高三物理压轴题及其答案
高三物理各地最新试卷之压轴题(20题)

各地最新试卷之压轴题〔20题5月15以后〕1.如下列图,轻绳绕过轻滑轮连接着边长为L 的正方形导线框A 1和物块A 2,线框A 1的电阻为R ,质量为M ,物块A 2的质量为m 〔M>m 〕,两匀强磁场区域I 、II 的高度也为L ,磁感应强度均为B ,方向水平与线框平面垂直。
线框ab 边距磁场边界高度为h 。
开始时各段绳都处于伸直状态,把它们由静止释放,ab 边刚穿过两磁场的分界限CC /进入磁场II 时线框做匀速运动。
求:〔1〕ab 边刚进入磁场I 时线框A 1的速度v 1;〔2〕ab 边进入磁场II 后线框A 1所受重力的功率P ; 〔3〕从ab 边刚进入磁场II 到ab 边刚穿出磁场II 的过程中,线框中产生的焦耳热Q .答案:〔1〕由机械守恒:21)(21v m M mgh Mgh +=-① 〔3分〕解得:mM ghm M v +-=)(21② 〔1分〕〔2〕设线框ab 边进入磁场II 时速度为2v ,如此线框中产生的电动势:22BLv E =③ 〔2分〕线框中的电流RBLv R E I 22==④ 〔2分〕 线框受到的安培力Rv L B IBL F 22242==⑤ 〔2分〕设绳对A 1、A 2的拉力大小为T 如此: 对A 1:T+F=Mg ⑥ 〔1分〕 对A 2:T=mg ⑦ 〔1分〕联立⑤⑥⑦解得:2224)(L B Rgm M v -=⑧〔3分〕22224)(L B Rg m M M Mgv P -==⑨〔1分〕2A 1A a b hB BⅠ Ⅱ C /C〔3〕从ab 边刚进入磁场II 到ab 边刚穿出磁场II 的此过程中线框一直做匀速运动,根据能量守恒得:gL m M Q )(-=⑩ 〔3分〕2.〔18分〕如下列图,质量M =0.40 kg 的靶盒A 位于光滑水平导轨上,开始时静止在O 点,在O 点右侧有范围很广的“相互作用区域〞,如图中的虚线区域.当靶盒A 进入相互作用区域时便有向左的水平恒力F =20 N 作用.在P 处有一固定的发射器B ,它可根据需要瞄准靶盒每次发射一颗水平速度v 0=50 m/s 、质量m =0.10 kg 的子弹,当子弹打入靶盒A 后,便留在盒内,碰撞时间极短.假设每当靶盒A 停在或到达O 点时,就有一颗子弹进入靶盒A 内.求:〔1〕当第一颗子弹进入靶盒A 后,靶盒A 离开O 点的最大距离;〔2〕当第三颗子弹进入靶盒A 后,靶盒A 从离开O 点到又回到O 点所经历的时间; 〔3〕当第100颗子弹进入靶盒时,靶盒已经在相互作用区中运动的时间总和. 答案:〔1〕设第一颗子弹进入靶盒A 后,子弹与靶盒的共同速度为v 1.根据碰撞过程系统动量守恒,有:mv 0=(m+M)v 1〔2分〕设A 离开O 点的最大距离为s 1,由动能定理有:-Fs 1=0-21(m+M)v 12〔2分〕 解得:s 1=1.25 m.〔2分〕〔2〕根据题意,A 在的恒力F 的作用返回O 点时第二颗子弹正好打入,由于A 的动量与第二颗子弹动量大小一样、方向相反,故第二颗子弹打入后,A 将静止在O 点.设第三颗子弹打入A 后,它们的共同速度为v 3,由系统动量守恒得:mv 0=(3m+M)v 3〔2分〕设A 从离开O 点到又回到O 点所经历的时间为t ,取碰后A 运动的方向为正方向,由动量定理得:-F2t=0-(3m+M)v 3〔2分〕 解得:t=0.5 s.〔2分〕〔3〕由〔2〕问可知,第1、3、5、…、〔2n+1〕颗子弹打入A 后,A 运动时间均为t=0.5s 〔3分〕故总时间t 总=50t=25 s.〔3分〕3.〔18分〕如图,在xOy 平面内,MN 和x 轴之间有平行于y 轴的匀强电场和垂直于xOy平面的匀强磁场,y 轴上离坐标原点4L 的A 点处有一电子枪,可以沿+x 方向射出速度为v 0的电子〔质量为m ,电荷量为e 〕.如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保存磁场,电子将从x 轴上距坐标原点3L 的C 点离开磁场.不计重力的影响,求:〔1〕磁感应强度B 和电场强度E 的大小和方向;〔2〕如果撤去磁场,只保存电场,电子将从D 点〔图中未标出〕离开电场,求D 点的坐标; 〔3〕电子通过D 点时的动能.答案:〔1〕只有磁场时,电子运动轨迹如图1所示 〔1分〕洛伦兹力提供向心力Bev 0=m Rv20 〔1分〕由几何关系R 2=(3L)2+〔4L-R 〕2 〔2分〕 求出B=eLmv 2580,垂直纸面向里. 〔1分〕 电子做匀速直线运动Ee=Bev 0 〔1分〕求出E=eLmv 2582沿y 轴负方向 〔1分〕〔2〕只有电场时,电子从MN 上的D 点离开电场,如图2所示〔1分〕 设D 点横坐标为x x=v 0t 〔2分〕 2L=22t meE 〔2分〕 求出D 点的横坐标为x=225≈3.5L 〔1分〕 纵坐标为y=6L. 〔1分〕 〔3〕从A 点到D 点,由动能定理Ee ·2L=E kD -21mv 02 〔2分〕 求出E kD =5057mv 02. 〔2分〕4.(18分)如图13所示,在一光滑水平的桌面上,放置一质量为M ,宽为L 的足够长“U 〞型框架,其ab 局部电阻为R ,框架其它局部的电阻不计。
高考物理最难压轴题

高考物理最难压轴题一、一物体在水平面上做匀速圆周运动,当向心力突然减小为原来的一半时,下列说法正确的是:A. 物体将做匀速直线运动B. 物体将做匀变速曲线运动C. 物体的速度将突然减小D. 物体的速率在短时间内不变(答案:D)二、在双缝干涉实验中,若保持双缝间距不变,增大光源到双缝的距离,则干涉条纹的间距将:A. 增大B. 减小C. 不变D. 无法确定(答案:B)三、一轻质弹簧一端固定,另一端用一细线系住一小物块,小物块放在光滑的水平面上。
开始时弹簧处于原长状态,现对小物块施加一个拉力,使小物块从静止开始做匀加速直线运动。
在拉力逐渐增大的过程中,下列说法正确的是:A. 弹簧的弹性势能保持不变B. 小物块的动能保持不变C. 小物块与弹簧组成的系统机械能增大D. 小物块与弹簧组成的系统机械能守恒(答案:C)四、在电场中,一个带负电的粒子(不计重力)在电场力作用下,从A点移动到B点,电场力做了负功。
则下列说法正确的是:A. A点的电势一定低于B点的电势B. 粒子的电势能一定减小C. 粒子的动能一定增大D. 粒子的速度可能增大(答案:D)注:此题考虑的是粒子可能受到其他力(如洛伦兹力)的影响,导致速度方向变化,但电场力做负功仍使电势能增加。
五、一轻质杆两端分别固定有质量相等的小球A和B,杆可绕中点O在竖直平面内无摩擦转动。
当杆从水平位置由静止释放后,杆转至竖直位置时,下列说法正确的是:A. A、B两球的速度大小相等B. A、B两球的动能相等C. A、B两球的重力势能相等D. 杆对A球做的功大于杆对B球做的功(答案:D)六、在闭合电路中,当外电阻增大时,下列说法正确的是:A. 电源的电动势将增大B. 电源的内电压将增大C. 通过电源的电流将减小D. 电源内部非静电力做功将增大(答案:C)七、一物体以某一速度冲上一光滑斜面(足够长),加速度恒定。
前4s内位移是1.6m,随后4s内位移是零,则下列说法中正确的是:A. 物体的初速度大小为0.6m/sB. 物体的加速度大小为6m/s²(方向沿斜面向下)C. 物体向上运动的最大距离为1.8mD. 物体回到斜面底端,总共需时12s(答案:C)八、在核反应过程中,质量数和电荷数守恒。
高三物理压轴题及其答案

高三物理压轴题及其答案(10道)1〔20分〕.如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半局部有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开场在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R端的挡板后被弹回,假设在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求:〔1〕判断物体带电性质,正电荷还是负电荷?〔2〕物体与挡板碰撞前后的速度v1和v2〔3〕磁感应强度B的大小〔4〕电场强度E的大小和方向图122(10分)如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量m c=5kg,在其正中央并排放着两个小滑块A和B,m A=1kg,m B=4kg,开场时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A、B都与挡板碰撞后,C的速度是多大"(2)到A、B都与挡板碰撞为止,C的位移为多少"3〔10分〕为了测量小木板和斜面间的摩擦因数,某同学设计如下图实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小,放手后,木板沿斜面下滑,稳定后弹簧球放在斜面上,用手固定木板时,弹簧示数为F1示数为F,测得斜面斜角为θ,那么木板与斜面间动摩擦因数为多少?〔斜面体固定在地面2上〕4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都一样.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如下图.开场时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.假设木块A 静止于P 点,木块C 从Q 点开场以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。
2024年高考物理压轴题

2024年高考物理压轴题一、在双缝干涉实验中,若增大双缝间距,同时保持光源和观察屏的位置不变,则干涉条纹的间距将如何变化?A. 增大B. 减小C. 不变D. 无法确定(答案:B)二、一质点以初速度v₀沿直线运动,先后经过A、B、C三点,已知AB段与BC段的距离相等,且质点在AB段的平均速度大小为3v₀/2,在BC段的平均速度大小为v₀/2,则质点在B 点的瞬时速度大小为?A. v₀B. (√3 + 1)v₀/2C. (3 + √3)v₀/4D. (3 - √3)v₀/4(答案:A,利用匀变速直线运动的中间时刻速度等于全程平均速度以及位移速度关系式求解)三、在电场中,一电荷q从A点移动到B点,电场力做功为W。
若将该电荷的电量增大为2q,再从A点移动到B点,则电场力做功为?A. W/2B. WC. 2WD. 4W(答案:C,电场力做功与电荷量的多少成正比)四、一均匀带电球体,其内部电场强度的大小与距离球心的距离r的关系是?A. 与r成正比B. 与r成反比C. 与r的平方成正比D. 在球内部,电场强度处处为零(答案:D,对于均匀带电球体,其内部电场强度处处为零,由高斯定理可证)五、在核反应过程中,质量数和电荷数守恒是基本规律。
下列哪个核反应方程是可能的?A. ²H + ³H →⁴He + n + 能量B. ²H + ²H →³H + p + 能量C. ²H + ²H →⁴He + 2p - 能量D. ³H + ³H →⁴He + ²H + 能量(答案:B,根据质量数和电荷数守恒判断)六、一弹簧振子在振动过程中,当其速度减小时,下列说法正确的是?A. 回复力增大B. 位移增大C. 加速度减小D. 动能增大(答案:A、B,弹簧振子速度减小时,正向平衡位置运动,回复力增大,位移增大,加速度增大,动能减小)七、在光电效应实验中,若入射光的频率增加,而光强保持不变,则单位时间内从金属表面逸出的光电子数将?A. 增加B. 减少C. 不变D. 无法确定(答案:B,光强不变意味着总的光子数不变,频率增加则单个光子能量增加,因此光子数减少,导致逸出的光电子数减少)八、在相对论中,关于时间和长度的变化,下列说法正确的是?A. 高速运动的物体,其内部的时间流逝会变慢B. 高速运动的物体,在其运动方向上测量得到的长度会变长C. 无论物体运动速度如何,时间和长度都是不变的D. 以上说法都不正确(答案:A,根据相对论的时间膨胀和长度收缩效应,高速运动的物体内部时间流逝会变慢,沿运动方向上的长度会变短)。
高考物理电磁感应现象压轴题综合题附答案

高考物理电磁感应现象压轴题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。
ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。
重力加速度为g 。
求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。
【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R==线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin 302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=3.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
高三下高考押题物理试题(解析版)

7.如图所示,光滑水平地面上有A、B两物体,质量都为m,B左端固定一个处在压缩状态的轻弹簧,轻弹簧被装置锁定,当弹簧再受到压缩时锁定装置会失效。A以速率v向右运动,当A撞上弹簧后,设弹簧始终不超过弹性限度,关于它们后续的运动过程说法正确的是( )
A.A物体最终会静止,B物体最终会以速率v向右运动
B.上方的右边两个小球受到的电场力的合力相同,上方的左边两个小球受到的电场力的合力相同,但是与右边两个小球受到的电场力不同,选项B错误;
CD.若以右下底边为轴把这个立方体向右侧翻转90°,则电场力对右上方两球做功为2qEa;对左上方两个球做功2qE∙2a;对左下方两球做功2qEa;,则共做功为8qEa,即系统电势能减少了8qEa,选项D正确,C错误;
①将一端带有定滑轮的气垫导轨放置在实验台上,②将光电门固定在气垫轨道上离定滑轮较近一端的某点B处,③将带有遮光条的质量为M的滑块放置在气垫导轨上的A处,④用n个质量为m的钩码连接成串,经绕过滑轮的细线拉滑块,使滑块从A点由静止释放,在光电计时器上读出遮光条通过光电门的时间t,⑤改变钩码个数,使滑块每次从同一位置A由静止释放,重复上述实验过程。实验中释放点A到光电门的距离为s,遮光条的宽度为d:
C.北斗-IGSO2总在地面上某点的正上方
D.北斗-IGSO2和北斗-M3的周期的三分之二次方之比约等于
【答案】AB
【解析】
【详解】A.由表格可知,北斗IGSO2为倾斜地球同步轨道卫星,所以其运行周期和地球自转周期相等,故A正确;
B.由表格可知,北斗G4为同步卫星,北斗M3为中高卫星,根据万有引力提供向心力得
故选BCD。
6.北斗卫星导航系统是中国自行研制的全球卫星导航系统。由35颗卫星组成,包括5颗静止轨道卫星、3颗倾斜同步轨道卫星、27颗中地球轨道卫星,下表给出了其中三颗卫星的信息,其中倾角为轨道平面与赤道平面的夹角。下列陈述正确的是( )
高考物理带电粒子在磁场中的运动压轴难题知识归纳总结附答案解析

高考物理带电粒子在磁场中的运动压轴难题知识归纳总结附答案解析一、带电粒子在磁场中的运动压轴题1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>,所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x =2ay设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则002tan y x qE x v m v y v v aθ⋅===有H =(3a -x )·tan θ=(32)2a y y -当322a y y -=时,即y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a3.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出,则运动时间t 0=0Lv =0.5×10-6s ,竖直位移201··2Eq y t m==0.0125m所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L把x =v 02md qE 、R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2Eqmd-E B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=代入解得 12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα 把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v0=3.20.8 21nn-⎛⎫⎪+⎝⎭×105m/s(其中n=0、1、2、3).4.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收.一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁场中的运动半径R0=0.08m,若粒子重力不计、比荷qm=108C/kg、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6.(1)求粒子的发射速度v的大小;(2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标:(3)N板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s;(2)(0,0.18m);(3)29%【解析】【详解】(1)由洛伦兹力充当向心力,即qvB=m2vR可得:v=6×105m/s;(2)若粒子在O点入射方向与x轴负方向夹角为37°,作出速度方向的垂线与y轴交于一点Q,根据几何关系可得PQ=0.0637cos=0.08m,即Q为轨迹圆心的位置;Q到圆上y轴最高点的距离为0.18m-0.0637sin=0.08m,故粒子刚好从圆上y轴最高点离开;故它打出磁场时的坐标为(0,0.18m);(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y ,由带电粒子在电场中偏转的规律得: y =12at 2…① a =qE m =qU md …② t =Lv…③ 由①②③解得:y =0.08m设此粒子射入时与x 轴的夹角为α,则由几何知识得:y =r sinα+R 0-R 0cosα 可知tanα=43,即α=53° 比例η=53180︒×100%=29%5.如图所示,坐标原点O 左侧2m 处有一粒子源,粒子源中,有带正电的粒子(比荷为qm=1.0×1010C/kg)由静止进人电压U= 800V 的加速电场,经加速后沿x 轴正方向运动,O 点右侧有以O 1点为圆心、r=0.20m 为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T 的匀强磁场(图中未画出)圆的左端跟y 轴相切于直角坐标系原点O ,右端与一个足够大的荧光屏MN 相切于x 轴上的A 点,粒子重力不计。
高考物理电磁感应现象压轴题综合题含答案

高考物理电磁感应现象压轴题综合题含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图甲所示,一对足够长的平行光滑轨道固定在水平面上,两轨道间距 l= 0.5m ,左侧接一阻值 为R 的电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三物理压轴题及其答案(10道) 1(20分).如图12所示,PR 是一块长为L =4m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1kg ,带电量为q =0.5C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v 1和v 2(3)磁感应强度B 的大小(4)电场强度E 的大小和方向2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大?(2)到A 、B 都与挡板碰撞为止,C 的位移为多少?3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,图12最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。
5.如图,足够长的水平传送带始终以大小为v =3m/s 的速度向左运动,传送带上有一质量为M =2kg 的小木盒A ,A 与传送带之间的动摩擦因数为μ=0.3,开始时,A 与传送带之间保持相对静止。
先后相隔△t =3s 有两个光滑的质量为m =1kg 的小球B 自传送带的左端出发,以v 0=15m/s 的速度在传送带上向右运动。
第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时△t 1=1s/3而与木盒相遇。
求(取g =10m/s 2)(1)第1个球与木盒相遇后瞬间,两者共同运动的速度时多大?(2)第1个球出发后经过多长时间与木盒相遇?(3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?6.如图所示,两平行金属板A 、B 长l =8cm ,两板间距离d =8cm ,A 板比B 板电势高300V ,即U AB =300V 。
一带正电的粒子电量q =10-10C ,质量m =10-20kg ,从R 点沿电场中心线垂直电场线飞入电场,初速度v 0=2×106m/s ,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。
已知两界面MN 、PS 相距为L =12cm ,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏EF 上。
求(静电力常数k =9×109N·m 2/C 2)(1)粒子穿过界面PS 时偏离中心线RO 的距离多远?(2)点电荷的电量。
7光滑水平面上放有如图所示的用绝缘材料制成的L 形滑板(平面部分足够长),质量为4m ,距滑板的A 壁为L 1距离的B 处放有一质量为m ,电量为+q 的大小不计的小物体,物体与板面的摩擦不计.整个装置置于场强为E 的匀强电场中,初始时刻,滑板与物体都静止.试问:(1)释放小物体,第一次与滑板A 壁碰前物体的速度v 1,多大?(2)若物体与A 壁碰后相对水平面的速度大小为碰前速率的3/5,则物体在第二次跟A 碰撞之前,滑板相对于水平面的速度v 2和物体相对于水平面的速度v 3分别为多大?(3)物体从开始到第二次碰撞前,电场力做功为多大?(设碰撞经历时间极短且无能量损失)8如图(甲)所示,两水平放置的平行金属板C 、D 相距很近,上面分别开有小孔O 和O',水平放置的平行金属导轨P 、Q 与金属板C 、D 接触良好,且导轨垂直放在磁感强度为B 1=10T B A v v 0 B A v 0R MN L P S O E F l的匀强磁场中,导轨间距L =,金属棒AB 紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(乙),若规定向右运动速度方向为正方向.从t =0时刻开始,由C 板小孔O 处连续不断地以垂直于C 板方向飘入质量为m =×10-21kg 、电量q =×10-19C 的带正电的粒子(设飘入速度很小,可视为零).在D 板外侧有以MN 为边界的匀强磁场B 2=10T ,MN 与D 相距d =10cm ,B 1和B 2方向如图所示(粒子重力及其相互作用不计),求(1)0到内哪些时刻从O 处飘入的粒子能穿过电场并飞出磁场边界MN ?(2)粒子从边界MN 射出来的位置之间最大的距离为多少?9(20分)如下图所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为B .边长为l 的正方形金属框abcd (下简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U 型金属框架MNPQ (仅有MN 、NQ 、QP 三条边,下简称U 型框),U 型框与方框之间接触良好且无摩擦.两个金属框每条边的质量均为m ,每条边的电阻均为r .(1)将方框固定不动,用力拉动U 型框使它以速度0v 垂直NQ 边向右匀速运动,当U 型框的MP 端滑至方框的最右侧(如图乙所示)时,方框上的bd 两端的电势差为多大?此时方框的热功率为多大?(2)若方框不固定,给U 型框垂直NQ 边向右的初速度0v ,如果U 型框恰好不能与方框分离,则在这一过程中两框架上产生的总热量为多少?(3)若方框不固定,给U 型框垂直NQ 边向右的初速度v (0v v >),U 型框最终将与方框分离.如果从U 型框和方框不再接触开始,经过时间t 后方框的最右侧和U 型框的最左侧之间的距离为s .求两金属框分离后的速度各多大.10(14分)长为的木板A ,质量为1kg .板上右端有物块B ,质量为3kg.它们一起在光滑的水平面上向左匀速运动.速度v 0=2m/s.木板与等高的竖直固定板C 发生碰撞,时间极短,没有机械能的损失.物块与木板间的动摩擦因数μ2.求:(1)第一次碰撞后,A 、B 共同运动的速度大小和方向.(2)第一次碰撞后,A 与C 之间的最大距离.(结果保留两位小数)(3)A 与固定板碰撞几次,B 可脱离A 板.1.(1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为0,所以物体带正电荷.且:mg =qBv 2…………………………………………………………①(2)离开电场后,按动能定理,有:-μmg4L =0-21mv 2………………………………② 由①式得:v 2=22m/s(3)代入前式①求得:B =22T (4)由于电荷由P 运动到C 点做匀加速运动,可知电场强度方向水平向右,且:(Eq -μmg )212=L mv 12-0……………………………………………③ 进入电磁场后做匀速运动,故有:Eq =μ(qBv 1+mg )……………………………④ 由以上③④两式得:⎩⎨⎧==N/C2.4m/s 241E v2(1)A 、B 、C 系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后,C 的速度为零,即0=C v(2)炸药爆炸时有解得s m v B /5.1=又B B A A s m s m =当s A =1m 时s B =,即当A 、C 相撞时B 与C 右板相距m s L s B 75.02=-= A 、C 相撞时有:解得v =1m/s ,方向向左而B v =s ,方向向右,两者相距,故到A ,B 都与挡板碰撞为止,C 的位移为3.0=+=BC v v sv s m19. 3固定时示数为F 1,对小球F 1=mgsin θ①整体下滑:(M+m )sin θ-μ(M+m)gcos θ=(M+m)a ②下滑时,对小球:mgsin θ-F 2=ma ③由式①、式②、式③得μ=12F F tan θ 4.木块B 下滑做匀速直线运动,有mgsin θ=μmgcos θB 和A 相撞前后,总动量守恒,mv 0=2mv 1,所以v 1=20v 设两木块向下压缩弹簧的最大长度为s,两木块被弹簧弹回到P 点时的速度为v 2,则μ2mgcos θ·2s=22212·212·21mv mv - 两木块在P 点处分开后,木块B 上滑到Q 点的过程:(mgsin θ+μmgcos θ)L=2221mv 木块C 与A 碰撞前后,总动量守恒,则3m ·10423'=mv v ,所以 v ′1=42v 0设木块C 和A 压缩弹簧的最大长度为s ′,两木块被弹簧弹回到P 点时的速度为v 2',则μ4mgcos θ·2s ′=22224214·21'-'mv mv 木块C 与A 在P 点处分开后,木块C 上滑到R 点的过程:(3mgsin θ+μ3mgcos θ)L ′=223·21'mv 在木块压缩弹簧的过程中,重力对木块所做的功与摩擦力对木块所做的功大小相等,因此弹簧被压缩而具有的最大弹性势能等于开始压缩弹簧时两木块的总动能.因此,木块B 和A 压缩弹簧的初动能E ,412·2120211mv mv k ==木块C 与A 压缩弹簧的初动能E ,412120212mv mv k ='=即E 21k k E = 因此,弹簧前后两次的最大压缩量相等,即s=s ′综上,得L ′=L-θsin 3220g v 5(1)设第1个球与木盒相遇后瞬间,两者共同运动的速度为v 1,根据动量守恒定律:01()mv Mv m M v -=+(1分)代入数据,解得:v 1=3m/s (1分)(2)设第1个球与木盒的相遇点离传送带左端的距离为s ,第1个球经过t 0与木盒相遇,则:00s t v =(1分) 设第1个球进入木盒后两者共同运动的加速度为a ,根据牛顿第二定律:()()m M g m M a μ+=+得:23/a g m s μ==(1分)设木盒减速运动的时间为t 1,加速到与传送带相同的速度的时间为t 2,则:12v t t a∆===1s (1分) 故木盒在2s 内的位移为零(1分)依题意:011120()s v t v t t t t t =∆+∆+∆---(2分)代入数据,解得:s =7.5mt 0=0.5s (1分)(3)自木盒与第1个球相遇至与第2个球相遇的这一过程中,传送带的位移为S ,木盒的位移为s 1,则:10()8.5S v t t t m =∆+∆-=(1分)11120() 2.5s v t t t t t m =∆+∆---=(1分)故木盒相对与传送带的位移:16s S s m ∆=-=则木盒与传送带间的摩擦而产生的热量是:54Q f s J =∆=(2分) 6(1)设粒子从电场中飞出时的侧向位移为h,穿过界面PS 时偏离中心线OR 的距离为y ,则:h=at 2/2(1分) qE qU a m md==0l t v =即:20()2qU l h md v =(1分) 代入数据,解得:h =0.03m =3cm (1分)带电粒子在离开电场后将做匀速直线运动,由相似三角形知识得:22l h l y L =+(1分) 代入数据,解得:y =0.12m =12cm (1分)(2)设粒子从电场中飞出时沿电场方向的速度为v y ,则:v y =at=0qUl mdv 代入数据,解得:v y =1.5×106m/s (1分)所以粒子从电场中飞出时沿电场方向的速度为:62.510/v m s ==⨯(1分) 设粒子从电场中飞出时的速度方向与水平方向的夹角为θ,则:034yv tan v θ==37θ=︒(1分) 因为粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏上,所以该带电粒子在穿过界面PS 后将绕点电荷Q 作匀速圆周运动,其半径与速度方向垂直。