高一数学下册每周一练测试题及答案
高一数学“每周一练”系列试题及答案

高一数学“每周一练”系列试题及答案1.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查。
现将800名学生从1到800进行编号,求得间隔数k80050==16,即每16人抽取一个人。
在1~16中随机抽取一个数,如果抽到的是7,则从33 ~ 48这16个数中应取的数是()A.40.B.39.C.38.D.37.2.某工厂有工人1 000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A类工人中和B类工人中各抽查多少工人?(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.(i)先确定x,y,再完成下列频率分布直方图,就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).3.以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线;150m时的销售价格(3)据(2)的结果估计当房屋面积为24.为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整m n M N所表示的数分别是多少?(1)求出表中,,,(2)画出频率分布直方图(3)全体女生中身高在哪组范围内的人数最多?5.从两个班中各随机的抽取10名学生,他们的数学成绩如下:画出茎叶图并分析两个班学生的数学学习情况参考答案1.B2.解:(1)A类工人中和B类工人中分别抽查25名和75名.(2)(ⅰ)由4+8+x+5+3=25,得x=5,6+y+36+18=75,得y=15.频率分布直方图如下:从直方图可以判断:B 类工人中个体间的差异程度更小. (ⅱ) A x =425×105+825×115+525×125+525×135+325×145=123, B x =675×115+1575×125+3675×135+1875×145=133.8, x =25100×123+75100×133.8=131.1. A 类工人生产能力的平均数,B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1. 3. 解:(1)数据对应的散点图如图所示:(2)1095151==∑=i i x x ,1570)(251=-=∑=x x l i i xx ,308))((,2.2351=--==∑=y y x x l y i i i xy设所求回归直线方程为a bx y +=,则1962.01570308≈==xxxy l l b 8166.115703081092.23≈⨯-=-=x b y a 故所求回归直线方程为8166.11962.0+=x y(3)据(2),当2150x m =时,销售价格的估计值为:2466.318166.11501962.0=+⨯=y(万元)4.解:(1)150,50(1420158)20.02M m ===-++++= 21,0.0450N n ===(2)…(3)在153.5157.5范围内最多5. 解:乙班级总体成绩优于甲班。
高一数学下学期周考卷-高一数学试题

高一数学下学期周考卷高一数学试题一、选择题(每题1分,共5分)1. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = x + 12. 已知等差数列{an},a1=1,a3=3,则公差d为()A. 1B. 2C. 3D. 43. 不等式2x 3 > 0的解集是()A. x > 1.5B. x < 1.5C. x > 3D. x < 34. 下列关于x的方程中,无解的是()A. x^2 4x + 4 = 0B. x^2 2x + 1 = 0C. x^2 + 2x + 1 = 0D. x^2 3x + 2 = 05. 若向量a与向量b的夹角为60°,|a| = 2,|b| = 3,则向量a与向量b的数量积为()A. 3B. 6C. 9D. 12二、判断题(每题1分,共5分)1. 任何两个等差数列的乘积仍然是等差数列。
()2. 一次函数的图像是一条直线。
()3. 一元二次方程的解一定有两个实数根。
()4. 平行四边形的对角线互相平分。
()5. 若两个角互为补角,则它们的正切值互为倒数。
()三、填空题(每题1分,共5分)1. 已知等差数列{an},a1=1,a3=3,则a5=______。
2. 若函数f(x) = 2x + 1是单调递增的,那么f(3) > f(2)的解为______。
3. 向量a = (2, 3),向量b = (4, 1),则向量a与向量b的数量积为______。
4. 若一元二次方程x^2 4x + 3 = 0的两个根为x1和x2,则x1 + x2 =______。
5. 在直角坐标系中,点A(2, 3)关于原点的对称点坐标为______。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 举例说明一次函数的实际应用。
3. 如何求解一元二次方程的解?4. 简述向量数量积的性质。
5. 举例说明平行四边形在实际生活中的应用。
2022-2023学年下学期高一数学周测试卷(解析版)

高一春季数学周测答案一.选择题1.下列命题中正确的是( )A .终边和始边都相同的角一定相等B .始边相同而终边不同的角一定不相等C .小于90︒的角一定是锐角D .大于或等于0︒且小于90︒的角一定是锐角 【答案】B2.下图终边在阴影部分的角的集合可表示为( )A .{}18018030,k k k Z αα⋅<<⋅+∈B .{}18018030,k k k Z αα⋅≤≤⋅+∈C .{}36036030,k k k Z αα⋅<<⋅+∈D .{}36036030,k k k Z αα⋅≤≤⋅+∈【答案】B3.一个半径是R 的扇形,其周长为3R ,则该扇形圆心角的弧度数为( )A .1B .3C .πD .3π 【答案】A4.下列两组角的终边不相同的是()k ∈Z ( )A .512k ππ+与712k ππ−+ B .223k ππ−+与423k ππ+ C .126k ππ+与1326k ππ+D .14k ππ+与124k ππ±+【答案】D5.当α为第二象限角时,sin cos sin cos αααα−的值是( ). A .1B .0C .2D .2−【答案】C6.角α的终边上有一点P (a,a ),a ∈R ,且a ≠0,则sinα的值是( ) A .√22B .−√22C .±√22D .1【答案】C 7.已知sinα−2cosθ3sinα+5cosα=−5,则tanα的值为( )A .−2B .2C .2316 D .−2316 【答案】D8. 已知函数()()2242,1,log 1,1,x x x f x x x ⎧++≤⎪=⎨−>⎪⎩,若关于x 的方程()f x t =有四个不同的实数解1x ,2x ,3x ,4x ,且1234x x x x <<<,则)1234122x x x x ++的最小值为( ) A .72 B .8 C .92D .12 【答案】D【分析】先画出分段函数图像,确定1x ,2x ,3x ,4x 的范围,由()()3334log 1log 1x x −−=−结合对数运算可得()()34111x x −−=,)12x x 与34122x x +分别利用均值不等式求最小值,确认取等条件相同,即可得最小值.【详解】函数图像如图所示,()17f =,(]0,7t ∈,1234212x x x x <−<≤<<<,124x x +=−,由()()()()()()333433434log 1log 1log 110111x x x x x x −−=−⇒−−=⇒−−=, ∴()()34342112122251x x x x =−+++−5922≥=,当且仅当343,32x x ==时,等号成立,此时1t =;)()2212121212422x x x x x x x x ⎛⎫+⎛⎫=−≥−=−=− ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当1222x x =−=−+1t =.所以)1234122x x x x ++的最小值为91422−=.9.终边在直线y =的角的集合为( )A .{}0=60+360,k k Z αα−∈B .{}0=60+180,k k Z αα−∈C .{}=120+360,k k Z αα∈D .{}=120+180,k k Z αα∈【答案】BD10.化简√1−sin 2160°的结果是( ) A .cos160° B .|cos160°| C .±cos160° D .cos20°【答案】BD11.下列各式中,值为1的是( ) A .122sin45−︒B .4222sin sin cos cos αααα++C .9tan π4D .lg2lg5⨯【答案】ABC12.已知π1sin 33x ⎛⎫−= ⎪⎝⎭,且π02x <<,则以下结论正确的有( )A.π1sin 63x ⎛⎫+= ⎪⎝⎭B.πsin 6x ⎛⎫+ ⎪⎝⎭C.2π1cos 33x ⎛⎫+=− ⎪⎝⎭D.2πcos 3x ⎛⎫+= ⎪⎝⎭【答案】BD 二.填空题13.25cos 4π⎛⎫−= ⎪⎝⎭__________.【答案】√2214.已知:p “角α的终边在第一象限”,:q “sin 0α>”,则p 是q 的________ 条件(填“充分非必要”、“必要非充分”、“充要”或“既不充分也不必要”) 【答案】充分非必要”15.设()cos 24n f n ππ⎛⎫=+ ⎪⎝⎭,则(1)(2)(3)(2022)f f f f ++++=__________.【答案】-√216.已知()()222log 2log 24f x x t x t =−++,在1,164x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为()g t ,当关于t 的方程有()10g t t a −−+=有两个不等实根时,a 的取值范围是__________. 【答案】()5,−+∞【分析】换元[]2log 2,4s t =∈−,求出二次函数2224y s ts t =−++在[]2,4s ∈−上的最小值()g t 的表达式,然后作出函数y a =−与函数()1y g t t =−−的图象,利用数形结合思想可求出实数a 的取值范围.【详解】当1,164x ⎡⎤∈⎢⎥⎣⎦时,令[]2log 2,4s x =∈−,则()g t 为二次函数2224y s ts t =−++在[]2,4s ∈−上的最小值,该二次函数图象开口向上,对称轴为直线s t =.①当2t ≤−时,函数2224y s ts t =−++在区间[]2,4−上单调递增, 此时,()()()22222468g t t t t =−−⨯−++=+;②当24t −<<时,二次函数2224y s ts t =−++在s t =处取得最小值,即()224g t t t =−++;③当4t ≥时,二次函数2224y s ts t =−++在区间[]2,4−上单调递减,此时,()242424620g t t t t =−⨯++=−+.综上所述,()268,224,24620,4t t g t t t t t t +≤−⎧⎪=−++−<<⎨⎪−+≥⎩.由()10g t t a −−+=得()1a g t t −=−−,则函数y a =−与函数()1y g t t =−−的图象有两个交点,令()()2277,233,2115,14721,4t t t t t h t g t t t t t t t +≤−⎧⎪−++−<<⎪=−−=⎨−++≤<⎪⎪−+≥⎩,作出函数y a =−与函数()y h t =的图象如下图所示:如图所示,当5a −<时,即当5a >−时,函数y a =−与函数()y h t =的图象有两个交点,此时,关于t 的方程有()10g t t a −−+=有两个不等实根. 因此,实数a 的取值范围是()5,−+∞. 故答案为:()5,−+∞. 三.解答题 17. 【答案】 (1)3sin 5α=−(2)5418. 【答案】(1)17;(2)15−. 19. 【答案】(1)−√39;(2)√22.20.【答案】(1)函数()()233log a f x a a x =−+是对数函数,233101a a a a ⎧−+=⎪∴>⎨⎪≠⎩,解得2a =,()2log f x x ∴=,211log 122f ⎛⎫∴==− ⎪⎝⎭(2)()2log f x x =在定义域()0,∞+上单调递增,()121f f m m ⎛⎫∴>− ⎪⎝⎭可得到21010121m mm m⎧⎪−>⎪⎪>⎨⎪⎪>−⎪⎩,解得112m <<,∴不等式()121f f m m ⎛⎫>−⎪⎝⎭解集为1,12⎛⎫ ⎪⎝⎭.21. 【答案】(1)(,4][2,)−∞−+∞;(2)存在,91,4⎛−+− ⎝⎦. 【解析】(1)利用绝对值三角不等式求得()f x 的最小值,进而根据不等式恒成立的意义得到关于a 的含绝对值的不等式,求解即得;(2)根据a 和x 的范围化简得到含有参数a 的关于x 的一元二次不等式,利用二次函数的图象和性质,并根据不等式恒成立的意义得到关于实数a 的有关不等式(组),求解即得.【详解】解:(1)∵()|31||3|f x x x a =−++,的∴()|(31)(3)||1|f x x x a a ≥−−+=+, 当且仅当(31)(3)0x x a −+≤时,取等号. ∴原不等式等价于13a +≥, 解得2a ≥或4a ≤−.故a 的取值范围是(,4][2,)−∞−+∞. (2)∵1a >−,∴133a −<, ∵1,33a x ⎡⎤∈−⎢⎥⎣⎦,∴()|31||3|1f x x x a a =−++=+,()(1) g x a x =+,∴原不等式恒成立22(1)53(6)30a x x x x a x ⇔+≥−−⇔−+−≤在1,33a x ⎡⎤∈−⎢⎥⎣⎦上恒成立,令2()(6)3u x x a x =−+−,2423039a u a a ⎛⎫−=+−≤ ⎪⎝⎭得a ≤≤且14410393u a ⎛⎫=−−≤ ⎪⎝⎭,得443a ≥−,又1a >−,得914a −+−<≤.故实数a 的取值范围是91,4⎛−+− ⎝⎦.22.【答案】(1)略;(2)17,18⎡⎤−−⎢⎥⎣⎦;(3)1⎡⎣. 【分析】(1)根据“伪奇函数”的概念,可以求出1x =±满足()()f x f x −=−,得到()f x 是“伪奇函数”;(2)由幂函数的概念求出n 的值,把结论转化为对勾函数在1,44⎡⎤⎢⎥⎣⎦的值域问题,进而解不等式得答案;(3)由题意把结论化为关于22x x −+的二次方程有解的问题,通过换元引入二次函数,进而转化二次函数为在给定的区间有零点问题,列不等式解得答案.【详解】(1)若函数2()21f x x x =−−为“伪奇函数”,则方程()()f x f x −=−有实数解, 即222121x x x x +−=−++有解,整理得21x =解得1x =±,所以()f x 为“伪奇函数”; (2)因为3()(1)(R)n g x n x n −=−∈为幂函数,所以11n −=即2n =,所以()g x x =, 则由()2x f x m =+为定义在[2,2]−上的“伪奇函数”, 所以22x x m m −+=−−在[2,2]−有解,整理得122222x x x xm −−=+=+, 令2x t =,则144t ≤≤,对于函数()1h t t t=+, 设12144t t ≤<≤,则()()()212121211t t h t h t t t t t −−=−⋅ 当121,,14t t ⎡⎤∈⎢⎥⎣⎦时,有()()21h t h t <,所以()h t 是减函数,当[]12,1,4t t ∈时,有()()21h t h t >,所以()h t 是增函数, 又()111744444h h ⎛⎫==+= ⎪⎝⎭,()12h =,所以()1724h t ≤≤,所以17224m ≤−≤解得1718m −≤≤−,所以实数m 的取值范围是17,18⎡⎤−−⎢⎥⎣⎦;(3)若12()422x x f x m m +=−⋅+−是定义在R 上的“伪奇函数”,则()()f x f x −=−在R 上有实数解,即2242224222x x x x m m m m −−−⋅+−=−+⋅−+,整理得()244222240x x x x m m −−+−++−=,()()2222222260x x x x m m −−+−++−=,令122222x x x x s −=+=+≥=,当且仅当0x =取到等号, 则222260s ms m −+−=在[)2,+∞上有解,令()()22222266h s s ms m s m m =−+−=−+−在[)2,+∞上有零点,所以()222Δ44260m m m ≥⎧⎪⎨=−⨯−≥⎪⎩,即2m m ≥⎧⎪⎨≤≤⎪⎩2m ≤或者()()222222420Δ44260m h m m m m ⎧<⎪⎪=−−≤⎨⎪=−⨯−≥⎪⎩,即211m m m <⎧⎪≤≤+⎨⎪≤≤⎩12m <,综上可得m的取值范围是1⎡⎣。
2021年高一下学期数学周考试题(理科3.15) 含答案

丰城中学xx 学年下学期高一周练试卷(2)2021年高一下学期数学周考试题(理科3.15) 含答案命题:范可 审题:数学组 xx.03.15一、选择题:(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知数列,则0.96是该数列的( )A .第20项B .第22项C .第24项D .第26项 2. 已知数列为等差数列且,则的值为( )A. 3B.± 3C.-33D.- 3 3. 在数列{a n }中,a 1=-2,a n +1=1+a n1-a n,则a 2 012=( )A .3B .-13C .-12 D .-24. 若数列满足(,≥2),其中为常数,=80,则=( ) A.14 B.7 C.16 D.85. 某人向正东方向走x k m 后,他向右转150°,然后朝新方向走3 k m ,结果他离出发点恰好 3 k m ,那么x 的值为( ).A. 3B. 2 3C. 3或2 3D.3 3 6. 若成等差数列,则的值等于( ) A . B .或 C . D .7. 首项为-24的等差数列,从第10项开始为正数,则公差d 的取值范围是( )A .d>83B .d<3 C.83≤d<3 D.83<d≤38. 已知数列,则该数列中的最大项是第( )项A.12B.12或13C.13或14D.119. 在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sinC 的值为( )A.33 B.36 C.63 D.6610. 已知函数f(x)=⎩⎪⎨⎪⎧1-3a x +10x≤6,a x -7,x>6若数列{a n }满足a n =f(n)(n ∈N *),且{a n }是递减数列,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.⎝ ⎛⎭⎪⎫13,12C.⎝ ⎛⎭⎪⎫13,56D.⎝ ⎛⎭⎪⎫56,111. 若锐角△ABC 的三边a ,b ,c 满足f(x)=b 2x 2+(b 2+c 2-a 2)x +c 2,则f(x)的图象( )A .与x 轴相切B .在x 轴上方C .在x 轴下方D .与x 轴交于两点 12. 在△ABC 中角A ,B ,C 的对边分别为a ,b ,c ,已知4sin 2A +B 2-cos2C =72,且a +b =5,c =7,则△ABC 的面积为( )A.332 B.32 C.34 D.334二、填空题:(本大题共4小题,每小题5分,满分20分)13. 已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________.14. 若一个等差数列的前4项分别是a ,x ,b,2x ,则ab=_______15. 已知数列{a n }满足:a 1=m(m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2当a n 为偶数时,3a n +1当a n 为奇数时.若a 3=1,则m 所有可能的取值为_______. 16. 将正偶数按下表排成5列:第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 ……2826那么2 014应该在第________行第________列.三:解答题17. 数列满足,(≥2),设=.(1)判断数列是否为等差数列并证明;(2)求数列的通项公式.18.如图,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船达到D点需要多长时间?丰城中学xx学年上学期高一周考(2)试卷答题卡班级: 姓名: 学号: 得分:二.填空题:(20分)13. 14.15. 16.三:解答题(有2题,共20分)解答题应写出文字说明、证明过程或演算步骤。
高一数学周考试题及答案

高一数学周考试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2-6x+8的零点个数是()。
A. 0B. 1C. 2D. 32. 已知函数f(x)=2^x,g(x)=x+1,则f[g(x)]等于()。
A. 2^(x+1)B. 2^x + 1C. x^2 + 2x + 2D. 2^x + 2^(x+1)3. 若a,b∈R,且a>b,则下列不等式中一定成立的是()。
A. a^2 > b^2C. 1/a < 1/bD. a/b > 14. 已知向量a=(3, -2),b=(1, 2),则向量a+2b的坐标为()。
A. (5, 2)B. (5, -2)C. (1, -6)D. (1, 2)5. 已知集合A={x|x^2-5x+6=0},则A的元素个数为()。
A. 0B. 1C. 2D. 36. 若函数f(x)=x^3-3x,求f'(x)的值()。
A. 3x^2-3C. x^2-3D. x^2+37. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为()。
A. 9B. 10C. 11D. 128. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且a=2,b=1,则该双曲线的离心率为()。
A. √3B. √5C. √6D. √79. 已知函数f(x)=|x|,求f(-2)的值为()。
A. 2B. -2C. 0D. 410. 已知圆的方程为(x-2)^2 + (y+1)^2 = 9,求该圆的半径为()。
A. 3B. 4C. 5D. 6二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求f(1)的值为______。
12. 若向量a=(2, 3),b=(-1, 2),则向量a·b的值为______。
13. 已知等比数列{bn}的首项b1=2,公比q=3,则b3的值为______。
14. 已知直线l的方程为y=2x+3,求该直线的斜率为______。
2021年高一下学期数学周练试卷(文科实验班5.24) 含答案

输出p 1k k =+p p k =⋅k N ≤开始1,1k p ==输入N 结束否是第6题丰城中学xx 学年下学期高一周考2021年高一下学期数学周练试卷(文科实验班5.24) 含答案命题:熊海荣 审题:高一数学备课组时量:80分钟满分:100分一、选择题:本大题共12小题,每小题5分,共60分;1.若1<a <3,-4<b <2,那么a -|b |的取值范围是( )A .(-1,3)B .(-3,6)C .(-3,3)D .(1,4)2.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1 D. 143.某种汽车,购车费用是10万元,每年使用的保险费、养路费、汽油费约为9000元,年维修费第一年是xx 元,以后逐年递增xx 元.问这种汽车使用________年时,它的年平均费用最小( )A .11B .10C .9D .84.设a 、b 、c 都是正实数,且a 、b 满足1a +9b =1,则使a +b ≥c 恒成立的c 的取值范围是A .(0,8]B .(0,10]C .(0,12]D .(0,16] 5.已知向量,,若向量与向量的夹角为θ,则cosθ=( )A .B .C .D .6.执行下面的程序框图,如果输入的是,那么输出的是 A. B. C. D.7.设有算法如图所示:如果输入,则输出的结果是( )A .90B .45C .2D .0第7题8.是等比数列的前项和,若成等差数列,则的公比的值为A. B. C. D.9.某流程图如图所示,现输入如下四个函数,则可以输出的函数是()A.B.C.D.第9题第10题10.对任意非零实数a,b,若ab的运算原理如图所示,则log28=()A.B.C.1 D.211.设等比数列的前项和为,若,则数列的前项和为()A. B. C. D.12.在平面直角坐标系,已知平面区域且,则平面区域的面积为A.B.C.D.二.填空题:本大题共4小题,每小题5分,共20分;13.在等差数列中,首项,公差,若某学生对其连续项求和,在遗漏掉一项的情况下,求得余下项的和为,则此连续项的和为.14.已知BD为的中线,若,则的面积的取值范围是___15.数列的通项为,前项和为,则= .16.如图所示,在平面四边形ABCD中,AB=4,AD=2,,,则四边形ABCD的面积的最大值是一、选择题:(每小题5分,共60分)二、填空题:(每小题5分,共20分)______________ ___________ ___________ _____________三、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)17.已知数列,当时满足,(1)求该数列的通项公式;(2)令,求数列的前n项和.题号 1 2 3 4 5 6 7 8 9 10 11 12答案姓名:______________ 学号:____ 总分:18.在中,角A、B、C的对边分别为,且满足(Ⅰ)求角B的大小;(Ⅱ)若,求面积的最大值.参考答案一、CBBD BBBD BCDB二、13. 200 14. 15. 4032 16.17.17.(12分) 解(1) 当时, 当时,,则 作差得:, 是首项为,公比为的等比数列; …………6分(Ⅱ)由(Ⅰ)得:, ……7分,234112341222222n n n n n T ++∴=++++++23411111111222222n n n n T ++∴=+++++-, …………………………10分 ,. …………………………12分18.解析:(Ⅰ)条件可化为: . 根据正弦定理有. ∴,即. 因为,所以,即 . …………………6分 (Ⅱ)因为.所以,即, 根据余弦定理 ,可得. 有基本不等式可知.即, 故△ABC 的面积. 即当a =c=时,△ABC 的面积的最大值为.………… 12分39101 98BD 颽|37677 932D 錭35975 8C87 貇 284696F35漵~~34105 8539 蔹24728 6098 悘C @。
高一数学下学期周练试题(5.7)(2021年整理)

河北省定州市2016-2017学年高一数学下学期周练试题(5.7)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省定州市2016-2017学年高一数学下学期周练试题(5.7))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省定州市2016-2017学年高一数学下学期周练试题(5.7)的全部内容。
2016-2017学年第二学期高一数学周练试题(5.7)一、选择题1.若大前提是:任何实数的平方都大于0,小前提是:,结论是:,那么这个演绎推理A.大前提错误 B.小前提错误 C.推理形式错误 D.没有错误2.已知随机变量服从正态分布,若,则A。
B. C。
D.3.若把函数的图象向右移动1个单位,再向下移动2个单位后所得图象恒过定点A,且点A在直线上,则的最小值为( ) A B 9 C 8 D 164.半径为1的球面上有四个点A,B,C,D,球心为点O,AB过点O,CA=CB,DA=DB,DC=1,则三棱锥A﹣BCD的体积为()A. B. C. D.5.用秦九韶算法求n 次多项式当时,求需要算乘方、乘法、加法的次数分别为()A. B. n,2n,n C. 0,2n,n D. 0,n,n6.已知,则的值为( )A。
B。
C. D。
7.已知集合,,则()A. B. C. D.8.如果一个家庭有两个小孩,则两个孩子是一男一女的概率为( )A. B. C. D.9.已知为公比q>1的等比数列,若是方程的两根,则的值是()A 。
18 B. 19 C. 20 D 。
2110.已知全集U={l,2,3,4,5},集合A={l,2.4},集合B={l,5},则( )A.{2,4} B.{1,2,4} C.{2,3,4,5} D.{l,2,3,4,5}11.一个水平放置的三角形的斜二侧直观图是等腰直角三角形,若,那么原DABO的面积是( )A. B. C. D.12.已知,且,则m的值为()A、2B、1C、0D、不存在二、填空题13.给定下列四个命题:①过直线外一点可作无数条直线与已知直线平行;②如果一条直线不在这个平面内,那么这条直线就与这个平面平行;③垂直于同一直线的两条直线可能相交、可能平行也可能异面;④若两个平面分别经过两条垂直直线,则这两个平面互相垂直.其中,说法正确的有_____________(填序号);14.已知直线与垂直,则的值是15.函数为偶函数,则实数 __.16.若向量垂直,则= .三、解答题17.若和分别表示数列和数列的前项和,对任意正整数,有,.(1)求数列的通项公式;(2),,求的最小值.18.设A,B分别是直线y=x和y=-x上的动点,且|AB|=,设O为坐标原点,动点P满足=+.(1)求点P的轨迹方程;(2)过点(,0)作两条互相垂直的直线l1,l2,直线l1,l2与点P的轨迹的相交弦分别为CD,EF,设CD,EF的弦中点分别为M,N,求证:直线MN恒过一个定点.参考答案1.A【解析】试题分析:因为“任何实数的平方非负",所以“任何实数的平方都大于0”是错误的,即大前提错误,故选A.考点:演绎推理的“三段论”.2.D试题分析:正态分布的图象关于对称,.考点:正态分布的应用.3.B【解析】4.A【解析】试题分析:由题意可知图形如图:过点,,,三角形与都是等腰直角三角形,半径为1的球面上有四个点A,B,C,D,球心为点,∴,,,,,几何体的体积为:.故选:A.考点:棱柱、棱锥、棱台的体积.5.D【解析】略6.B【解析】7.D试题分析:考点:集合的交集运算8.C【解析】试题分析:一个家庭有两个小孩,基本事件为:{男男},{女女},{男女},{女男},∴两个孩子是一男一女的概率为考点:古典概型概率9.A【解析】略10.A【解析】试题分析:∵集合A={l,2.4},,∴,选A.考点:本题考查了集合的运算点评:熟练掌握交、并、补集的概念是解决此类问题的关键,属基础题11.C【解析】考点:斜二测法画直观图;平面图形的直观图.分析:根据斜二测法画直观图的步骤,把给出的直观图还原回原图形,然后直接利用三角形的面积公式求解.解:由斜二测直观图还原原图形如图,因为边O′B′在x′轴上,所以,在原图形中对应的边应在x轴上,且长度不变,O′A′在y′轴上,所以,在原图形中对应的边应在y轴上,且长度增大到2倍,因为O′B′=1,所以O′A′=,则OA=2.则S△ABO=OB•OA=×1×2=.故答案为C.12.C【解析】当m=0时,显然有;若时,由,得,方程无解,m不存在。
高一年级下学期数学周练4答案

期为π,所以ω=2,f(π)=sin(2×π+φ)=cosφ=- 1-sin2φ=-4.故选 B.
4
4
5
3. 已知平面内不共线的四点 O,A,B,C 满足O→B=1O→A+2O→C,则|A→B|∶|B→C|=(
)
33
A.1∶3
B.3∶1
C.1∶2
D.2∶1
[解析] 由O→B=1O→A+2O→C,得O→B-O→A=2(O→C-O→B), 33
所以 cos 2α=1-2sin2α=1-2× 9 =-1. 16 8
3
10. 已知向量 a=(2cosx, 3sinx),b=(cosx,2cosx),函数 f(x)=a·b+m,m∈R,且当
x∈[0,π]时,f(x)的最小值为 2. 2
(1)求 f(x)的单调递增区间;
(2)先将函数 y=f(x)的图象上各点的纵坐标不变,横坐标缩短到原来的1,再把所得的图象 2
B(2,b),且 cos2α=2,则|a-b|=(
)
3
A.1 5
B. 5 5
C.2 5 5
D.1
[解析] 由 cos2α=2cos2α-1=2可得 cos2α=5= cos2α = 1 ,化简可得 tanα=± 5.
3
6 sin2α+cos2α tan2α+1
5
当 tanα= 5时,可得a= 5,b= 5,即 a= 5,b=2 5,此时|a-b|= 5;当 tanα=- 5时,
2
6 66
66
2
2
1=2,解得 m=2,所以 f(x)=2sin(2x+π)+3,令 2kπ-π≤2x+π≤2kπ+π,k∈Z,得 f(x)的增
6
2
6
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学下册每周一练测试题及答案
高一数学“每周一练”系列试题(39)
一、选择题:本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设A=,U=R,求 =( ) A、 B、 C、 D、 2、设集合A={x|-5≤x<1},B={x|x≤2},则A B=() A.{x|-5≤x<1} B.{x|-5≤x≤2} C.{x|x<1} D.{x|x≤2} 3、已知全集U={0,1,2,3}且={2},则集合A的真子集共有()A.3个 B.5个 C. 8个D.7个 4、下列四句话中:① ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有() A.0个 B.1个 C.2个 D.3个 5、若集合M= , , 则下面结论中正确的是() A. B. C. D. 6、下列函数中是奇函数的是( D ) A、 B、 C、 D、 7、下列函数与表示同一函数的是() A. B. C. D. 8、已知,则的值为() A、100 B、10 C、-10 D、-100 9、函数y=-x+a与y=a-x (其中a>0
且a≠1) 在同一坐标系中的图象可能为()
A. B. C. D. 10、已知,,,则下列关系中正确的是()A.B.C.D.二、填空题: 本大题共5小题,每
小题5分,满分25分. 11、函数的递增区间是= 12、在平面直角坐标系中,角的终边关于一、三象限的角平分线对称,且角的终边经过点,则= 13、如图,菱形ABCD的边长为1,,E、F分别为AD、CD的中点,则= 14、已知函数是定义在上的奇函数,且当时,,则= . 15、已知函数,对于上的任意有如下条件:① ;② ③ ,其中能使恒成立的条件是(填写序号)三、解答题:本大题共6
小题,共75分。
解答须写出文字说明,证明过程或演算步骤. 16、(本题14分)已知全集,, . (1)用列举法表示集合(2)求,,。
17、(本题14分)判断下列函数的奇偶性(1);(2)
18、(本题满分15分)如图,在△ABC中,BC、CA、AB的长分别为,(1)求证:;(2)若,试证明△ABC为直角三角形.
19、(本题满分16分)如图所示,一根绳穿过两个定滑轮,且两端
分别挂有和的重物,现在两个滑轮之间的绳上挂一个重量为的物体,恰好使得系统处于平衡状态,求正数的取值范围.(滑轮大小可忽略不计) 20、(本题满分16分)已知函数是偶函数. (1)求的值;(2)设函数,其中若函数与的图象有且只有一个交点,求的取值范围.
参考答案1―5CADBA 6―10DCACB 11、12、-1 13、
14、 15、②③ 16. 17.解(1)设y=f(x) f(-x) =f(x) 所以函数为偶函数(2)设y=f(x) = f(-x)===-f(x) 所以函数为奇函数 18、(本题满分15分)解:(1)∵ , (2)
分∴ ..................5分∴ ..................7分∴ (8)
分说明:也可以取与同向的单位向量,在的两边作数量积,同样可证。
(2)由得,而………………13分∴ ,∴△ABC为直角三角形………………15分证法二:由(1)类似可证得:(*)………………10分由得,即:………………12分∴ ,结合(*)式得………………14分∴ ,∴△ABC为直角三角形………………15分
19、(本题满分16分)解:如图建立坐标系,记OB、OA与轴的正半轴的夹角分别为,则由三角函数定义得, (4)
分由于系统处于平衡状态,∴ ∴ ...........................6分注:也可以用力的正交分解得到上述式子【方法一】移项,(1)、(2)平方相加得:,即...........................9分而存在正数使得系统平衡,∴△=,∴ (因滑轮大小忽略,写成亦可,不扣分。
这时均为0).............................................12分由(*)解得,由(2)式知∴ ,这是关于的增函数,...........................14分∴正数的取值范围为...........................16分【方法二】1)、(2)平方相加得:...........................9分由(1)知,,而∴ 随单调递增,∴ (这里的锐角满足,此时)且(写成不扣分,这时均为0)∴ 从而,(这里的范围不是,这是易错点) (13)
分∴ ,即…………15分∴ ∴正数的取值范围为…………16分20、(本题满分16分)解:(1)∵ 是偶函数,∴ 对任意,恒成立…………2分即:恒成立,∴ …………5分(2)由于,所以
定义域为,也就是满足........................7分∵函数与的图象有且只有一个交点,∴方程在上只有一解即:方程在上只有一解.........9分令则,因而等价于关于的方程(*)在上只有一解...........................10分① 当时,解得,不合题意;...........................11分② 当时,记,其图象的对称轴∴函数在上递减,而∴方程(*)在无解 (13)
分③ 当时,记,其图象的对称轴所以,只需,即,此恒成立∴此时的范围为………………………15分综上所述,所求的取值范围为………………………16分。