大学生数学竞赛真题非数学类
第三届全国大学数学竞赛初赛(非数学专业)真题及参考解析

第三届全国大学数学竞赛初赛(非数学专业)试卷一、计算下列各题(本题共4个小题,每题6分,共24分)1. 220(1)(1ln(1))lim xx x e x x →+--+。
【解析】:因为22ln(1)22(1)(1ln(1))(1ln(1))x xxx e x ee x xx++--+--+=22022ln(1)ln(1)22220002222000ln(1)lim ,2ln(1)21lim lim lim 11ln(1)1lim 2lim 2lim 2x x x xx x x x x x x e x e xx e e e x e e x x xx x x e e ex x →++-→→→→→→+=+---==-+-+===- 所以220(1)(1ln(1))lim0xx x e x x→+--+= 【注】可以考虑洛必达法则、带皮亚诺余项的麦克劳力公式,具体参见视频解析!2. 设2coscoscos222n na θθθ=⋅⋅⋅,求lim n n a →∞。
【解析】:若0θ=,则lim 1n n a →∞=。
若0θ≠,则当n 充分大,使得022nθπ<<时,2222221cos cos coscos cos cossin2222222sin 211sin cos cos cos sin 22222sin 2sin 22n n nn nn n n n n a θθθθθθθθθθθθθθθ--=⋅⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅=从而有,sin sin lim lim 2sin 2n n n n na θθθθ→∞→∞==。
3. 求sgn(1)Dxy dxdy -⎰⎰,其中{}(,)|02,02D x y x y =≤≤≤≤。
【解析】:设11(,)|0,022D x y x y ⎧⎫=≤≤≤≤⎨⎬⎩⎭,1233122321211(,)|2,0,211(,)|2,2,2112ln 2,32ln 2,sgn(1)24ln 2.D D D DD D D D x y x y x D x y x y x dxdxdy dxdy x xy dxdy dxdy dxdy ⎧⎫=≤≤≤≤⎨⎬⎩⎭⎧⎫=≤≤≤≤⎨⎬⎩⎭=+=+=--=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰【注】由积分的几何意义,积分等于2倍3D 矩形的面积减去矩形的面积,具体分析参见解析视频。
第十届全国大学生数学竞赛预赛非数学类参考答案官方版

1 cos x cos x(1 cos 2 x 3 cos 3x ) 1 cos x cos 2 x 3 cos 3x ) lim 2 x 0 x 0 x2 x2 x
1 cos 2 x 1 1 cos 2 x 3 cos 3 x 1 cos 2 x (1 3 cos 3x ) lim lim 2 x 0 x2 2 x 0 x2 x2 1 (cos 2 x 1) 1 1 3 (cos 3x 1) 1 1 lim 2 x 0 x2 x2
中 | AB | 表示线段 AB 的长度.
证明:作辅助函数 (t ) f ( x1 t ( x2 x1 ), y1 t ( y2 y1 )) ,----------2 分 显然 (t ) 在[0,1]上可导.根据拉格朗日中值定理,存在 c (0,1) ,使得
f (u , v) f (u , v) ------8 分 ( x2 x1 ) ( y2 y1 ) u v f (u , v) f (u , v) | (1) (0) || f ( x2 , y2 ) f ( x1 , y1 ) || ( x2 x1 ) ( y2 y1 ) | u v
rdrd
0
2
1 9 r
r 2 dz d
0
2
2 2
0
2 2 r 3 ( 9 r 2 1)dr (124 35 ) 5 5 256 ------12 分 3
2
( x
(V )
2
y 2 )dV ( x 2 y 2 )dV ( x 2 y 2 )dV ( x 2 y 2 )dV
2023全国大学生数学竞赛非数A类卷子点评

2023全国大学生数学竞赛非数A类卷子点评
第一题,洛必达法则即可,没啥好说的。
第二题,多元函数求微分,与讲义上第9页例一变式三方法完全一样。
第三题,级数求导,与讲义上第8页例三变式三方法一样。
第四题,收敛域,课上讲知识时专门强调收敛区间与收敛域的区别与求解方法。
第五题,曲面积分,课程上强调了对称性的应用
第二大题,先凑微分,然后准齐次方程求解,与讲义上第24页例四变式二完全一样
第三大题,求体积问题,先算平面再算体积,与讲义上第20页例五变式一求解方法类似。
第四大题,反常积分,把分式拆成无穷级数的表达形式再求积分,与讲义上第13页例四变式三方法一样。
第五大题,分部积分法加柯西积分不等式,与讲义上第16页例三的柯西积分不等式方法一样,而分部积分法与讲义上第28页例六方法一样。
第六大题,单调有界原理加裂项,与讲义上第30页第二大题以及第六大题方法一样。
2022年第三届全国大学生数学竞赛决赛试题非数学类部分答案

第三届全国大学生数学竞赛决赛试卷(非数学类,)本试卷共2页,共6题。
全卷满分100分。
考试用时150分钟。
一、(本大题共5小题,每题6分,共30分)计算下列各题(规定写出重要环节).(1)222220sin cos lim sin x x x xx x→- 22222222224004200sin cos sin cos lim limsin (sin )(sin )(1cos )(1cos )112lim lim 22623x x xx x x x x x x x x x x x x x x x x x x x →→→→--+-=-+-+=+=-+=解:(2) 1311lim tan2x x x x e x →+∞⎡⎛⎫+- ⎪⎢⎝⎭⎣12313233022********320033(1tan )1112:lim 1tan lim 2(1tan )1(1tan )122=lim =lim 2(1tan )2x t t x x t t t t t t t t t e x e xx x t t t t t e t t t e t t tt t t e =→+∞→→→+-⎡⎛⎫+-−−−→⎢ ⎪⎝⎭⎣+---+---=+∞⎡+-⎢⎣令解 (3) 设函数(,)f x y 有二阶持续偏导数, 满足2220x yy x y xy y yy f f f f f f f -+=且0y f ≠,(,)y y x z =是由方程(,)z f x y =所拟定旳函数. 求22yx∂∂2222223(,)0=()()()20x x yyy xx yxx yx yy x yy x y xx x yx x yx x yyyy xx x yx x yyyyy x z z f x y x f y yf f x x f y yf f f f f f f y x xx x f f f f f f f f f f f f f f f f f f ff=∂∂+⇒=-∂∂∂∂+-+∂∂∂∂=-=-∂∂--+-+=-=-=解:依题意有,是函数,、是自变量将方程两边同时对求导(4) 求不定积分11(1)x x I x e dx x+=+-⎰111221111211111111(1)=(1)[1(1)]1(1)x x x x x x x x x x x x x xx x x x xxxxI x e dx x e dx e dxx x x xe dx e dx e dx xde xedx xeedx xeC+++++++++++=+-+-=+-=+-=+=+-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰解: (5) 求曲面22x y az +=和20)z a a =>所围立体旳表面积二、(本题13分)讨论22cos sin xdx x x xα+∞+⎰旳敛散性,其中α是一种实常数. 得分三、(本题13分)设()f x 在(,)-∞+∞上无穷次可微,并且满足:存在0M >,使得()()(,),(1,2)k f x M x k ≤∀∈-∞+∞=,,且1()0,(1,2)2n f n ==求证:在(,)-∞+∞上,()0f x ≡ ()2(0)(0)()(0)(0)2!!()(1)!n n nx f f f x f f x x x n x M x M e n '''=+++++≤+++=-四、(本题共16分,第1小题6分,第2小题10分)设D 为椭圆形22221(0)x y a b a b+≤>>,面密度为ρ旳均质薄板;l 为通过椭圆焦点(,0)c -(其中222c a b =-)垂直于薄板旳旋转轴.1. 求薄板D 绕l 旋转旳转动惯量J ;2. 对于固定旳转动惯量,讨论椭圆薄板旳面积与否有最大值和最小值.五、(本题12分)设持续可微函数(,)z f x y =由方程(,)0F xz y x yz --=(其中(,)0F u v =有持续旳偏导数)唯一拟定, L 为正向单位圆周. 试求:22(2)(2)LI xz yz dy xz yz dx =+-+⎰解:由格林公式22222(2)(2)()(22)(22)22()2()LDD DQ PI xz yz dy xz yz dx d x yz z z z z z z xzy x z yz d z xz y x yz d x x y y x y σσσ∂∂=+-+=-∂∂∂∂∂∂∂∂=+++++=++++∂∂∂∂∂∂⎰⎰⎰⎰⎰⎰⎰又:持续可微函数(,)z f x y =由方程(,)0F xz y x yz --= 两边同步对x 求偏导数:121221()(1)0zF F z z zF z xF y x x x yF xF +∂∂∂++-=⇒=∂∂∂- 两边同步对y 求偏导数:121212(1)()0F zF z z z F x F z y y y x xF yF +∂∂∂-+--=⇒=∂∂∂- 代入上式:2121221122221212121221122222212121221212122()2()2()222DD D DDzF F F zF I z xz y x yz d yF xF xF yF xz F xzF yzF yF xF xzF yzF yz F z d yF xF xF yF xz F yF xF yz F xF yF z yF xF z d z d yF xF yF xF d σσσσσπ++=++++--++++++=++--+---+-=+=+--=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰六、(本题共16分,第1小题6分,第2小题10分)(1)求解微分方程2(0)1x y xy xe y ⎧'-=⎪⎨=⎪⎩(2)如()y f x =为上述方程旳解,证明1220lim ()12n n f x dx n x π→∞=+⎰21220lim 1x n nedx n x→∞+⎰222222211110220001121arctan arctan 2arctan 1arctan arctan 2[0,1]arctan arctan arctan arctan arctan (1)arctan x x x x x x x ne dx e d nx e nx xe nxdx n x e n n xe dx e n n e dx e n n ee n e n ξξξξξ==-+=-∈=-=-=--⎰⎰⎰⎰⎰其中21220lim =lim[arctan (1)arctan ][0,1]1=(1)222x n n nedx e n e n n x ee ξξπππ→∞→∞=--∈+--=⎰其中。
大学生数学竞赛(非数)试题及答案

大学生数学竞赛(非数学类)试卷及标准答案考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.一、填空(每小题5分,共20分).计算)cos 1(cos 1lim 0x x x x --+→= .(2)设()f x 在2x =连续,且2()3lim2x f x x →--存在,则(2)f = . (3)若tx x xt t f 2)11(lim )(+=∞→,则=')(t f .(4)已知()f x 的一个原函数为2ln x ,则()xf x dx '⎰= .(1)21. (2) 3 . (3)te t 2)12(+ . (4)C x x +-2ln ln 2. 二、(5分)计算dxdy xy D⎰⎰-2,其中1010≤≤≤≤y x D ,:.解:dxdy x y D⎰⎰-2=dxdy y x x y D )(21:2-⎰⎰<+⎰⎰≥-22:2)(x y D dxdy x y -------- 2分 =dy y x dx x )(2210-⎰⎰+dy x y dx x)(12102⎰⎰- -------------4分姓名:身份证号所在院校:年级专业线封密注意:1.所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效. 2.密封线左边请勿答题,密封线外不得有姓名及相关标记.=3011-------------5分.三、(10分)设)](sin[2x f y =,其中f 具有二阶 导数,求22dxyd .解:)],(cos[)(222x f x f x dxdy'=---------------3分 )](sin[)]([4)](cos[)(4)](cos[)(222222222222x f x f x x f x f x x f x f dxy d '-''+'=-----7分=)]}(sin[)]([)](cos[)({4)](cos[)(222222222x f x f x f x f x x f x f '-''+'---------10分.四、(15分)已知3123ln 0=-⋅⎰dx e e a x x ,求a 的值. 解:)23(232123ln 0ln 0xa x ax x e d e dx e e ---=-⋅⎰⎰---------3分 令t e x =-23,所以dt t dx e e aax x ⎰⎰--=-⋅231ln 02123---------6分 =a t 231233221-⋅-------------7分=]1)23([313--⋅-a ,-----------9分 由3123ln 0=-⋅⎰dx e e a x x ,故]1)23([313--⋅-a =31,-----------12分即3)23(a -=0-----------13分 亦即023=-a -------------14分所以23=a -------------15分.五、(10分)求微分方程0=-+'x e y y x 满足条件e yx ==1的特解.解:原方程可化为xe y x y x=+'1-----------2分这是一阶线性非齐次方程,代入公式得⎥⎦⎤⎢⎣⎡+⎰⋅⎰=⎰-C dx e x e e y dxx xdx x 11----------4分=⎥⎦⎤⎢⎣⎡+⋅⎰-C dx e x e ex x xln ln ----------5分 =[]⎰+C dx e x x 1-----------6分 =)(1C e xx+.---------------7分 所以原方程的通解是)(1C e xy x +=.----------8分再由条件e yx ==1,有C e e +=,即0=C ,-----------9分因此,所求的特解是xe y x=.----------10分.六(10分)、若函数()f x 在(,)a b 内具有二阶导数,且123()()()f x f x f x ==,其中123a x x x b <<<<,证明:在13(,)x x 内至少有一点ξ,使()0f ξ'=。
第十一届全国大学生数学竞赛(非数学类)试题

第十一届全国大学生数学竞赛(非数学类)试题参考解答及评分标准一、填空题(每小题6分)1. sin 014x x →=.解:sin sin 00x x x x x →→→=- sin 1/31/30022(e 1)1sin 1limlim 444422x x x x x x →→-=+-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. 2. 设隐函数()y y x =由方程22()y x y x -=所确定,则232ln ||dx y y C y x x=-+⎰. 解:令y tx =,则21(1)x t t =-,1(1)y t t =-,3223(1)tdx dt t t -+=-, 这样,223332ln ||2ln ||dx t y ydt t t C C y t x x-+==-+=-+⎰⎰. 3. 定积分220(1sin )1cos x e x dx e xππ+=+⎰.解:222000(1sin )sin 1cos 1cos 1cos x xx e x e xdx dx de xx x πππ+=++++⎰⎰⎰ 2222200sin cos (1cos )+sin 1cos 1cos (1cos )xxxe xe x x x dx e dx x x x πππ+=+-+++⎰⎰2222000sin 1cos 1cos 1cos xxx e xe edx dx e x x x ππππ=+-=+++⎰⎰. 4. 已知22(,)323ydx xdy du x y x xy y -=-+,则1(,)()C 3x u x y y =-+. 解:22(,)323ydx xdy du x y x xy y -=-+21()233()3xd x yx x y y y ==--+().所以,1(,)()C 3x u x y y =-+.5. 设,,,0a b c μ>,曲面xyz μ=与曲面2222221x y z a b c ++=相切,则μ=.解:根据题意有:22x yz a λ=,22y xz b λ=,22zxy c λ=,以及 222x a μλ=,222y b μλ=,222z c μλ=,从而得:32228a b cλμ=,32μλ=,联立解得:μ=二、(14分)计算三重积分22d d d Ω+⎰⎰⎰xyzx y z x y,其中Ω是由曲面2222()2++=x y z xy 围成的区域在第一卦限部分.解:采用“球面坐标”计算,并利用对称性,得ππ3224222sin cos sin cos 2d d sin d sin I ρϕθθϕθϕρϕρρϕ=⎰⎰ -------5分ππ342002sin cos d sin cos d d θθθϕϕϕρρ=⎰⎰ππ3354202sin cos d sin cos d θθθϕϕϕ=⎰⎰ -------10分ππ354201sin 2d sin d(sin )4θθϕϕ=⎰⎰π3201121sin d 4848372t t ==⋅=⎰. -------14分 三、(14分)设()f x 在[0,)+∞上可微,(0)0f =,且存在常数0A >,使得|()||()|f x A f x '≤在[0,)+∞上成立,试证明:在(0,)+∞上有()0f x ≡.证明:设01[0,]2x A ∈,使得01|()|max |()|[0,]2f x f x x A ⎧⎫=∈⎨⎬⎩⎭, -------5分 000011|()||(0)+()||()||()|22f x f f x A f x f x A ξ'=≤=,只有0|()|0f x =. 故当 1[0,]2x A∈时,()0f x ≡. -------12分 递推可得,对所有的1[,]22k kx A A-∈,1,2,k =,均有()0f x ≡. -------14分四、(14分)计算积分2sin (cos sin )0sin I d e d ππθφφφθθ-=⎰⎰解:设球面 Σ:x 2+y 2+z 2=1, 由球面参数方程sin cos x θφ=,sin sin y θφ=,cos z θ=知sin dS d d θθφ=,所以,所求积分可化为第一型曲面积分I =∬e x−ydS Σ-------4分 设平面P t :√2=t,−1≤t ≤1,其中t 为平面P t 被球面截下部分中心到原点距离.用平面P t 分割球面Σ,球面在平面P t ,P t+dt 之间的部分形如圆台外表面状,记为Σt,dt .被积函数在其上为 e x−y =e √2t . -------8分由于Σt,dt 半径为r t =√1−t 2,半径的增长率为 d√1−t 2=√1−t 2 就是 Σt,dt 上下底半径之差. 记圆台外表面斜高为ℎt ,则由微元法知 dt 2+(d √1−t 2)2=ℎt 2, 得到ℎt =√1−t 2 ,所以 Σt,dt 的面积为 dS =2πr t ℎt =2πdt, -------12分I =∫e √2t 1−12πdt =√2√2t |−11=√2π(e √2−e −√2). -------14分 五、(14分)设()f x 是仅有正实根的多项式函数,满足 0()()n n n f x c x f x +∞='=-∑. 试证:0n c >,(0n ≥),极限lim n ()f x 的最小根. 证明:由f (x )为仅有正实根的多项式,不妨设()f x 的全部根为 0<a 1<a 2<⋯<a k ,这样,f (x )=A (x −a 1)r 1⋯(x −a k )r k ,其中 r i 为对应根a i 的重数 (i =1,⋯,k,r k ≥1). -------2分f ′(x )=Ar 1(x −a 1)r 1−1⋯(x −a k )r k +⋯+Ar k (x −a 1)r 1⋯(x −a k )r k −1,所以,f ′(x )=f (x )(r 1x−a 1+⋯+rkx−a k),从而, −f ′(x)f(x)=r 1a 1∙11−xa 1+⋯+r k a k∙11−x a k.-------6分若|x |<a 1, 则 −f ′(x)f(x)=r 1a 1∙∑(xa1)n∞n=0+⋯+r k a k∙∑(xak)n∞n=0=∑(r 1a 1n+1+⋯+r k a kn+1)∞n=0x n .而 −f ′(x)f(x)=∑c n x n∞n=0,由幂级数的唯一性知c n =r 1a 1n+1+⋯+r kak n+1>0, ------9分c ncn+1=r 1a 1n+1+⋯+r k a kn+1r 1a 1n+2+⋯+r k a kn+2=a 1∙r 1+⋯+(a1a k)n+1r kr 1+⋯+(a 1a k)n+2r k.limn→∞c nc =a 1∙r 1+0+⋯+0r +0+⋯+0=a 1>0, limn→∞c n+1c =1a , -----12分limn→∞1n ∙(ln c2c1+⋯+ln c n+1c n)=ln 1a 1,√c n n=elnc nn=elnc 1n +1n (ln c 2c 1+⋯+ln cn+1c n)→eln1a 1=1a 1.从而,lim√c nn=a 1,即f (x )的最小正根. -----14分六、(14分)设函数()f x 在[0, )+∞上具有连续导数,满足22223[3()]()2[1()]-'+=+x f x f x f x e ,且(0)1≤f .证明:存在常数0>M ,使得[0,)∈+∞x 时,恒有()≤f x M .证明:由于()0'>f x ,所以()f x 是[0, )+∞上的严格增函数,故+lim ()→∞=x f x L (有限或为+∞). 下面证明 ≠+∞L . -----2分记()=y f x ,将所给等式分离变量并积分得 222232d d (1)3-+=+⎰⎰x y y e x y ,即 2222arctan d 13-+=++⎰x t y y e t C y , ------6分 其中2(0)2arctan (0)1(0)=++f C f f . ------8分若=+∞L ,则对上式取极限→+∞x ,并利用2d 2+∞-=⎰t e t ,得π3=-C .-----10分 另一方面,令2()2arctan 1=++ug u u u ,则2223()>0(1)+'=+u g u u ,所以函数()g u 在(, )-∞+∞上严格单调增加. 因此,当(0)1≤f 时,1π((0))(1)2+=≤=C g f g , 但2π1π22+>>C ,矛盾, 这就证明了+lim ()→∞=x f x L 为有限数.最后,取max{(0),}=M f L ,则|()|≤f x M ,[0,)∀∈+∞x . -----14分。
第四届全国大学数学竞赛初赛(非数学专业)真题及参考解析

第四届全国大学数学竞赛初赛(非数学专业)试卷一、简单下列各题(本题共5个小题,每题6分,共30分)1. 求极限21lim(!)n n n →∞。
【解析】:因为2211ln(!)(!)n n nn e =,而211ln1ln 2ln ln(!)12n n n n n ⎛⎫≤+++⎪⎝⎭,且ln lim 0n n n →∞=。
所以1ln1ln 2ln lim 012n n n n →∞⎛⎫+++= ⎪⎝⎭。
即2121lim ln(!)0lim(!)1n n n n n n →∞→∞=⇒=。
2. 求通过直线2320:55430x y z L x y z +-+=⎧⎨+-+=⎩的两个相互垂直的平面12,ππ,使其中一个平面过点(4,3,1)-。
【解析】:过直线L 的平面束方程为(232)(5543)0x y z x y z λμ+-+++-+=,即(25)(5)(34)230x y z λμλμλμλμ+++-+++=。
若平面1π过点(4,3,1)-,代入得0λμ+=,即μλ=-,从而1π的方程为3410x y z +-+=。
若平面束中的平面2π与1π垂直,则3(25)4(5)1(34)0λμλμλμ+++++=。
解得3λμ=-,从而平面2π的方程为2530x y z --+=。
3. 已知函数(,)ax byz u x y e+=,且20u x y∂=∂∂,确定常数a ,b ,使函数(,)z z x y =满足方程20z z zz x y x y∂∂∂--+=∂∂∂∂。
【解析】:22(,),(,),(,),(1)(1)(1)(,)ax by ax by ax by ax by z u zu e au x y e bu x y x x y y z u ue b a abu x y x y x y z z z u uz e b a ab a b u x y x y x y x y ++++⎡⎤∂∂∂∂⎡⎤=+=+⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦⎡⎤∂∂∂=++⎢⎥∂∂∂∂⎣⎦⎡⎤∂∂∂∂∂--+=-+----+⎢⎥∂∂∂∂∂∂⎣⎦若是上式等于0,只有(1)(1)(1)(,)0u ub a ab a b u x y x y∂∂-+-+--+=∂∂,由此可得1a b ==。
第九届全国大学生数学竞赛初赛非数学类试题word版可编辑

2017年 第九届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,满分30分)1. 已知可导函数f (x )满足⎰+=+x x tdt t f x xf 01sin )(2)(cos ,则()f x =_________. 2. 求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π. 3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数. 则21xx yy w w c-=_________. 4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x→=____. 5. 不定积分sin 2sin 2(1sin )x e x I dx x -=-⎰=________.6. 记曲面222z x y =+和z =围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰=___________.二、(本题满分14分) 设二元函数(,)f x y 在平面上有连续的二阶偏导数. 对任何角度α,定义一元函数()(cos ,sin )g t f t t =ααα.若对任何α都有(0)0dg dtα=且22(0)0d g dt α>. 证明)0,0(f 是(,)f x y 的极小值.三、(本题满分14分) 设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的一段. 求曲线积分⎰Γ++=xdz zdy ydx I .四、(本题满分15分) 设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x e f x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2b a b a f x dx -+≤⎰. 五、(本题满分15分) 设{}n a 为一个数列,p 为固定的正整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年 第四届全国大学生数学竞赛预赛试卷
一、(本大题共5小题,每小题6分共30分)解答下列个体(要求写出要求写出重要步骤)
(1)求极限
(2)求通过直线 的两个互相垂直的平面 和 ,使其中一个平面过点 。
(3)已知函数 ,且 。确定常数 和 ,使函数 满足方程
(4)设函数 连续可微, ,且 在右半平面与路径无关,求 。
七、(15分)已知 满足 ,且 ,求函数项级数 之和.
八、(10分)求 时,与 等价的无穷大量.
2010年第二届全国大学生数学竞赛预赛试卷
一、(25分,每小题5分)
(1)设 其中 求
(2)求 。
(3)设 ,求 。
(4)设函数 有二阶连续导数, ,求 。
(5)求直线 与直线 的距离。
二、(15分)设函数 在 上具有二阶导数,并且
求 的导数
七、(本题14分)设 与 为正项级数,证明:
(1)若 ,则级数 收敛;
(2)若 ,且级数 发散,则级数 发散。
2013年 第五届全国大学生数学竞赛预赛试卷
一、解答下列各题(每小题6分共24分,要求写出重要步骤)
1.求极限 .
2.证明广义积分 不是绝对收敛的
3.设函数 由 确定,求 的极值。
4.过曲线 上的点A作切线,使该切线与曲线及 轴所围成的平面图形的面积为 ,求点A的坐标。
-大学生数学竞赛真题(非数学类)
————————————————————————————————作者:
————————————————————————————————日期:
2009年 第一届全国大学生数学竞赛预赛试卷
一、填空题(每小题5分,共20分)
1.计算 ____________,其中区域 由直线 与两坐标轴所围成三角形区域.
2.设 是连续函数,且满足 ,则 ____________.
3.曲面 平行平面 的切平面方程是__________.
4.设函数 由方程 确定,其中 具有二阶导数,且 ,则 ________________.
2、(5分)求极限 ,其中 是给定的正整数.
三、(15分)设函数 连续, ,且 , 为常数,求 并讨论 在 处的连续性.
五.(本题16分)已知S是空间曲线 绕y轴旋转形成的椭球面的上半部分( )取上侧, 是S在 点处的切平面, 是原点到切平面 的距离, 表示S的正法向的方向余弦。计算:
(1) ;(2)
六.(本题12分)设f(x)是在 内的可微函数,且 ,其中 ,任取实数 ,定义 证明: 绝对收敛。
七.(本题15分)是否存在区间 上的连续可微函数f(x),满足 ,
(5)求极限
二、(本题10分)计算
三、求方程 的近似解,精确到0.001.
四、(本题12分)设函数 二阶可导,且 , , ,求 ,其中 是曲线 上点 处的切线在 轴上的截距。
五、(本题12分)求最小实数 ,使得满足 的连续函数 都有
六、(本题12分)设 为连续函数, 。区域 是由抛物面
和球面 所围起来的部分。定义三重积分
四、(15分)已知平面区域 , 为 的正向边界,试证:
(1) ;
(2) .
五、(10分)已知 , , 是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.
6、(10分)设抛物线 过原点.当 时, ,又已知该抛物线与 轴及直线 所围图形的面积为 .试确定 ,使此图形绕 轴旋转一周而成的旋转体的体积最小.
且存在一点 ,使得 。
3、(15分)设函数 由参数方程 所确定,其中 具有二阶导数,曲线 与 在 出相切,求函数 。
四、(15分)设 证明:
(1)当 时,级数 收敛;
(2)当 且 时,级数 发散。
五、(15分)设 是过原点、方向为 ,(其中 的直线,均匀椭球
,其中( 密度为1)绕 旋转。
(1)求其转动惯量;
(1).求 ;
(2).求 ;
(3)已知 ,求 。
二.(本题10分)求方程 的通解。
三.(本题15分)设函数f(x)在x=0的某邻域内具有二阶连续导数,且 均不为0,证明:存在唯一一组实数 ,使得 。
四.(本题17分)设 ,其中 , , 为 与 的交线,求椭球面 在 上各点的切平面到原点距离的最大值和最小值。
(2)求其转动惯量关于方向 的最大值和最小值。
六、(15分)设函数 具有连续的导数,在围绕原点的任意光滑的简单闭曲线 上,曲线积分 的值为常数。
(1)设 为正向闭曲线 证明
(2)求函数 ;
(3)设 是围绕原点的光滑简单正向闭曲线,求 。
2011年 第三届全国大学生数学竞赛预赛试卷
一.计算下列各题(本题共3小题,每小题各5分,共15分)