或缺的一部分。
通过解习题,我们可以更好地理解和掌握随机过程的基本概念和性质。
下面是一些随机过程课后习题的答案,希望对大家的学习有所帮助。
1. 假设随机过程X(t)是一个平稳过程,其自协方差函数为Cov[X(t), X(t+h)] =e^(-2|h|),求该过程的自相关函数。
解:首先,自协方差函数Cov[X(t), X(t+h)]可以通过自相关函数R(t, h)来表示,即Cov[X(t), X(t+h)] = R(t, h) - E[X(t)]E[X(t+h)]。
由于该过程是平稳过程,所以E[X(t)]和E[X(t+h)]是常数,可以将其记为μ。
因此,Cov[X(t), X(t+h)] = R(t, h) - μ^2。
根据题目中给出的自协方差函数,我们有e^(-2|h|) = R(t, h) - μ^2。
将μ^2移到等式左边,得到R(t, h) = e^(-2|h|) + μ^2。
所以,该过程的自相关函数为R(t, h) = e^(-2|h|) + μ^2。
2. 假设随机过程X(t)是一个平稳过程,其自相关函数为R(t, h) = e^(-3|h|),求该过程的均值和方差。
解:由于该过程是平稳过程,所以均值和方差是常数,可以将均值记为μ,方差记为σ^2。
根据平稳过程的性质,自相关函数R(t, h)可以表示为R(h) = E[X(t)X(t+h)] =E[X(0)X(h)]。
根据题目中给出的自相关函数,我们有R(h) = e^(-3|h|)。
将t取为0,得到R(h) = E[X(0)X(h)] = μ^2。
所以,该过程的均值为μ。
根据平稳过程的性质,方差可以表示为Var[X(t)] = R(0) - μ^2。
将t取为0,得到Var[X(t)] = R(0) - μ^2 = e^(-3*0) - μ^2 = 1 - μ^2。
随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
(完整版)随机过程习题答案

(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。
解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。
解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。
随机过程-方兆本-第三版-课后习题答案

习题4以下如果没有指明变量t 的取值范围,一般视为R t ∈,平稳过程指宽平稳过程。
1. 设Ut t X sin )(=,这里U 为)2,0(π上的均匀分布.(a ) 若 ,2,1=t ,证明},2,1),({ =t t X 是宽平稳但不是严平稳, (b ) 设),0[∞∈t ,证明}0),({≥t t X 既不是严平稳也不是宽平稳过程. 证明:(a )验证宽平稳的性质,2,1,0)cos (2121)sin()sin()(2020==-=•==⎰t Ut tdU Ut Ut E t EX ππππ))cos()(cos(21)sin (sin ))(),((U s t U s t E Us Ut E s X t X COV ---=•=t U s t s t U s t s t πππ21}])[cos(1])[cos(1{212020•+++--= s t ≠=,021Ut Esin ))(),((2==t X t X COV (b) ,)),2cos(1(21)(有关与t t t t EX ππ-=.)2sin(8121DX(t)有关,不平稳,与t t tππ-=2. 设},2,1,{ =n X n 是平稳序列,定义 ,2,1},,2,1,{)(==i n X i n 为,,)1(1)1()2(1)1(---=-=n n n n n n X X X X X X ,证明:这些序列仍是平稳的. 证明:已知,)(),(,,2t X X COV DX m EX t t n n n γσ===+2121)1(1)1()1(2)(,0σγσ≡+=-==-=--n n n n n n X X D DX EX EX EX)1()1()(2),(),(),(),(),(),(111111)1()1(++--=+--=--=--+-+-++--+++t t t X X COV X X COV X X COV X X COV X X X X COV X X COV n t n n t n n t n n t n n n t n t n n t n γγγ显然,)1(n X 为平稳过程.同理可证, ,,)3()2(n n X X 亦为平稳过程.3.设1)nn k k k k Z a n u σ==-∑这里k σ和k a 为正常数,k=1,....n; 1,...n u u 是(0,2π)上独立均匀分布随机变量。
随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
《随机过程》课后习题解答

( k 0, 2, n )
1 为一特征函数,并求它所对应的随机变量的分布。 1 t2
n n i
f (t
i 1 k 1
tk )i k
5
=
i 1 k 1
n
n
i k
1 (ti tk )
2
i 1 k 1
n
n
e jti e jti e jti {1 ( jtk )(1 jtk )} n n e jtk e e i k jti = i 1 k 1 e n(1 jtk ) e
1 n n n j ( ti tk ) l ] i k = [e n i 1 k 1 l 1
(2) (3)
其期望和方差; 证明对具有相同的参数的 b 的 分布,关于参数 p 具有可加性。
解 (1)设 X 服从 ( p , b ) 分布,则
f X (t ) e jtx
0
b p p 1 bx x e dx ( p )
bp ( p)
x
0
p 1 ( jt b ) x
i k
1 M 2
0
ti t k } ) ( M 1max{ i , j n
且 f (t ) 连续 f (0) 1 (2) f (t )
f (t ) 为特征函数
1 1 1 1 1 [ ] 2 2 1 t 1 ( jt ) 2 1 jt 1 jt
3
fZ(k)() t (1 )kk! jk (1 jt)(k1)
E (Z k ) 1 (k ) f Z (0) ( 1) k k ! k j
n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题一1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。
求X 的特征函数、EX 及DX 。
其中01,1p q p <<=-是已知参数。
2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和方差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。
3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。
4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。
5.试证函数 为一特征函数,并求它所对应的随机变量的分布。
6.试证函数 为一特征函数,并求它所对应的随机变量的分布。
7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概率密度函数。
8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。
求X+Y 的分布。
9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。
10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩阵为B σ⨯kl 44=(),求(X ,X ,X ,X E 1234)。
11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。
12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --⎧>⎪Γ⎨⎪≤⎩=0,0b p >>1nk k X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ⎧+--<<⎪=⎨⎪⎩其他(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。
13.设(X 1, X 2, X 3)服从三维正太分布(0,)N B ,其中协方差矩阵为33B σ⨯ld =(),且2112233σσσσ===。
试求222222123[()()()]E X X X σσσ---。
14.设12,,...,n X X X 相互独立同服从正态分布2(0,)N σ。
试求 的期望。
15.设X 、Y 是相互独立同分布的(0,1)N 随机变量,讨论22U X Y =+和 的独立性。
16.设X 、Y 是相互独立同服从参数为1的指数分布的随机变量,讨论U X Y=+和 的独立性。
17.设二维随机变量(,)X Y 的概率密度函数分别如下,试求(|)E X Y y =。
(1) (2)18.设X 、Y 是两个相互独立同分布的随机变量,X 服从区间[0, 1]上的均匀分布,Y 服从参数为λ的指数分布。
求(1)X 与X+Y 的联合概率密度函数;(2)D(X|Y=y)。
19.设X n ,n=1,±1,±2,…是一列随机变量,且 ,其中K 是正常数。
试求: (1)当K>1时,X n 几乎肯定收敛于0; (2)当K>2时,X n 均方收敛于0; (3)当K>3时,X n 不均方收敛于0。
20.设,p p n n X a Y b −−→−−→,试证明pn n X Y a b ±−−→±。
习题二1.设X(i = 1, 2, 3,…)是独立随机变量列,且有相同的两点分布 ,令 (0)0Y =, ,试求: 21exp()nn i i Y X ==-∑XV Y=X V X Y=+1,0,0(,)0,xy yex y p x y y--⎧>>⎪=⎨⎪⎩其他2,0(,)0,x e y xp x y λλ-⎧<<=⎨⎩其他0~1211n K K K n n X nn n -⎛⎫ ⎪ ⎪- ⎪⎝⎭111122-⎛⎫⎪ ⎪⎝⎭1()n i i Y n X ==∑(1)随机过程{Y(n), n = 0, 1, 2, …}的一个样本函数;(2)P[Y(1)=k]及P[Y(2)=k]之值; (3)P[Y(n)=k]; (4)均值函数; (5)协方差函数。
2.设()c o s s i nX t A t B t ωω=-,其中A 、B 是相互独立且有相同的2(0,)N σ分布的随机变量,ω是常数,(,)t ∈-∞∞,试求:(1)X(t)的一个样本函数; (2)X(t)的一维概率密度函数; (3)均值函数和协方差函数。
3.设随机过程 。
其中12,,...,n Y Y Y ,12,,...,n Z Z Z 是相互独立的随机变量,且2,~(0,),1,2,...,k k k Y Z N k n σ=。
(1)求{X(t)}的均值函数和相关函数;(2)证明{ X(t)}是正太过程。
4.设{(),0}Wt t ≥是参数2σ的Wiener 过程,求下列过程的均值函数和相关函数:(1)2()(),0X t W t t =≥; (2) ;(3)12()(),0X t c W c t t -=≥; (4)()()(),01X t W t tW t t =-≤≤。
5.设到达某商店的顾客组成强度为λ的Poisson 流,每个顾客购买商品的概率为p ,且与其他顾客是否购买商品无关,若{(),0}Y t t ≥是购买商品的顾客流,证明{(),0}Y t t ≥是强度为p λ的Poisson 流。
6.在题5中,进一步设{(),0}Z t t ≥是不购买商品的顾客流,试证明{(),0}Y t t ≥与{(),0}Z t t ≥是强度分别为p λ和(1)p λ-的相互独立的Poisson 流。
7.设1{(),0}N t t ≥和2{(),0}N t t ≥分别是强度为1λ和2λ的独立Poisson 流。
试证明:(1)12{(),0}N N t t +≥是强度为12λλ+的Poisson 流;(2)在1{(),0}N t t ≥的任一到达时间间隔内,2{(),0}N t t ≥恰有k 个时间发生的概率为8.设{(),0}N t t ≥是Poisson 过程,n τ和n T 分别是{(),0}N t t ≥的第n 个时间的到达时间和点间距距离。
试证明:(1)()(),1,2,...n n E nE T n τ==; (2)()(),1,2,...n n D nD T n τ==。
1()(cos sin ),0nk k k k k X t Y t Z t t ωω==+≥∑1()(),0X t tW t t =>121212(),0,1,2,...k k p k λλλλλλ=∙=++9.设某电报局接收的电报数()N t 组成Poisson 流,平均每小时接到3次电报,求:(1)一上午(8点到12点)没有接到电报的概率; (2)下午第一个电报的到达时间的分布。
10.设1{(),0}N t t ≥和2{(),0}N t t ≥分别是强度为1λ和2λ的独立Poisson 过程,令12()()(),0X t N t N t t =-≥,求{(),0}X t t ≥的均值函数与相关函数。
11.设{(),0}N t t ≥是强度为λ的Poisson 过程,T 是服从参数为γ的指数分布的随即变量,且与{()N t }独立,求[0,T]内事件数N 的分布律。
习题三1. 证明Poisson 随机变量序列的均方极限是Poisson 随机变量。
2. 设,1,2,...n X n =,是独立同分布的随机变量序列,均值为μ,方差为1,定义11nn i i Y X n ==∑。
证明lim n n X μ→∞=。
3. 研究下列随机过程的均方连续性、均方可导性和均方可积性。
(1)()X t At B =+,其中A 、B 是相互独立的二阶矩随机变量,均值为a 、b ,方差为21s 、22s ;(2)2()X t At Bt C =++,其中A 、B 、C 是相互独立的二阶矩随机变量,均值为a 、b 、c ,方差为21s 、22s 、23s ; (3){(),0}N t t ≥是Poisson 过程; (4){(),0}W t t ≥是Wiener 过程.4. 试研究上题中过程的均方可导性,当均方可导时,试求均方导数过程的均值函数和相关函数。
5. 求下列随机过程的均值函数和相关函数,从而判断其均方连续性和均方可微性。
(1)()cos()X t t ω=+Θ,其中ω是常数,Θ服从[0,2π]上的均匀分布; (2)1(),0X t tW t t ⎛⎫=> ⎪⎝⎭, 其中()W t 是参数为1的Wiener 过程; (3)()2(),0X t Wt t =≥,其中()W t 是参数为2s 的Wiener 过程。
6. 均值函数为()5sin x m t t =、相关函数为20.5()(,)3t s x R s t e --=的随机过程输入微分电路,该电路输出随机过程()()Y t X t '=,试求()Y t 的均值函数、相关函数、()X t 与()Y t 的互相关函数。
7. 试求第3题中可积过程的如下积分:01()()t Y t X u du t =⎰,1()()t LtZ t X u du L +=⎰的均值函数和相关函数。
8. 设随机过程3()cos2t X t Ve t =,其中V 是均值为5、方差为1的随机变量,试求随机过程0()()TY t X s ds =⎰的均值函数、相关函数、协方差函数与方差函数。
9. 设{(),0}W t t ≥是参数为2s 的Wiener 过程,求下列随机过程的均值函数和相关函数。
(1)0()(),0tX t W s ds t =≥⎰;(2)0()(),0tX t sW s ds t =≥⎰;(3)()[()()],0t ltX t W s W t ds t +=-≥⎰。
10. 求一阶线性随机微分方程0()()0,0(0)(0)X t aX t t a X X '+=≥⎧>⎨=⎩的解及解的均值函数、相关函数及解的一维概率密度函数,其中0X 是均值为0、方差为2s 的正态随机变量。