初二数学平行四边形压轴几何证明题

合集下载

备战中考数学—平行四边形的综合压轴题专题复习含答案

备战中考数学—平行四边形的综合压轴题专题复习含答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.试题解析:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:如图2,过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,又∵∠A=∠BQP=90°,BP=BP ,在△ABP 和△QBP 中,{90APB BPHA BQP BP BP∠=∠∠=∠=︒=,∴△ABP ≌△QBP (AAS ),∴AP=QP ,AB=BQ ,又∵AB=BC ,∴BC=BQ .又∠C=∠BQH=90°,BH=BH ,在△BCH 和△BQH 中,{90BC BQC BQH BH BH=∠=∠=︒=,∴△BCH ≌△BQH (SAS ),∴CH=QH .∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH 的周长是定值.(3)解:如图3,过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB .又∵EF 为折痕,∴EF ⊥BP .∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP .又∵∠A=∠EMF=90°,在△EFM 和△BPA 中,{EFM ABPEMF A FM AB∠=∠∠=∠=,∴△EFM ≌△BPA (AAS ).∴EM=AP .设AP=x在Rt △APE 中,(4-BE )2+x 2=BE 2.解得BE=2+28x , ∴CF=BE-EM=2+28x -x , ∴BE+CF=24x -x+4=14(x-2)2+3. 当x=2时,BE+CF 取最小值,∴AP=2.考点:几何变换综合题.2.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2)133. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x= 133, ∵BD=22AD AB + =213, ∴OB=12BD=13, ∵BD ⊥EF ,∴EO=22BE OB -=213, ∴EF=2EO=4133. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键3.在△ABC 中,AB=BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由(3)若|CF ﹣AE|=2,EF=23,当△POF 为等腰三角形时,请直接写出线段OP 的长.【答案】(1)OF =OE ;(2)OF ⊥EK ,OF=OE ,理由见解析;(3)OP 62233.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,EF=23,AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=33,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,HF=3,OH=2﹣3,∴OP=()2212362+-=-.如图4中,点P在线段OC上,当PO=PF时,∠POF=∠PFO=30°,∴∠BOP=90°,∴OP=33OE=33,综上所述:OP6223.【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.4.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【答案】(1)、5;(2)、622+;(3)、3212++.【解析】【分析】试题分析:(1)、如图1中,连接OD,在Rt△ODC中,根据OD=22OC CD+计算即可.(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=22OE CE+计算即可.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【详解】试题解析:(1)、如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD=2222215OC CD+=+=(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=12,CF=BE=32,在Rt △OCE 中,OC=222231122OE CE ⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭=622+. (3)、如图3中,当OF ⊥DE 时,OF 的值最大,设OF 交DE 于H ,在OH 上取一点M ,使得OM=DM ,连接DM .∵FD=FE=DE=1,OF ⊥DE , ∴DH=HE ,OD=OE ,∠DOH=12∠DOE=22.5°, ∵OM=DM , ∴∠MOD=∠MDO=22.5°, ∴∠DMH=∠MDH=45°, ∴DH=HM=12, ∴DM=OM=2, ∵FH=223DF DH -=, ∴OF=OM+MH+FH=2132++=321++. ∴OF 的最大值为321++. 考点:四边形综合题.5.如图,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,E 、F 在菱形的边BC ,CD 上.(1)证明:BE=CF .(2)当点E ,F 分别在边BC ,CD 上移动时(△AEF 保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)33)见解析【解析】试题分析:(1)先求证AB=AC ,进而求证△ABC 、△ACD 为等边三角形,得∠4=60°,AC=AB 进而求证△ABE ≌△ACF ,即可求得BE=CF ;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.6.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD的延长线于G.(1)求证:AE=EG;(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;(3)如图3,取GF的中点M,若AB=5,求EM的长.【答案】(1)证明见解析(2)证明见解析(3)5 2【解析】【分析】(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=12AC,计算可得结论.【详解】证明:(1)如图1,过E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如图2,连接GC,∵AC=BC,AD⊥BC,∴BD=CD,∴AG是BC的垂直平分线,∴GC=GB,∴∠GBF=∠BCG,∵BG=BF,∴GC=BE,∵CE=EF,∴∠CEF=180°﹣2∠F,∵BG=BF,∴∠GBF=180°﹣2∠F,∴∠GBF=∠CEF,∴∠CEF=∠BCG,∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,∴∠GCE=∠F,在△BEF 和△GCE 中,CE GCE F CG BF EF =⎧⎪∠=∠⎨⎪=⎩,∴△BEF ≌△GEC (SAS ),∴BE =EG ;(3)如图3,连接DM ,取AC 的中点N ,连接DN ,由(1)得AE =EG ,∴∠GAE =∠AGE ,在Rt △ACD 中,N 为AC 的中点,∴DN =12AC =AN ,∠DAN =∠ADN , ∴∠ADN =∠AGE ,∴DN ∥GF ,在Rt △GDF 中,M 是FG 的中点, ∴DM =12FG =GM ,∠GDM =∠AGE , ∴∠GDM =∠DAN ,∴DM ∥AE ,∴四边形DMEN 是平行四边形, ∴EM =DN =12AC , ∵AC =AB =5, ∴EM =52. 【点睛】 本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.7.(1)如图1,将矩形ABCD 折叠,使BC 落在对角线BD 上,折痕为BE ,点C 落在点C '处,若42ADB =∠,则DBE ∠的度数为______.(2)小明手中有一张矩形纸片ABCD ,4AB =,9AD =.(画一画)如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CE 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);(算一算)如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点,A B 分别落在点A ',B '处,若73AG =,求B D '的长.【答案】(1)21;(2)画一画;见解析;算一算:3B D '=【解析】【分析】(1)利用平行线的性质以及翻折不变性即可解决问题;(2)【画一画】,如图2中,延长BA 交CE 的延长线由G ,作∠BGC 的角平分线交AD 于M ,交BC 于N ,直线MN 即为所求;【算一算】首先求出GD=9-72033=,由矩形的性质得出AD ∥BC ,BC=AD=9,由平行线的性质得出∠DGF=∠BFG ,由翻折不变性可知,∠BFG=∠DFG ,证出∠DFG=∠DGF ,由等腰三角形的判定定理证出DF=DG=203,再由勾股定理求出CF ,可得BF ,再利用翻折不变性,可知FB′=FB ,由此即可解决问题.【详解】(1)如图1所示:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=42°,由翻折的性质可知,∠DBE=∠EBC=12∠DBC=21°,故答案为21.(2)【画一画】如图所示:【算一算】如3所示:∵AG=73,AD=9,∴GD=9-72033,∵四边形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=203,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,由勾股定理得:CF=22222016433 DF CD⎛⎫-=-=⎪⎝⎭,∴BF=BC-CF=9161133-=,由翻折不变性可知,FB=FB′=11 3,∴B′D=DF-FB′=2011333-=.【点睛】四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.8.如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF=90°,点E、F分别在边AD、AB上.(1)如图1,若点P与点O重合:①求证:AF=DE;②若正方形的边长为23,当∠DOE=15°时,求线段EF的长;(2)如图2,若Rt△PFE的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,证明:PE=2PF.【答案】(1)①证明见解析,②2;(2)证明见解析.【解析】【分析】(1)①根据正方形的性质和旋转的性质即可证得:△AOF≌△DOE根据全等三角形的性质证明;②作OG⊥AB于G,根据余弦的概念求出OF的长,根据勾股定理求值即可;(2)首先过点P作HP⊥BD交AB于点H,根据相似三角形的判定和性质求出PE与PF的数量关系.【详解】(1)①证明:∵四边形ABCD是正方形,∴OA=OD,∠OAF=∠ODE=45°,∠AOD=90°,∴∠AOE+∠DOE=90°,∴∠AOF+∠AOE=90°,∴∠DOE=∠AOF ,在△AOF 和△DOE 中,OAF ODE OA ODAOF DOE ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AOF ≌△DOE ,∴AF=DE ;②解:过点O 作OG ⊥AB 于G ,∵正方形的边长为23, ∴OG=12BC=3, ∵∠DOE=15°,△AOF ≌△DOE ,∴∠AOF=15°,∴∠FOG=45°-15°=30°,∴OF=OG cos DOG∠=2, ∴EF=22=22OF OE +;(2)证明:如图2,过点P 作HP ⊥BD 交AB 于点H ,则△HPB 为等腰直角三角形,∠HPD=90°,∴HP=BP ,∵BD=3BP ,∴PD=2BP ,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE ,又∵∠BHP=∠EDP=45°,∴△PHF ∽△PDE , ∴12PF PH PE PD ==, ∴PE=2PF .【点睛】 此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理.注意准确作出辅助线是解此题的关键.9.问题探究(1)如图①,已知正方形ABCD 的边长为4.点M 和N 分别是边BC 、CD 上两点,且BM =CN ,连接AM 和BN ,交于点P .猜想AM 与BN 的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD 的边长为4.点M 和N 分别从点B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM 和BN ,交于点P ,求△APB 周长的最大值;问题解决(3)如图③,AC 为边长为23的菱形ABCD 的对角线,∠ABC =60°.点M 和N 分别从点B 、C 同时出发,以相同的速度沿BC 、CA 向终点C 和A 运动.连接AM 和BN ,交于点P .求△APB 周长的最大值.【答案】(1)AM ⊥BN ,证明见解析;(2)△APB 周长的最大值2;(3)△PAB 的周长最大值3.【解析】试题分析:根据全等三角形的判定SAS 证明△ABM ≌△BCN ,即可证得AM ⊥BN ; (2)如图②,以AB 为斜边向外作等腰直角△AEB ,∠AEB=90°,作EF ⊥PA 于E ,作EG ⊥PB 于G ,连接EP ,证明PA+PB=2EF ,求出EF 的最大值即可;(3)如图③,延长DA 到K ,使得AK=AB ,则△ABK 是等边三角形,连接PK ,取PH=PB ,证明PA+PB=PK ,求出PK 的最大值即可.试题解析:(1)结论:AM ⊥BN .理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.10.已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,以线段AB为直角边在第二象限内左等腰直角三角形ABC,∠BAC=90°,如图1所示.(1)填空:AB= ,BC= .(2)将△ABC绕点B逆时针旋转,①当AC与x轴平行时,则点A的坐标是②当旋转角为90°时,得到△BDE,如图2所示,求过B、D两点直线的函数关系式.③在②的条件下,旋转过程中AC扫过的图形的面积是多少?(3)将△ABC向右平移到△A′B′C′的位置,点C′为直线AB上的一点,请直接写出△ABC扫过的图形的面积.【答案】(1):5;5;(2)①(0,﹣2);②直线BD的解析式为y=﹣x+3;③S=π;(3)△ABC扫过的面积为.【解析】试题分析:(1)根据坐标轴上的点的坐标特征,结合一次函数的解析式求出A、B两点的坐标,利用勾股定理即可解答;(2)①因为B(0,3),所以OB=3,所以AB=5,所以AO=AB-BO=5-3=2,所以A(0,-2);②过点C作CF⊥OA与点F,证明△AOB≌△CFA,得到点C的坐标,求出直线AC解析式,根据AC∥BD,所以直线BD的解析式的k值与直线AC的解析式k值相同,设出解析式,即可解答.③利用旋转的性质进而得出A,B,C对应点位置进而得出答案,再利用以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积求出答案;(3)利用平移的性质进而得出△ABC扫过的图形是平行四边形的面积.试题解析:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,∴A(-4,0),B(0,3),∴AO=4,BO=3,在Rt△AOB中,AB=,∵等腰直角三角形ABC,∠BAC=90°,∴BC=;(2)①如图1,∵B(0,3),∴OB=3,∵AB=5,∴AO=AB-BO=5-3=2,∴A(0,-2).当在x轴上方时,点A的坐标为(0,8),②如图2,过点C作CF⊥OA与点F,∵△ABC为等腰直角三角形,∴∠BAC=90°,AB=AC,∴∠BAO+∠CAF=90°,∵∠OBA+∠BAO=90°,∴∠CAF=∠OBA,在△AOB和△CFA中,,∴△AOB≌△CFA(AAS);∴OA=CF=4,OB=AF=3,∴OF=7,CF=4,∴C(-7,4)∵A(-4,0)设直线AC解析式为y=kx+b,将A与C坐标代入得:,解得:,则直线AC解析式为y=x,∵将△ABC绕点B逆时针旋转,当旋转角为90°时,得到△BDE,∴∠ABD=90°,∵∠CAB=90°,∴∠ABD=∠CAB=90°,∴AC∥BD,∴设直线BD的解析式为y=x+b1,把B(0,3)代入解析式的:b1=3,∴直线BD的解析式为y=x+3;③因为旋转过程中AC扫过的图形是以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积,所以可得:S=;(3)将△ABC向右平移到△A′B′C′的位置,△ABC扫过的图形是一个平行四边形和三角形ABC,如图3:将C点的纵坐标代入一次函数y=x+3,求得C′的横坐标为,平行四边CAA′C′的面积为(7+)×4=,三角形ABC的面积为×5×5=△ABC扫过的面积为:.考点:几何变换综合题.。

八年级平行四边形压轴题

八年级平行四边形压轴题

八年级平行四边形压轴题一、选择题(每题3分,共15分)1. 在平行四边形ABCD中,对角线AC与BD相交于点O,若AC = 8,BD = 10,AB = 6,则△OAB的周长为()- A. 12.- B. 15.- C. 20.- D. 16.- 解析:- 因为平行四边形对角线互相平分,所以OA = 1/2AC = 4,OB = 1/2BD = 5。

- 又已知AB = 6,所以△OAB的周长为OA+OB + AB=4 + 5+6 = 15。

答案为B。

2. 平行四边形ABCD中,∠A:∠B = 2:1,则∠C的度数为()- A. 60°.- B. 120°.- C. 45°.- D. 30°.- 解析:- 因为平行四边形邻角互补,即∠A+∠B = 180°,又∠A:∠B = 2:1,设∠B=x,则∠A = 2x,所以2x+x=180°,解得x = 60°。

- ∠A = 120°,平行四边形对角相等,所以∠C=∠A = 120°。

答案为B。

3. 下列条件中,不能判定四边形ABCD是平行四边形的是()- A. AB = CD,AD = BC.- B. AB∥CD,AB = CD.- C. AB = CD,AD∥BC.- D. AB∥CD,AD∥BC.- 解析:- 根据平行四边形的判定定理,A选项两组对边分别相等可判定是平行四边形;B 选项一组对边平行且相等可判定是平行四边形;D选项两组对边分别平行可判定是平行四边形。

- C选项一组对边相等,另一组对边平行,不能判定是平行四边形,答案为C。

4. 平行四边形ABCD的周长为36cm,AB = 8cm,则BC的长为()- A. 10cm.- B. 16cm.- C. 14cm.- D. 28cm.- 解析:- 平行四边形的周长等于两组对边之和,即2(AB + BC)=36,已知AB = 8cm,代入可得2(8 + BC)=36,16+2BC = 36,2BC = 20,BC = 10cm。

八年级下册---平行四边形压轴题解析

八年级下册---平行四边形压轴题解析

八年级下册---平行四边形压轴题一.选择题(共15小题)1.(2012•玉环县校级模拟)如图,菱形ABCD中,AB=3,DF=1,∠DAB=60°,∠EFG=15°,FG⊥BC,则AE=()C D2.(2015•泰安模拟)如图,已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论:①CP平分∠BCD;②四边形ABED为平行四边形;③CQ将直角梯形ABCD分为面积相等的两部分;④△ABF为等腰三角形,其中不正确的有()3.(2014•武汉模拟)如图∠A=∠ABC=∠C=45°,E、F分别是AB、BC的中点,则下列结论,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正确的是()4.(2014•市中区一模)在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正确的是()5.(2014•江阴市二模)在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、FA⊥AE交DP于点F,连接BF,FC.下列结论:①△ABE≌△ADF;②FB=AB;③CF⊥DP;④FC=EF其中正确的是()6.(2014•武汉模拟)如图,正方形ABCD的三边中点E、F、G.连ED交AF于M,GC 交DE于N,下列结论:①GM⊥CM;②CD=CM;③四边形MFCG为等腰梯形;④∠CMD=∠AGM.其中正确的有()7.(2013•绍兴模拟)如图,△ABC纸片中,AB=BC>AC,点D是AB边的中点,点E在边AC上,将纸片沿DE折叠,使点A落在BC边上的点F处.则下列结论成立的个数有()①△BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位线;④BF+CE=DF+DE.8.(2013•惠山区校级一模)如图,已知在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB﹔②点B到直线AE的距离为﹔③EB⊥ED﹔④S△APD+S△APB=0.5+.其中正确结论的序号是()9.(2013•江苏模拟)在正方形ABCD外取一点E,连接AE、BE、DE,过A作AE的垂线交ED于点P,若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③S正方形ABCD=4+;其中正确的是()10.(2013•武汉模拟)如图,正方形ABCD的对角线相交于O点,BE平分∠ABO交AO 于E点,CF⊥BE于F点,交BO于G点,连结EG、OF.则∠OFG的度数是()11.(2012•武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点11+﹣11+11+或12.(2012•河南模拟)如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB 于点G,则S△CEF:S△DGF等于()13.(2012•杭州模拟)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为28cm2,四边形ABCD面积是18cm2,则①②③④四个平行四边形周长的总和为()于点F.若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG、BG,∠BDG的大小是()15.(2012•碑林区校级模拟)如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()八年级下册---平行四边形压轴题参考答案与试题解析一.选择题(共15小题)1.(2012•玉环县校级模拟)如图,菱形ABCD中,AB=3,DF=1,∠DAB=60°,∠EFG=15°,FG⊥BC,则AE=()C D,AE=AH+HE=1+.2.(2015•泰安模拟)如图,已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论:①CP平分∠BCD;②四边形ABED为平行四边形;③CQ将直角梯形ABCD分为面积相等的两部分;④△ABF为等腰三角形,其中不正确的有(),,,3.(2014•武汉模拟)如图∠A=∠ABC=∠C=45°,E、F分别是AB、BC的中点,则下列结论,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正确的是()EF=ACEF=AC4.(2014•市中区一模)在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正确的是()=,==,5.(2014•江阴市二模)在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、FA⊥AE交DP于点F,连接BF,FC.下列结论:①△ABE≌△ADF;②FB=AB;③CF⊥DP;④FC=EF其中正确的是()6.(2014•武汉模拟)如图,正方形ABCD的三边中点E、F、G.连ED交AF于M,GC 交DE于N,下列结论:①GM⊥CM;②CD=CM;③四边形MFCG为等腰梯形;④∠CMD=∠AGM.其中正确的有()7.(2013•绍兴模拟)如图,△ABC纸片中,AB=BC>AC,点D是AB边的中点,点E在边AC上,将纸片沿DE折叠,使点A落在BC边上的点F处.则下列结论成立的个数有()①△BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位线;④BF+CE=DF+DE.8.(2013•惠山区校级一模)如图,已知在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB﹔②点B到直线AE的距离为﹔③EB⊥ED﹔④S△APD+S△APB=0.5+.其中正确结论的序号是(),判断出PE=AE=BE==×1+×=0.5+的距离为9.(2013•江苏模拟)在正方形ABCD外取一点E,连接AE、BE、DE,过A作AE的垂线交ED于点P,若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③S正方形ABCD=4+;其中正确的是()PD BE=,所以=2+,PB=,由勾股定理得:BE=,PD=BE=,PD BE=,=2+.故选项10.(2013•武汉模拟)如图,正方形ABCD的对角线相交于O点,BE平分∠ABO交AO 于E点,CF⊥BE于F点,交BO于G点,连结EG、OF.则∠OFG的度数是()11.(2012•武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点11+﹣11+11+或AE=代入求出BE=DF=3﹣,,在BE=DF=3CF=5+3CE+CF=11+12.(2012•河南模拟)如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB 于点G,则S△CEF:S△DGF等于(),13.(2012•杭州模拟)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为28cm2,四边形ABCD面积是18cm2,则①②③④四个平行四边形周长的总和为()×EM=xx14.(2012•淄博模拟)则在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG、BG,∠BDG的大小是()15.(2012•碑林区校级模拟)如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()。

备战中考数学—平行四边形的综合压轴题专题复习含答案

备战中考数学—平行四边形的综合压轴题专题复习含答案

备战中考数学—平行四边形的综合压轴题专题复习含答案一、平行四边形1.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.【答案】(1)①证明见解析;②AG⊥BE.理由见解析;(2)证明见解析;(3)∠BHO=45°.【解析】试题分析:(1)①根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;②根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE;(2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立;(3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,所以HO 平分∠BHG,即∠BHO=45°.试题解析:(1)①∵四边形ABCD为正方形,∴DA=DC,∠ADB=∠CDB=45°,在△ADG和△CDG中,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG;②AG⊥BE.理由如下:∵四边形ABCD为正方形,∴AB=DC,∠BAD=∠CDA=90°,在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,∵∠DAG=∠DCG,∴∠DAG=∠ABE,∵∠DAG+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AHB=90°,∴AG⊥BE;(2)由(1)可知AG⊥BE.如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.∴∠MON=90°,又∵OA⊥OB,∴∠AON=∠BOM.∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,∴∠OAN=∠OBM.在△AON与△BOM中,∴△AON≌△BOM(AAS).∴OM=ON,∴矩形OMHN为正方形,∴HO平分∠BHG.(3)将图形补充完整,如答图2示,∠BHO=45°.与(1)同理,可以证明AG⊥BE.过点O作OM⊥BE于点M,ON⊥AG于点N,与(2)同理,可以证明△AON≌△BOM,可得OMHN为正方形,所以HO平分∠BHG,∴∠BHO=45°.考点:1、四边形综合题;2、全等三角形的判定与性质;3、正方形的性质2.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.(1)P点的坐标为多少(用含x的代数式表示);(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.【答案】(1)P点坐标为(x,3﹣x).(2)S的最大值为,此时x=2.(3)x=,或x=,或x=.【解析】试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标.(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.(3)本题要分类讨论:①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值.③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值.试题解析:(1)过点P作PQ⊥BC于点Q,有题意可得:PQ∥AB,∴△CQP∽△CBA,∴∴解得:QP=x,∴PM=3﹣x,由题意可知,C(0,3),M(x,0),N(4﹣x,3),P点坐标为(x,3﹣x).(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,NC边上的高为,其中,0≤x≤4.∴S=(4﹣x)×x=(﹣x2+4x)=﹣(x﹣2)2+.∴S的最大值为,此时x=2.(3)延长MP交CB于Q,则有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;③若CN=NP,则CN=4﹣x.∵PQ=x,NQ=4﹣2x,∵在Rt△PNQ中,PN2=NQ2+PQ2,∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.综上所述,x=,或x=,或x=.考点:二次函数综合题.3.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.4.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S 30334+【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22=4,AD AC∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=17,5∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-342)=303344-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+342)=303344+.综上所述,303344-≤S≤303344+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.5.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【详解】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.6.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD 和△FOB 中,∴△DOE ≌△BOF (ASA );(2)当∠DOE=90°时,四边形BFDE 为菱形,理由:∵△DOE ≌△BOF ,∴OE=OF ,又∵OB=OD ,∴四边形EBFD 是平行四边形, ∵∠EOD=90°,∴EF ⊥BD ,∴四边形BFDE 为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.7.已知矩形纸片OBCD 的边OB 在x 轴上,OD 在y 轴上,点C 在第一象限,且86OB OD ==,.现将纸片折叠,折痕为EF (点E ,F 是折痕与矩形的边的交点),点P 为点D 的对应点,再将纸片还原。

完整word初二数学平行四边形压轴几何证明题

完整word初二数学平行四边形压轴几何证明题

初二数学平行四边形:几何证明题 GH 、HE. CD DA 的中点,顺次连接EF 、 FG E1.在四边形ABCD 中,、F 、G H 分别是AB BC C 1 )请判断四边形 EFGH 的形状,并给 予证明;(G D 是菱形,并说明理由。

2)试探究当满足什么条件时,使四边形EFGH (F HB E ABC 沿顺时针方向旋转 90°得到△ A . ABC 中,/ ACB=90°,AC=BC=1Q 将厶ABC 绕点B2.如图, 在直角三角形 *. C 的长度是 ,/ CBA 的度数是(1)线段A- _____________________ CBAC是平行四边形.(2)连接CC 求证:四边形 CAA milQ. BC 于的中点, PO 的延长线交为 ABCD 中,点P 是线段AD 上一动点,OBD 如图,矩形3.OP=OQ ; (1)求证:t 运动时间为.设点PD 厘米/秒的速度向D 运动(不与重合)A2 ()若AD=8 厘米,AB=6厘米,P 从点岀发,以1是菱形.t 为何值时,四边形 PBQD 秒,请用t 表示PD 的GFC. 与点C 重合,得△ E 是BC 边上的高,将△ ABE 沿BC 方向平移,使点 AE4.已知:如图,在口 ABCD 中,?DG ⑴求证:BE.是菱形?证明你的结论与 BC 满足什么数量关系时,四边形 ABFG 当B ⑵若/ ?50?\BG ADB C F EF . AE交BC的延长线于点E// BC,为CD的中点,连结AE、BE, BE X AE,延长5.如图,在四边形ABCD 中, AD AD;FC=求证:(1DA . BC+ ADAB( 2)=EBE , CE.BC, D是的中点,连结AD,在AD的延长线上取一点E,连结6.如图,在厶ABC中,AB=AC ACE求证:△ ABE^^(1满足什么数量关系时,四边形ABEC是菱形?并说明理由.(2)当AE 与ADBAEDCF.的延长线与CD的延长线交于点的中点,ABCD中,点E是边ADBE7.如图,在平行四边形 F DFE )求证:△ ABE^^( 1.ABDF的形状,并说明理由BD2)连结、AF,判断四边形(EADBFACEDFABDEDABCBCACAB 如图,已知点在△于的边上,交//交•于, AEDFBACAD ()若的形状,并说明理由•平分/,试判断四边形E FFE , BDDEBF?上两点,且9.如图,在平行四边形中,点是对角线.1 )写岀图中每一对你AC.、BF 、CF ,并延长 DE 至点 F ,使 EF=DE.连接 BCAD10.在梯形 ABCD 中,/ BC,AB=DC 过点 D 作DEI ,垂足为点 E )求证:四边形 ABFC 是平行四边形;1 (2CEBEQE? ABFC 是矩形,(2) 若求证:四边形 D ADFAE 1 )求证:;=A(2)选择(A DAE.的外角平分线,BE丄BACAEAB=AC11如图,△ ABC中,,AD 分别是/ BAC和/ B AEDA( 1)求证:丄(DE与是否相等?并说明理由。

初中八年级 平行四边形 拔高题 综合题 压轴题(含答案)

初中八年级 平行四边形 拔高题 综合题 压轴题(含答案)

初中八年级平行四边形拔高题综合题压轴题(含答案)题目一已知平行四边形ABCD中,AB = 6cm,BC = 8cm,过点B作平行于AD的直线与AC交于点E,连接DE交BC的延长线于点F。

求EF的长度。

答案一连接DE并延长交BC于点G,根据平行四边形的性质,我们知道AG || DE。

所以AG || BF。

由此可得∆BFG与∆BCD为三角形对应边平行,则根据平行线截断比定理可知:$\frac{{BE}}{{BD}} = \frac{{FG}}{{GC}}$又已知$BE = BC + CE$,$CE = BD$,$BC = 8$,代入得:$\frac{{8+BD}}{{BD}} = \frac{{FG}}{{GC}}$整理可得:$\frac{{BD}}{{FG}} = \frac{{GC}}{{8+BD}}$ 由于$FG = GD$,所以:$\frac{{BD}}{{FG}} = \frac{{BD}}{{GD}} = 1$ 代入可得:$\frac{{1}}{{1}} = \frac{{GC}}{{8+BD}}$整理得:$BD = GC - 8$题目中已知BC=8,所以GC=16。

代入可得:$BD = 16 - 8 = 8$所以EF的长度等于BD,即EF=8cm。

题目二平行四边形PQRS中,已知PR = 5cm,PQ = 6cm,PS = 7cm。

点A在PS上,且PA的长度是PS的一半。

连接AQ并延长交QR 的延长线于点B,连接RP交QA的延长线于点C。

求BC的长度。

答案二设PS的长度为2x,则PA = x。

由平行四边形的性质可知AQ || RB,所以根据平行线截断比定理:$\frac{{RP}}{{PC}} = \frac{{AQ}}{{CQ}}$代入已知条件,得:$\frac{{2x + 6}}{{PC}} = \frac{{4}}{{2x - 6}}$ 整理可得:$(2x + 6)(2x - 6) = 4PC$解方程得:$x = 3$所以PA = 3cm。

初二数学平行四边形压轴:几何证明题

初二数学平行四边形压轴:几何证明题

初二数教仄止四边形:几许道明题之阳早格格创做1.正在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中面,逆次对接EF 、FG 、GH 、HE .(1)请推断四边形EFGH 的形状,并赋予道明; (2)试商量当谦脚什么条件时,使四边形EFGH 是菱形,并道明缘由.2.如图,正在曲角三角形ABC 中,∠ACB=90°,AC=BC=10,将△ABC 绕面B 沿逆时针目标转动90°得到△A1BC1.(1)线段A1C1的少度是,∠CBA1的度数是. (2)对接CC1,供证:四边形CBA1C1是仄止四边形.3. 如图,矩形ABCD 中,面P 是线段AD 上一动面,O 为BD 的中面,PO 的延少线接BC 于Q.(1)供证:OP=OQ ;(2)若AD=8厘米,AB=6厘米,P 从面A 出收,以1厘米/秒的速度背D 疏通(没有与D 沉合).设面P 疏通时间为t 秒,请用t 表示PD 的少;并供t 为何值时,四边形PBQD 是菱形. 4.已知:如图,正在□ABCD 中,AE 是BC 边上的下,将△ABE 沿BC 目标仄移,使面E 与面C 沉合,得△GFC.⑴供证:BE DG ;⑵若∠B 60,当AB 与BC 谦脚什么数量闭系时,四边形ABFG 是菱形?道明您的论断.5. 如图,正在四边形ABCD 中,AD ∥BC ,E 为CD 的中面,连结AE 、BE ,BE ⊥AE ,延少AE 接BC 的延少线于面F .供证:(1)FC =AD ;(2)AB =BC +AD .6.如图,正在△ABC 中,AB=AC ,D 是BC 的中面,连结AD ,正在AD 的延少线上与一面E ,连结BE ,CE.(1)供证:△ABE ≌△ACE (2)当AE 与AD 谦脚什么数量闭系时,四边形ABEC 是菱形?并道明缘由.7.如图,正在仄止四边形ABCD 中,面E 是边AD 的中面,BE 的延少线与CD 的延少线接于面F. (1)供证:△ABE ≌△DFE(2)连结BD 、AF ,推断四边形ABDF 的形状,并道明缘由. 8. 如图,已知面D 正在△ABC 的BC 边上,DE ∥AC 接AB 于E ,DF ∥AB 接B F C G D H B A 1 C 1A C A D G C B F E A D P OA B E D C A D E F C B A B C D E FAC 于F .(1)供证:AE =DF ; (2)若AD 仄分∠BAC ,试推断四边形AEDF 的形状,并道明缘由. 9. 如图,正在仄止四边形中,面E F ,是对于角线BD 上二面,且BF DE =.(1)写出图中每一对于您认为齐等的三角形; (2)采用(110.正在梯形ABCD 中,AD ∥BC,AB=DC ,过面D E ,并延少DE 至面F ,使EF=DE.对接BF 、CF 、AC. (1)供证:四边形ABFC 是仄止四边形;(2)若CE BE DE ⋅=2,供证:四边形ABFC 是矩形. 11.如图,△ABC 中,AB=AC ,AD 、AE 分别是∠BAC 战∠BAC 的中角仄分线,BE ⊥AE. (1)供证:DA ⊥AE(2)试推断AB 与DE 是可相等?并道明缘由. 12.如图,正在△ABC 中,AB=AC ,面D 是BC 上一动面(没有与B 、C 沉合),做DE ∥AC 接AB 于面E ,DF ∥AB 接AC 于面F.(1)当面D 正在BC 上疏通时,∠EDF 的大小(变大、变小、没有变)(2)当AB=10时,四边形EDF 的周少是几? (3)面D 正在BC 上移动的历程中,AB 、DE 与DF 总存留什么数量闭系?请道明. 13.如图,四边形ABCD 中,AB ∥CD ,AC 仄分∠BAD ,CE ∥AD 接AB 于E.(1)供证:四边形AECD 是菱形; (2)若面E 是AB 的中面,试推断△ABC 的形状,并什么缘由. 14.如图,正在仄止四边形ABCD 中,E 为BC 的中面,连结AE 并延少接DC 的延少线于面F. (1)供证:AB=CF (2)当BC 与AF 谦脚什么数量闭系时,四边形ABFC 是矩形?并道明. 15.如图,正在正圆形ABCD 中,G 是CD 上一面,延少BC 到E ,使CE=CG ,连结BG 并延少接DE 于面F.(1)供证:△BCG ≌△DCE(2)将△DEC 绕面D 逆时针转动90°得到△DMA,推断四边形MBGD 是什么特殊四边形?并道明缘由.16.将仄止四边形纸片ABCD 如图办法合叠,使面C D’E AF C DB A B FC DE AF C D E B AB C FE DA B CDE A BF C D E处,合痕为EF.(1)供证:△ABE ≌△AD’F(2)连结CF ,推断四边形AECF 是什么特殊四边形,道明缘由.17.如图,正在△ABC 中,AB=AC ,AD ⊥BC ,垂脚为面D ,AN 是ABC 中角∠CAM 的仄分线,CE ⊥AN ,垂脚为E. (1)供证:四边形ADCE 是矩形; (2)当△ABC 谦脚什么条件时,四边形ADCE 是正圆形?道明缘由. 18.四边形ABCD 、DEFG 皆是正圆形,连结AE 、CG.(1)供证:AE=CG ;(2)预测AE 与CG 的位子闭系,并道明. 19.如图,正在四边形ABFC 中,∠ACB=90°,BC 的笔曲仄分线EF 接BC 于面D ,接AB 于面E ,且CF=AE. (1)试商量四边形BECF 是什么特殊四边形,并道明缘由; (2)当∠A 的大小谦脚什么条件时,四边形BECF 是正圆形?请回问并道明您的论断.20.如图,正在□ABCD 中,AB ⊥AC ,AB=1,BC=5,对于角线AC 、BD 相接于面O ,将曲线AC 绕面O 逆时针转动,分别接BC 、AD 于面E 、F.(1)道明:当转动角为90°时,四边形ABEF 是仄止四边形;(2)试商量正在转动历程中,线段AF 与EC 有何如的数量闭系,并道明;(3)正在转动历程中,四边形BEDF 大概是菱形吗?如果没有克没有及,请道明缘由;如果能,道明缘由并供出此时AC 绕面O 逆时针转动的度数.21.如图,B 、C 、E 是共背来线上的三个面,四边形ABCD 与四边形CEFG 皆是正圆形,连结BG 、DE.(1)预测BG 与DE 之间的大小闭系,并道明您的论断;(2)正在图中是可存留通过转动不妨互相沉合的二个三角形?若存留,请指出,并道明转动历程;若没有存留,请道明缘由.22.如图,矩形ABCD 中,O 是AC 与BD 的接面,过面、CD 的延少线分别接于面E 、F. (1)供证:△BOC ≌△DOF ; (2)当EF 与AC 谦脚什么闭系时,四边形AECF 23.如图,△ABC 是等边三角形,D 、E 分别正在边BC 连结DE 并延少至面F ,使EF=AE ,连结AF 、BE 战CF.(1 A B D F D ’ AB M NE A B C D EF G B E A C F DA B C D F E O A B C D F(2)推断四边形ABDF 的形状,并道明缘由.24. 如图,△ABC 是等边三角形,面D 是线段BC 上的动面(面D 没有与B 、C 沉合), △ADE 是以AD 为边的等边三角形,过E 做BC 的仄止线,分别接AB 、AC 于面F 、G ,连结BE.(1)供证:△AEB ≌△ADC ; (2)四边形BCGE 是何如的四边形?道明缘由.A G E F。

平面几何的证明题压轴题

平面几何的证明题压轴题

平面几何的证明题压轴题1. 问题描述给定平行四边形ABCD,证明以下结论:2. 证明过程步骤 1:作AE ⊥ AD,BF ⊥ AB,连接CF。

作AE ⊥ AD,BF ⊥ AB,连接CF。

作AE ⊥AD,BF ⊥AB,从而得到四边形AEBF是一个矩形。

步骤 2:作CF的中线DG,连接AG,BG。

作CF的中线DG,连接AG,BG。

作CF的中线DG,连接AG,BG,从而得到DG平分CF,并且DG ⊥ CF。

步骤 3:将四边形AEBF分为三个三角形:△AED,△BEF和△AFB。

将四边形AEBF分为三个三角形:△AED,△BEF和△AFB。

根据步骤1,我们知道△AED和△BEF是直角三角形。

步骤 4:分别证明△AED和△BEF为全等三角形。

分别证明△AED和△BEF为全等三角形。

根据步骤2,DG ⊥CF,所以△DEG和△FBG是全等三角形。

又因为△DEA和△BFA是直角三角形,且对边相等(DE = BF),根据勾股定理,△DEA和△BFA是全等三角形。

因此,根据全等三角形的性质,△AED和△BEF也是全等三角形。

步骤 5:根据全等三角形的性质,得到对应的边相等。

根据全等三角形的性质,得到对应的边相等。

根据步骤4,△AED和△BEF是全等三角形,所以对应的边相等:AE = BF,AD = BE步骤 6:得出结论。

得出结论。

根据平行四边形的性质,平行四边形的对边相等。

因此,由步骤5得出的结论,可以证明平行四边形ABCD的对边相等:AB = CD,AD = BC3. 结论通过以上证明过程,我们可以得出平行四边形ABCD的对边相等的结论:AB = CD,AD = BC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学平行四边形压轴:几何证明题
1.在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,顺次连接EF 、FG 、
GH 、HE . (1)请判断四边形EFGH 的形状,并给予证明;
(2)试探究当满足什么条件时,使四边形EFGH 是菱形,并说明理由。

2.如图,在直角三角形ABC 中,∠ACB=90°,AC=BC=10,将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1.
(1)线段A 1C 1的长度是 ,∠CBA 1的度数是 .
(2)连接CC 1,求证:四边形CBA 1C 1是平行四边形. 3. 如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交
BC 于Q. (1)求证:OP=OQ ;
(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与
D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.
4.已知:如图,在□ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C 重合,得△GFC.
⑴求证:BE ?DG ;
⑵若∠B ?60?,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的
结论.
5. 如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长
AE 交BC 的延长线于点F . 求证:(1)FC =AD ; (2)AB =BC +AD . 6.如图,在△ABC 中,AB=AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE.
(1)求证:△ABE ≌△ACE (2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由. 7.如图,在平行四边形ABCD 中,点E 是边AD 的中点,BE 的延长线与CD 的延长线交
于点F. (1)求证:△ABE ≌△DFE (2)连结BD 、AF ,判断四边形ABDF 的形状,并说明理由. 8. 如图,已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F . (1)求证:AE =DF ; (2)若AD 平分∠BAC ,试判断四边形AEDF 的形状,并说明理由.
9. 如图,在平行四边形中,点E F ,是对角线BD 上两点,且BF DE =. (1)写出图中每一对你认为全等的三角形;
(2)选择(1)中的任意一对全等三角形进行证明.
10.在梯形ABCD 中,AD ∥BC,AB=DC ,过点D 作DE ⊥BC ,垂足为点E ,并延长DE 至点F ,使EF=DE.连接BF 、CF 、AC. A B E F G D H B A 1 C 1A C A D G C B F E A Q C D P B O A B
E D C A D E
F C B A B C D E F E A F C D
B A C
E
F
(1)求证:四边形ABFC 是平行四边形;
(2)若CE BE DE ⋅=2,求证:四边形ABFC 是矩形.
11.如图,△ABC 中,AB=AC ,AD 、AE 分别是∠BAC 和∠BAC 的外角平分线,BE ⊥AE. (1)求证:DA ⊥AE
(2)试判断AB 与DE 是否相等?并说明理由。

12.如图,在△ABC 中,AB=AC ,点D 是BC 上一动点(不与B 、C 重合),作DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F.
(1)当点D 在BC 上运动时,∠EDF 的大小 (变大、变小、不变) (2)当AB=10时,四边形EDF 的周长是多少?
(3
13.(1(214.点(1(215.(1(216.(1(217.(1(218.(1(2
19.(1(220.AC (1(2)试探究在旋转过程中,线段AF 与EC 有怎样的数量关系,并证明; A B F C D E A F C D E B B E A
(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数. 21.如图,B 、C 、E 是同一直线上的三个点,四边形ABCD 与四边形CEFG 都是正方形,连结BG 、DE. (1)猜想BG 与DE 之间的大小关系,并证明你的结论;
(2)在图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说
22.(1(223.(1(2ADE 结(1(2 A B C D F E O
A B C
D F。

相关文档
最新文档