挑战高中物理压轴题
高考物理最难压轴题

高考物理最难压轴题一、一物体在水平面上做匀速圆周运动,当向心力突然减小为原来的一半时,下列说法正确的是:A. 物体将做匀速直线运动B. 物体将做匀变速曲线运动C. 物体的速度将突然减小D. 物体的速率在短时间内不变(答案:D)二、在双缝干涉实验中,若保持双缝间距不变,增大光源到双缝的距离,则干涉条纹的间距将:A. 增大B. 减小C. 不变D. 无法确定(答案:B)三、一轻质弹簧一端固定,另一端用一细线系住一小物块,小物块放在光滑的水平面上。
开始时弹簧处于原长状态,现对小物块施加一个拉力,使小物块从静止开始做匀加速直线运动。
在拉力逐渐增大的过程中,下列说法正确的是:A. 弹簧的弹性势能保持不变B. 小物块的动能保持不变C. 小物块与弹簧组成的系统机械能增大D. 小物块与弹簧组成的系统机械能守恒(答案:C)四、在电场中,一个带负电的粒子(不计重力)在电场力作用下,从A点移动到B点,电场力做了负功。
则下列说法正确的是:A. A点的电势一定低于B点的电势B. 粒子的电势能一定减小C. 粒子的动能一定增大D. 粒子的速度可能增大(答案:D)注:此题考虑的是粒子可能受到其他力(如洛伦兹力)的影响,导致速度方向变化,但电场力做负功仍使电势能增加。
五、一轻质杆两端分别固定有质量相等的小球A和B,杆可绕中点O在竖直平面内无摩擦转动。
当杆从水平位置由静止释放后,杆转至竖直位置时,下列说法正确的是:A. A、B两球的速度大小相等B. A、B两球的动能相等C. A、B两球的重力势能相等D. 杆对A球做的功大于杆对B球做的功(答案:D)六、在闭合电路中,当外电阻增大时,下列说法正确的是:A. 电源的电动势将增大B. 电源的内电压将增大C. 通过电源的电流将减小D. 电源内部非静电力做功将增大(答案:C)七、一物体以某一速度冲上一光滑斜面(足够长),加速度恒定。
前4s内位移是1.6m,随后4s内位移是零,则下列说法中正确的是:A. 物体的初速度大小为0.6m/sB. 物体的加速度大小为6m/s²(方向沿斜面向下)C. 物体向上运动的最大距离为1.8mD. 物体回到斜面底端,总共需时12s(答案:C)八、在核反应过程中,质量数和电荷数守恒。
2024年高考物理压轴题

2024年高考物理压轴题一、在双缝干涉实验中,若增大双缝间距,同时保持光源和观察屏的位置不变,则干涉条纹的间距将如何变化?A. 增大B. 减小C. 不变D. 无法确定(答案:B)二、一质点以初速度v₀沿直线运动,先后经过A、B、C三点,已知AB段与BC段的距离相等,且质点在AB段的平均速度大小为3v₀/2,在BC段的平均速度大小为v₀/2,则质点在B 点的瞬时速度大小为?A. v₀B. (√3 + 1)v₀/2C. (3 + √3)v₀/4D. (3 - √3)v₀/4(答案:A,利用匀变速直线运动的中间时刻速度等于全程平均速度以及位移速度关系式求解)三、在电场中,一电荷q从A点移动到B点,电场力做功为W。
若将该电荷的电量增大为2q,再从A点移动到B点,则电场力做功为?A. W/2B. WC. 2WD. 4W(答案:C,电场力做功与电荷量的多少成正比)四、一均匀带电球体,其内部电场强度的大小与距离球心的距离r的关系是?A. 与r成正比B. 与r成反比C. 与r的平方成正比D. 在球内部,电场强度处处为零(答案:D,对于均匀带电球体,其内部电场强度处处为零,由高斯定理可证)五、在核反应过程中,质量数和电荷数守恒是基本规律。
下列哪个核反应方程是可能的?A. ²H + ³H →⁴He + n + 能量B. ²H + ²H →³H + p + 能量C. ²H + ²H →⁴He + 2p - 能量D. ³H + ³H →⁴He + ²H + 能量(答案:B,根据质量数和电荷数守恒判断)六、一弹簧振子在振动过程中,当其速度减小时,下列说法正确的是?A. 回复力增大B. 位移增大C. 加速度减小D. 动能增大(答案:A、B,弹簧振子速度减小时,正向平衡位置运动,回复力增大,位移增大,加速度增大,动能减小)七、在光电效应实验中,若入射光的频率增加,而光强保持不变,则单位时间内从金属表面逸出的光电子数将?A. 增加B. 减少C. 不变D. 无法确定(答案:B,光强不变意味着总的光子数不变,频率增加则单个光子能量增加,因此光子数减少,导致逸出的光电子数减少)八、在相对论中,关于时间和长度的变化,下列说法正确的是?A. 高速运动的物体,其内部的时间流逝会变慢B. 高速运动的物体,在其运动方向上测量得到的长度会变长C. 无论物体运动速度如何,时间和长度都是不变的D. 以上说法都不正确(答案:A,根据相对论的时间膨胀和长度收缩效应,高速运动的物体内部时间流逝会变慢,沿运动方向上的长度会变短)。
挑战高中物理压轴题

1、如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量、电量的可视为质点的带电小球与弹簧接触但不栓接。
某一瞬间释放弹簧弹出小球,小球从水平台右端A点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下。
已知AB的竖直高度,倾斜轨道与水平方向夹角为、倾斜轨道长为,带电小球与倾斜轨道的动摩擦因数。
倾斜轨道通过光滑水平轨道CD与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。
只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强。
(cos37°=0.8,sin37°=0.6,取g=10m/s2)求:(1)被释放前弹簧的弹性势能?(2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件?(3)如果竖直圆弧轨道的半径,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道高为0.01m的某一点P?2、如图所示,MN、PQ是足够长的光滑平行导轨,其间距为L,且MP⊥MN.导轨平面与水平面间的夹角θ=30°.MP接有电阻R.有一匀强磁场垂直于导轨平面,磁感应强度为B0.将一根质量为m的金属棒ab紧靠MP放在导轨上,且与导轨接触良好,金属棒的电阻也为R,其余电阻均不计.现用与导轨平行的恒力F=mg沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP平行.当金属棒滑行至cd处时已经达到稳定速度,cd 到MP的距离为S.已知重力加速度为g,求:(1)金属棒达到的稳定速度;(2)金属棒从静止开始运动到cd的过程中,电阻R上产生的热量;(3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,写出磁感应强度B随时间t变化的关系式.3、如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知R=0.4m,l=2.5m,v0=6m/s,物块质量m=1kg,与PQ段间的动摩擦因数μ=0.4,轨道其它部分摩擦不计.取g=10m/s2.求:(1)物块经过圆轨道最高点B时对轨道的压力;(2)物块从Q运动到P的时间及弹簧获得的最大弹性势能;(3)物块仍以v0从右侧冲上轨道,调节PQ段的长度l,当l长度是多少时,物块恰能不脱离轨道返回A点继续向右运动.4、如图所示,倾角300的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接,轨道宽度均为L=1m,电阻忽略不计.匀强磁场I仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2.(1)求导体棒cd沿斜轨道下滑的最大速度的大小;(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.5、如图所示质量为m=1kg的滑块(可视为质点)由斜面上P点以初动能E K0=20J沿斜面向上运动,当其向上经过Q点时动能E KQ=8J,机械能的变化量ΔE机=-3J,斜面与水平夹角α=37°。
高二上册物理压轴题考卷01-2024-2025学年高中物理培优专题训练(人教版必修第三册)(解析版)

高二上册物理压轴题考卷01(考试时间:90分钟 试卷满分:100分)注意事项:1.测试范围:人教版(2019): 必修第三册第9~10章。
2.本卷平均难度系数0.15。
第Ⅰ卷 选择题一、选择题(本题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分)1.如图所示,半径为2r 的均匀带电球体电荷量为Q ,过球心O 的x 轴上有一点P ,已知P 到O 点的距离为3r ,现若挖去图中半径均为r 的两个小球,且剩余部分的电荷分布不变,静电力常量为k ,则下列分析中不正确的是( )A P 点产生的电场强度相同B .挖去两小球前,整个大球在P 点产生的电场强度大小为29Q kr C .挖去两小球后,P 点电场强度方向与挖去前相同D .挖去两小球后,剩余部分在P 点产生的电场强度大小为2.如图所示,一足够大的空间内有一无限长的均匀带正电的导体棒水平放置,导体棒所在q>的微粒,通过多次摆的竖直平面内放有三个质量相同、电荷量分别为q、2q、3q()0放发现,当三个微粒均静止时,它们距导体棒的距离之比总是1:2:3,不考虑微粒间的相互作用。
现撤去该三个微粒,在导体棒所在的竖直平面内距导体棒1.5h、2.5h处分别放有电子A、B(不计重力),给它们各自一个速度使其以导体棒为轴做匀速圆周运动,则A、B做圆周运动的线速度之比为( )A .1:1B .3:5C .1:2D .5:33.如图所示,有一半径为R ,一带处,小球与地面碰撞后速度可认为变为零,则下列说法正确的是( )A.在圆环中心正上方还存在另一位置,小球移至该处仍可保持平衡B.将小球移至距圆环中心正上方高为0.5R处由静止释放,小球一定向下运动C.将小球移至距圆环中心正上方高为R处由静止释放,小球一定向上运动D.将小球移至距圆环中心正上方高为2R处由静止释放,小球运动过程中电势能一直增大故选B 。
高中物理力学压轴题及解析

高中物理力学压轴题及解析高中物理力学是高中阶段物理课程的重要组成部分,压轴题往往考察学生对力学知识的综合运用能力。
本文将针对高中物理力学压轴题,给出详细的题目及解析,帮助同学们巩固力学知识,提高解题能力。
一、高中物理力学压轴题题目:一质量为m的小车,在水平地面上受到一恒力F作用,从静止开始加速运动。
已知小车所受阻力与速度成正比,比例系数为k。
求小车在力F作用下的加速度a与速度v的关系。
二、解析1.首先,根据题目描述,小车受到的合力F合= F - kv,其中F为恒力,kv为阻力。
2.根据牛顿第二定律,合力等于质量乘以加速度,即F合= ma。
3.将合力表达式代入牛顿第二定律,得到ma = F - kv。
4.整理得到加速度a的表达式:a = (F - kv) / m。
5.由于小车从静止开始加速,可以使用初速度为0的匀加速直线运动公式v = at,将加速度a代入,得到v = (F - kv)t / m。
6.进一步整理得到速度v与时间t的关系:v = (F/m)t - (k/m)t^2。
7.由于要求速度v与加速度a的关系,可以将v对a求导,得到dv/da = (F/m) - 2(k/m)t。
8.令dv/da = 0,求得极值点,即t = F / (2km)。
将此值代入v的表达式,得到v = F^2 / (4km)。
9.因此,小车在力F作用下的加速度a与速度v的关系为:a = F / m - 2k/m * v。
三、总结通过对本题的解析,我们可以发现,解决这类力学压轴题的关键在于熟练运用牛顿第二定律、运动学公式,以及掌握阻力与速度成正比的关系。
此外,同学们在解题过程中要注意合理运用数学知识,如求导、求极值等,以提高解题速度和准确度。
注意:本文所提供的题目及解析仅供参考,实际考试题目可能有所不同。
新课标高考物理压轴题

新课标2019高考物理压轴题2019挑战高考物理压轴题高中物理学史一、单项选择题1.下列对运动的认识不正确的是()A.亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动B.伽利略根据理想实验推出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去C.笛卡儿认为没有力的作用物体可以永远静止不动D.牛顿认为力的真正效应总是改变物体的速度,而不是保持原状2.物理是建立在实验基础上的一门学科,物理学中的很多定律可以通过实验进行验证,下列定律中不可以通过实验直接得以验证的是()A.牛顿第一定律B.牛顿第二定律C.牛顿第三定律D.万有引力定律3.科学方法在物理问题的研究中十分重要,历史上有一位物理学家受到牛顿万有引力定律的启发,运用类比方法,在电磁学领域中建立了一个物理学定律,该定律的名称为()A.库仑定律B.欧姆定律C.法拉第电磁感应定律D.楞次定律4.电磁感应规律是制造发电机的原理,发现电磁感应现象的科学家是()A.安培B.赫兹C.法拉第D.奥斯特5.爱因斯坦由光电效应的实验规律,猜测光具有粒子性,从而提出光子说.从科学研究的方法来说,这属于()A.等效替代B.控制变量C.科学假说D.物理归纳6.物理史上,有许多规律的发现或学说的建立是在科学家们之间相互启发、相互印证的过程中逐步完成的.下列说法中不符合史实的是()A.法拉第对磁生电的预见是受奥斯特电生磁的启发B.玻尔提出的原子能级模型的假设是受普朗克的量子理论的启发C.库仑建立的库仑定律是受牛顿第二定律的启发D.牛顿建立的牛顿第一定律是受伽利略理想实验结论的启发7.卢瑟福用粒子轰击氮核,第一次实现了原子核的人工转变,并发现了()A.原子核内有质子存在B.原子核内有中子存在C.电子是原子的组成部分D.原子核是由质子和中子组成的8.下列说法不正确的是()A.卢瑟福通过核的人工转变实验发现了质子B.卢瑟福预言了中子的存在,查德威克通过核的人工转变实验发现了中子C.查德威克预言了中子的存在,并亲自通过核的人工转变实验加以证实D.爱因斯坦提出了质能方程9.下列关于现代科学发现的说法不正确的是()A.法国物理学家贝克勒尔最先发现铀和含铀的矿物质具有天然的放射现象B.玛丽居里夫人和丈夫皮埃尔居里从沥青矿中分离出一种放射性新元素钋C.约里奥居里夫妇发现经过粒子轰击的铝片中含有放射性同位素磷PD.玛丽居里夫人发现原子核的裂变,成为原子弹之母10.下列关于三大理想气体实验定律的说明,正确的是()A.等温变化规律是玻意耳发现的B.等温变化规律是查理发现的C.等容变化规律是盖吕萨克发现的D.等压变化规律是查理发现的二、双项选择题11.下列说法正确的有()A.卡文迪许通过扭秤实验,较准确地测出了万有引力常量B.安培通过实验,首先发现了电流周围存在磁场C.法拉第通过实验研究,总结出了电磁感应的规律D.牛顿根据理想斜面实验,提出力不是维持物体运动的原因12.下列物理学家的论点,具有科学性的有()A.胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比B.亚里士多德认为重物体要比轻物体下落得快C.牛顿认为,无论两个物体处于什么状态,它们之间的相互作用力的大小总是相等的D.伽利略提出了经典力学三大定律13.下列说法正确的是()A.开普勒关于行星运动的描述为万有引力定律的发现奠定了基础B.牛顿总结出了万有引力定律并测出了万有引力常量C.牛顿总结出了万有引力定律,卡文迪许规定了万有引力恒量的数值D.牛顿总结出了万有引力定律,卡文迪许测出了万有引力恒量的数值14.在物理学发展的过程中,许多物理学家的科学发现推动了人类历史的进步.在对下列几位物理学家所作科学贡献的叙述中,正确的说法是()A.库仑提出了电流的磁效应B.爱因斯坦建立的光电效应方程成功地解释了光电效应现象C.奥斯特发现了磁场产生电流的条件和规律D.牛顿提出的万有引力定律奠定了天体力学的基础15.下列说法正确的是()A.安培最早发现了磁场对电流有力的作用B.安培也最早发现了磁场对运动电荷有力的作用C.法拉第最早提出了确定感应电流方向的方法D.楞次最早提出了确定感应电流方向的方法16.2019年被联合国定为世界物理年,以表彰爱因斯坦对科学的贡献.爱因斯坦对物理学的贡献有()A.创立相对论B.发现X射线C.提出光子说D.建立原子核式模型17.下列关于物理学史的说法正确的是()A.卢瑟福提出了原子的能级结构模型B.贝克勒尔首先发现了铀和含铀的矿物质具有天然放射现象C.钱三强、何泽慧夫妇是最早发现铀三裂变、四裂变的中国科学家D.德国物理学家哈恩和他的助手斯特拉斯曼发现了轻核聚变18.下列说法正确的是()A.布朗首先发现了液体表面上的花粉颗粒做无规则运动的现象B.焦耳是一位伟大的物理学家,他成功地发现了焦耳定律,测出了热功当量C.焦耳还和许多人一样,设想制作第二类永动机D.开尔文按照机械能与内能转化过程的方向性提出热力学第一定律19.伽利略在著名的斜面实验中,让小球分别沿倾角不同、阻力很小的斜面从静止开始滚下,他通过实验观察和逻辑推理,得到的正确结论有()A.小球沿斜面滚下的运动是匀加速直线运动B.小球沿斜面滚下的加速度与小球的质量有关C.小球的加速度与斜面的倾角无关D.当斜面的倾角为90,小球做自由落体运动,仍然会保持匀加速运动的性质20.牛顿以天体之间普遍存在着引力为依据,运用严密的逻辑推理,建立了万有引力定律,在创建万有引力的过程中,牛顿()A.接受了胡克等科学家吸引力与两中心距离的平方成反比的猜想B.根据地球上一切物体都以相同加速度下落的事实,得出物体受地球的引力与其质量成正比,即Fm的结论C.根据Fm和牛顿第二定律,分析了地、月间相互的引力关系,进而得出Fm1m2D.自己根据大量的实验数据得出了比例系数G的大小1.解析:亚里士多德对力和运动的观点是一种经验主义的观点,是从表面看问题,这个错误观点统治了人们的头脑一千多年,最后通过伽利略的理想实验假设得到修正,通过牛顿确立了全面正确的结论.答案:A2.解析:牛顿第一定律是科学抽象得到的定律,是物体没有受力的状态下的规律,是理想定律,它不可以通过实验加以验证.答案:A3.解析:库仑受到牛顿万有引力定律的启发,运用类比方法发现了电荷之间相互作用力的规律库仑定律.答案:A4.解析:安培于1821年到1822年间通过通电线圈探求感应电流的实验,但他只关注线圈通电达到稳定状态时的情形,而没有发现感应电流.法拉第吸取了安培的经验教训,通过反复实验发现,在线圈通、断电瞬间,闭合电路因磁通量发生变化而产生感应电流的电磁感应现象.答案:C5.解析:普朗克提出了量子理论,后来爱因斯坦借鉴普朗克的观点提出了光子说,即光子是一份一份的,每一份对应一个能量值,这些能量值是分立的,不连续的.这样定义光子的方法就属于科学假说.答案:C6.解析:库仑建立的库仑定律是受牛顿万有引力定律的启发,并非牛顿第二定律.答案:C7.解析:卢瑟福用粒子轰击氮核,第一次实现了原子核的人工转变,并发现原子核内有质子存在.答案:A8.解析:卢瑟福预言了中子的存在,他的学生查德威克通过核的人工转变实验发现了中子.答案:C9.解析:玛丽居里夫人主要是发现天然放射性元素钋和镭,提出放射性理论,D错误.答案:D10.解析:等温变化规律是玻意耳发现的,等容变化规律是查理发现的,等压变化规律是盖吕萨克发现的.答案:A11.解析:首先发现了电流周围存在磁场的是奥斯特,理想斜面实验是伽利略设想的.答案:AC12.解析:在弹性限度内,弹簧的弹力与弹簧的形变量成正比,A正确;在不受阻力作用下,重物体与轻物体下落得一样快,B错误;无论两个物体处于什么状态,它们之间的相互作用力的大小总是相等的,方向相反,这是力作用的相互性,C正确;经典力学三大定律是牛顿提出的,D错误.答案:AC13.解析:牛顿是利用了开普勒关于行星运动的描述及牛顿第二、第三定律才总结出了万有引力定律的.而他的学生卡文迪许在实验室通过实验测出了万有引力恒量的数值,从而打开研究地球密度之门.答案:AD14.解析:安培提出了电流的磁效应,A错误;爱因斯坦利用自己的光电效应方程成功地解释了光电效应现象,B正确;法拉第发现了磁场产生电流的条件和规律:磁通量的变化率,C错误;牛顿提出的万有引力定律也是经典力学理论,它奠定了天体力学的基础,D正确.答案:BD15.解析:安培最早发现了磁场能对电流有力的作用,但洛伦兹才是最早发现磁场对运动电荷产生作用力的科学家,A 正确B错误.法拉第最早建立计算感应电动势的公式,但楞次最早提出了确定感应电流方向的方法,C错误D正确.答案:AD16.解析:爱因斯坦对物理学的贡献主要是创立了相对论和提出了光子说而两次获得诺贝尔奖.答案:AC17.解析:玻尔提出了原子的能级结构模型,并作了几点假设,A错误;贝克勒尔的确是第一位发现了铀和含铀的矿物质具有天然放射现象的科学家而获诺贝尔奖,B正确;钱三强、何泽慧夫妇在法国巴黎大学观察核反应的实验中,在上万次观察中发现了铀三裂变和四裂变,成为最早发现这个现象的中国科学家,C正确;德国物理学家哈恩和他的助手斯特拉斯曼通过中子轰击铀核使其裂变,D错误.答案:BC18.解析:布朗首先发现了液体表面上的花粉颗粒做无规则运动的现象布朗运动,A正确;焦耳通过400多次实验,令人信服地证明了热量与功之间有着确定的数量关系热功当量,B正确;焦耳还提出了根据能量守恒定律,并和许多人一样,设想制作第一类永动机,C错误;开尔文按照机械能与内能转化过程的方向性提出热力学第二定律,D错误.答案:AB学习必备欢迎下载19.解析:由于阻力很小,故小球滚下的加速度a=gsin ,可知倾角一定时,a一定,故小球沿斜面滚下的运动是匀加速直线运动;由此式也看出加速度与小球的质量无关,与斜面的倾角有关;而当=90时,a=g,小球做自由落体运动,仍然会保持匀加速运动的性质.答案:AD20.解析:C项是根据牛顿第三定律进行分析的;D项是卡文迪许通过实验测出G的.故本题正确选项为A、B.答案:AB第 11 页。
2024届高考物理情景题压轴汇编-1力与运动

2024届高考物理情景题压轴汇编-1力与运动一、单选题 (共6题)第(1)题如图所示,一块长为a、宽为b、高为c的长方体半导体器件,其内载流子数密度为n,沿方向通有恒定电流I。
在空间中施加一个磁感应强度为B、方向沿-x方向的匀强磁场,半导体上、下表面之间产生稳定的电势差U,下列说法正确的是( )A.若载流子为负电荷,则上表面电势高于下表面电势B.仅增大电流I,电势差U可以保持不变C.半导体内载流子所受洛伦兹力的大小为D.半导体内载流子定向移动的速率为第(2)题用一束单色光照射某金属板,金属板表面没有电子逸出,这可能是因为光的( )A.频率太低B.波长太短C.光强不够强D.照射时间不够长第(3)题下列说法正确的是( )A.β衰变的电子来自原子核外B.太阳辐射的能量主要来自太阳内部的重核裂变反应C.原子核比结合能越大,表明原子核中核子结合得越牢固,原子核就越稳定D.氢原子跃迁时核外电子从半径较大的轨道跃迁到半径较小的轨道,电子的动能减小,原子总能量减小第(4)题家庭和饭店安全使用煤气罐很重要。
将一定质量的天然气封闭在罐中,在使用过程中,罐内气体质量不断减少,气体可视为理想气体,假设气体温度不变。
则( )A.罐内剩余气体的压强变大B.单位时间内撞击在煤气罐单位面积上的分子数增多C.气体对外界做功,罐内剩余气体从外界吸收热量D.气体的平均速率增大,但不是每个分子的运动速率都增大第(5)题如图所示,在正点电荷产生的电场中,将两个带正电的试探电荷分别置于、两点,虚线为等势线。
取无穷远处为零电势点,若将移到无穷远的过程中电场力做的功相等,则下列说法正确的是( )A.A、B两点的电场强度相同B.的电荷量小于的电荷量C.点电势小于点电势D.在点的电势能大于在点的电势能第(6)题半径为R的半球形透光材料的截面如图,截面上的O点是半球形透光材料的球心,AB是直径,OD是截面内过O点且垂直直径AB的直线,C是直线OD与球表面的交点。
高考物理带电粒子在磁场中的运动压轴难题

高考物理带电粒子在磁场中的运动压轴难题一、带电粒子在磁场中的运动压轴题1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。
y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。
现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。
求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。
【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R OQ QC =+21v qvB mR =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量、电量的可视为质点的带电小球与弹簧接触但不栓接。
某一瞬间释放弹簧弹出小球,小球从水平台右端A点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下。
已知AB的竖直高度,倾斜轨道与水平方向夹角为、倾斜轨道长为,带电小球与倾斜轨道的动摩擦因数。
倾斜轨道通过光滑水平轨道CD与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。
只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强。
(cos37°=0.8,sin37°=0.6,取g=10m/s2)求:(1)被释放前弹簧的弹性势能?(2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件?(3)如果竖直圆弧轨道的半径,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道高为0.01m的某一点P?2、如图所示,MN、PQ是足够长的光滑平行导轨,其间距为L,且MP⊥MN.导轨平面与水平面间的夹角θ=30°.MP接有电阻R.有一匀强磁场垂直于导轨平面,磁感应强度为B0.将一根质量为m的金属棒ab紧靠MP放在导轨上,且与导轨接触良好,金属棒的电阻也为R,其余电阻均不计.现用与导轨平行的恒力F=mg沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP平行.当金属棒滑行至cd处时已经达到稳定速度,cd 到MP的距离为S.已知重力加速度为g,求:(1)金属棒达到的稳定速度;(2)金属棒从静止开始运动到cd的过程中,电阻R上产生的热量;(3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,写出磁感应强度B随时间t变化的关系式.3、如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知R=0.4m,l=2.5m,v0=6m/s,物块质量m=1kg,与PQ段间的动摩擦因数μ=0.4,轨道其它部分摩擦不计.取g=10m/s2.求:(1)物块经过圆轨道最高点B时对轨道的压力;(2)物块从Q运动到P的时间及弹簧获得的最大弹性势能;(3)物块仍以v0从右侧冲上轨道,调节PQ段的长度l,当l长度是多少时,物块恰能不脱离轨道返回A点继续向右运动.4、如图所示,倾角300的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接,轨道宽度均为L=1m,电阻忽略不计.匀强磁场I仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2.(1)求导体棒cd沿斜轨道下滑的最大速度的大小;(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.5、如图所示质量为m=1kg的滑块(可视为质点)由斜面上P点以初动能E K0=20J沿斜面向上运动,当其向上经过Q点时动能E KQ=8J,机械能的变化量ΔE机=-3J,斜面与水平夹角α=37°。
PA间距离l0=0.625m,当滑块向下经过A点并通过光滑小圆弧后滑上质量M=0.25kg的木板 (经过小圆弧时无机械能损失),滑上木板瞬间触发一感应开关使木板与斜面底端解除锁定(当滑块滑过感应开关时,木板与斜面不再连接),木板长L=2.5m,木板与滑块间动摩擦因数µ1=0.20,木板与地面的动摩擦因数µ2=0.10。
滑块带动木板在地面上向右运动,当木板与右侧等高光滑平台相碰时再次触发感应开关使木板与平台锁定。
滑块沿平台向右滑上光滑的半径R=0.1m的光滑圆轨道(滑块在木板上滑行时,未从木板上滑下)。
求:(1)物块与斜面间摩擦力大小;(2)木块经过A点时的速度大小v1;(3)为保证滑块通过圆轨道最高点,AB间距离d应满足什么条件?6、如图甲所示,弯折成90°角的两根足够长金属导轨平行放置,形成左右两导轨平面,左导轨平面与水平面成53°角,右导轨平面与水平面成37°角,两导轨相距L=0.2m,电阻不计。
质量均为m=0.1kg,电阻均为R=0.1Ω的金属杆ab、cd 与导轨垂直接触形成闭合回路,金属杆与导轨间的动摩擦因数均为μ=0.5,整个装置处于磁感应强度大小为B=1.0T,方向平行于左导轨平面且垂直右导轨平面向上的匀强磁场中。
t=0时刻开始,ab杆以初速度v1沿右导轨平面下滑。
t=ls时刻开始,对ab杆施加一垂直ab杆且平行右导轨平面向下的力F,使ab开始作匀加速直线运动。
cd杆运动的v﹣t图象如图乙所示(其中第1s、第3s内图线为直线)。
若两杆下滑过程均保持与导轨垂直且接触良好,g取10m/s2,sin37°=0.6,cos37°=0.8.求:(1)在第1秒内cd杆受到的安培力的大小;(2)ab杆的初速度v1;(3)若第2s内力F所做的功为9J,求第2s内cd杆所产生的焦7、如图所示是倾角θ=37º的固定光滑斜面,两端有垂直于斜面的固定挡板P、Q,PQ距离L=2m,质量M=1.0kg的木块A(可看成质点)放在质量m=0.5kg 的长d=0.8m的木板B上并一起停靠在挡板P处,A木块与斜面顶端的电动机间用平行于斜面不可伸长的轻绳相连接,现给木块A沿斜面向上的初速度,同时开动电动机保证木块A一直以初速度v0=1.6m/s沿斜面向上做匀速直线运动,已知木块A的下表面与木板B间动摩擦因数μ1=0.5,经过时间t,当B板右端到达Q处时刻,立刻关闭电动机,同时锁定A、B物体此时的位置。
然后将A物体上下面翻转,使得A原来的上表面与木板B接触,已知翻转后的A、B接触面间的动摩擦因数变为μ2=0.25,且连接A与电动机的绳子仍与斜面平行。
现在给A向下的初速度v1=2m/s,同时释放木板B,并开动电动机保证A木块一直以v1沿斜面向下做匀速直线运动,直到木板B与挡板P接触时关闭电动机并锁定A、B位置。
求:(1)B木板沿斜面向上加速运动过程的加速度大小;(2)A、B沿斜面上升过程所经历的时间t;(3)A、B沿斜面向下开始运动到木板B左端与P接触时,这段过程中A、B间摩擦产生的热量。
8、如图甲所示,两根足够长的平行光滑金属导轨MN、PQ被固定在水平面上,导轨间距l=0.6 m,两导轨的左端用导线R2=1Ω,导轨及导线电阻均不计.在矩形区域CDFE内有竖直向上的磁场,CE=0.2m,磁感应强度随时间的变化规律如图乙所示.开始时电压表有示数,当电压表示数变为零后,对金属棒施加一水平向右的恒力F,使金属棒刚进入磁场区域时电压表的示数又变为原来的值,金属棒在磁场区域内运动的过程中电压表的示数始终保持不变.求:(1)t=0.1s时电压表的示数;(2)恒力F的大小;(3)从t=0时刻到金属棒运动出磁场的过程中整个电路产生的热量.9、如图所示·固定在竖着平面内的光滑绝缘管道ABCDQ的A、Q两端与倾角θ=37°的传送带相切。
不计管道内外径的差值.AB部分为半径R1=0.4 m的圆弧,CDQ部分也是圆弧.D为最高点,BC部分水平,且仅有BC段处于场强大小E=4×103N/C,方向水平向右的匀强电场中,传送带长L=1.8 m,传送轮半径忽略不计。
现将一可视为质点的带正电滑块从传送带上的Q 处由静止释放,滑块能从A处平滑进入管道。
已知滑块的质量m=l kg、电荷量q=5×10-4C.滑块与传送带之间的动摩擦因数μ=0.5,滑块通过管道与传送带的交接处时无速度损失,滑块电荷量始终保持不变,最大静摩擦力等于滑动摩擦力.g=10 m/s2。
(1)若传送带不动,求滑块第一次滑到A处的动能;(2)若传送带不动·求滑块第一次滑到C处时所受圆弧轨道的弹力;(3)改变传送带逆时针的转动速度以及滑块在Q处滑上传送带的初速度,可以使滑块刚滑上传送带就形成一个稳定的逆时针循环(即滑块每次通过装置中同一位置的速度相同)。
在所有可能的循环中,求传送带速度的最小值。
(结果可用根号表示)10、如图所示,宽为L=2m 、足够长的金属导轨MN 和M ′N ′放在倾角为θ=30°的斜面上,在N 和N ′之间连有一个阻值为R=1.2Ω的电阻,在导轨上AA ’处放置一根与导轨垂直、质量为m=0.8kg 、电阻为r=0.4Ω的金属滑杆,导轨的电阻不计.用轻绳通过定滑轮将电动小车与滑杆的中点相连,绳与滑杆的连线平行于斜面,开始时小车位于滑轮的正下方水平面上的P 处(小车可视为质点),滑轮离小车的高度H=4.0m .在导轨的NN ′和OO ′所围的区域存在一个磁感应强度B=1.0T 、方向垂直于斜面向上的匀强磁场,此区域内滑杆和导轨间的动摩擦因数为μ=,此区域外导轨是光滑的.电动小车沿PS 方向以v=1.0m/s 的速度匀速前进时,滑杆经d=1m 的位移由AA ′滑到OO ′位置.(g 取10m/s 2)求: (1)请问滑杆AA ′滑到OO ′位置时的速度是多大?(2)若滑杆滑到OO ′位置时细绳中拉力为10.1N ,滑杆通过OO ′位置时的加速度?(3)若滑杆运动到OO ′位置时绳子突然断了,则从断绳到滑杆回到AA ′位置过程中,电阻R 上产生的热量Q 为多少?(设导轨足够长,滑杆滑回到AA ’时恰好做匀速直线运动.)11、如图所示,如图,长为L 的一对平行金属板平行正对放置,间距33 d ,板间加上一定的电压.现从左端沿中心轴线方向入射一个质量为m 、带电量为+q 的带电微粒,射入时的初速度大小为v 0.一段时间后微粒恰好从下板边缘P 1射出电场,并同时进入正三角形区域.已知正三角形区域内存在垂直纸面向里的匀强磁场B 1,三角形的上顶点A 与上金属板平齐,底边BC 与金属板平行.三角形区域的右侧也存在垂直纸面向里、范围足够大的匀强磁场B 2,且B 2=4B 1.不计微粒的重力,忽略极板区域外部的电场. (1)求板间的电压U 和微粒从电场中射出时的速度大小和方向. (2)微粒进入三角形区域后恰好从AC 边垂直边界射出,求磁感应强度B1的大小.(3)若微粒最后射出磁场区域时与射出的边界成30°的夹角,求三角形的边长.12、如图所示,两块相同的薄木板紧挨着静止在水平地面上,每块木板的质量为M=1.0 kg,长度为L=1.0 m,它们与地面间的动摩擦因数μ1=0.10。