离散数学(命题逻辑的基本概念)66页PPT
合集下载
离散数学第一章命题逻辑PPT课件

P
Q
0
0
0
1
1
0
1
1
P→Q 1 1 0 1
如: P:雪是黑的。
Q:太阳从东方升起 。
P → Q:如果雪是黑的,则太阳从东方升起 。
命题P→Q是假, 当且仅当P是真而Q是假。
11/20/2020
chapter1
14
1.2 联结词
条件与汉语中“如果…,就…”相类似,但有所区别: (1)自然语言中,“如果P则Q”,往往P和Q有一定的因果 关系,而条件复合命题P→Q中 P和Q 可以完全不相关。 (2)自然语言中,“如果P则Q”,当P为0、Q为1时,整个 句子真值难以确定;而条件复合命题P→Q中,当P为0时, 复合命题的真值为1。 P则Q的逻辑含义:P是Q的充分条件,的表示 命题变元——常用P、Q、R、S等大写字母或加下标的大 写字母P1, Q2, R10, ……表示来表示一个命题,称为命题 变元。 如: P:巴黎在法国。
Q:煤是白色的。
11/20/2020
chapter1
4
1.1 命题及其表示法
3、命题相关概念 简单命题(原子命题)——不能再分解的命题。 复合命题——由若干个简单命题复合而成的命题。 真值表——把组成复合命题的各命题变元的真值的所有 组合及其相对应的复合命题的真值列成表,称为真值表。
11/20/2020
chapter1
6
1.1 命题及其表示法
【例3 】求公式 (P→R)∨(Q→R)的真值表。 解:∵公式含有3个命题变元P、Q、R,
∴真值表有23=8行。其真值表如下表 所示:
11/20/2020
chapter1
7
1.2 联结词
命题和原子命题常可通过一些联结词构成新命题, 这
离散数学ppt课件

02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。
离散数学PPT课件19命题逻辑推理(ppt文档)

I11. P∧(PQ)Q I12. Q∧(PQ)P
I13. (PQ)∧(QR)PR
I14. (P∨Q)∧(PR)∧(QR)R
I15. AB (A∨C)(B∨C)
I16. AB (A∧C)(B∧C)
重要的等价公式:
对合律 E1 PP
交换律 E2 P∧QQ∧P
• 例题1求证 P→Q,Q→R,P R
• 证明
序号 前提或结论 所用规则 从哪几步得到 所用公式
(1) P
P
(2) PQ P
(3) Q (4) Q→R
T (1)(2) I11 P
(5) R
T (3)(4) I11
• (注公式I11为: P,P→Q Q )
• 例题2求证
(P∧Q)∧(Q∨R)∧R P
E1
(3) (P∧S)
P
(4) P∨S (5) P (6) P→Q
T (3)
E8
T (2)(4) I10
P
(7) Q (8) (Q∨R)∧R
T (5)(6) I11 P
(9) Q∨R (10) R (11) R (12) R∧R
T (8)
I1
T (8)
I2
9
(1) Q∨R
P
(2) R
P
(3) Q (4) (P∧Q)
T (1)(2) I10 P
(5) P∨Q (6) P
T (4)
E8
T (3)(5) I10
• 注公式I10为: P, P∨Q Q • 公式E8为: (P∧Q)P∨Q
• 例题3用命题逻辑推理方法证明下面推 理的有效性:
• 如果我学习,那么我数学不会不及格。 如果我不热衷于玩扑克,那么我将学习。 但是我数学不及格。因此,我热衷于玩 扑克。
离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)

(3)至于p为0即“我期终考了年级不是前 10”时,无论q为1或为0,即无论"我老妈 奖励1000元"或不奖励,都不能说老妈的 话是假的,故善意的认为pq为1均为1
1.1 命题及联结词
定义1.5双条件:当p与q值相同时,pq为1,不同 为0。 称p当且仅当q
“普通老师赚了100万当且仅当他 中了100万的彩票”, 普通老师赚了100万 普通老师买彩票中了100万大奖
故pq为0
1.1 命题及联结词
定义1.4条件式当p是1 ,q是0时,pq为0,即 10为0,其他情况为1。 p称为前件,q称为后件
(1)当p为1即“我期终考了年级前10”
q为0即“我老妈没有奖励1000元” 这时老妈的话为假,即pq为0 (2)当p为1即“我期终考了年级前10” q为1即“我老妈奖励1000元” 这时妈妈的话就对了,即pq为1
由于所有内容(整数,实数,字符,汉字,图片,声 音,视频,网页,……)进入电脑后,全是01组成的字 符串,从而都可以用布尔运算即逻辑运算实现,命题逻 辑成为计算机的基础。
命题逻辑将数学由连续变到离散,由高数进入离散。
Google采用逻辑运算进行搜索:数字之美 吴军 杨圣洪 000100010001110000 两者对应位置与运算。 离散数学 100100000000100001
陈述句(6)的正确性,到2018年12月时能确定的,若届 时建成了则它是对的、为真命题,否为假命题。
1.1 命题及联结词
对错确定的陈述语句称为命题。如:
(7) x与y之和为100,其中x为整数,y为整数 (8)1加1等于10 (7)的对错不确定。当x为50、y为50时是对的,当x为 51、y为52时是错的。 (8)的对错是不确定的,为二进制时正确,当为八进制、 十进制时是错的,因此这两个陈述句不是命题。 (9)青枫峡的红叶真美呀! (10)动作快点! (11)你是杨老师吗? 这三个语句不是陈述语句,因此不是命题。
1.1 命题及联结词
定义1.5双条件:当p与q值相同时,pq为1,不同 为0。 称p当且仅当q
“普通老师赚了100万当且仅当他 中了100万的彩票”, 普通老师赚了100万 普通老师买彩票中了100万大奖
故pq为0
1.1 命题及联结词
定义1.4条件式当p是1 ,q是0时,pq为0,即 10为0,其他情况为1。 p称为前件,q称为后件
(1)当p为1即“我期终考了年级前10”
q为0即“我老妈没有奖励1000元” 这时老妈的话为假,即pq为0 (2)当p为1即“我期终考了年级前10” q为1即“我老妈奖励1000元” 这时妈妈的话就对了,即pq为1
由于所有内容(整数,实数,字符,汉字,图片,声 音,视频,网页,……)进入电脑后,全是01组成的字 符串,从而都可以用布尔运算即逻辑运算实现,命题逻 辑成为计算机的基础。
命题逻辑将数学由连续变到离散,由高数进入离散。
Google采用逻辑运算进行搜索:数字之美 吴军 杨圣洪 000100010001110000 两者对应位置与运算。 离散数学 100100000000100001
陈述句(6)的正确性,到2018年12月时能确定的,若届 时建成了则它是对的、为真命题,否为假命题。
1.1 命题及联结词
对错确定的陈述语句称为命题。如:
(7) x与y之和为100,其中x为整数,y为整数 (8)1加1等于10 (7)的对错不确定。当x为50、y为50时是对的,当x为 51、y为52时是错的。 (8)的对错是不确定的,为二进制时正确,当为八进制、 十进制时是错的,因此这两个陈述句不是命题。 (9)青枫峡的红叶真美呀! (10)动作快点! (11)你是杨老师吗? 这三个语句不是陈述语句,因此不是命题。
《离散数学》课件-第1章命题逻辑基本概念

注:克里特岛是希腊东南沿海的一个岛屿,位于地中海东部。 它的迈诺斯文明是世界是最早的文明之一,是欧洲文明的发 源地,并在公元前17世纪纪达到其财富和权势的顶峰。克里 特岛先后被希腊人、罗马人、拜占廷人、阿拉伯人、威尼斯 人和奥托曼土耳其人攻陷。岛上居民在1908年宣布与现代的 希腊结成联盟。
6
二、命题的分类
定义1.4 设p、q为任意命题,复合命题“如 果p,则q”称作p与q的蕴涵式,记作p→q,并称p 是蕴涵式的前件(hypothesis or premise),q为 蕴涵式的后件(conclusion or consequence)。 →称为蕴涵联结词。
规定:p→q为假当且仅当p为真q为假。即当 p为真q为假时,p→q为假;其它情况都为真。
(4)如果2是素数,则3也是素数。
简单命题:2是素数。3是素数。联结词:如果,则
(5)2是素数当且仅当3也是素数。
简单命题:2是素数。3是素数。联结词:当且仅当
17
解:简单命题的符号化为:
p:3是偶数。 q:2是偶数。 r:2是素数。 s:4是素数。
为了得到复合命题的符号化 形式,我们还必须对五个联 结词进行符号化!
(6)a能被4整除仅当a能被2整除。 p→q
(7)除非a能被2整除,a才能被4整除。 p→q
(8)除非a能被2整除,否则a不能被4整除。 p→q
(9)只有a能被2整除,a才能被4整除。 p→q
(1)3不是偶数。 Î 非3是偶数。
简单命题:3是偶数。
联结词:非
(2)2是偶素数。
Î 2是偶数并且2是素数。
简单命题:2是偶数。2是素数。 联结词:并且
(3)2或4是素数。
Î 2是素数或4是素数。
简单命题:2是素数。4是素数。 联结词:或
6
二、命题的分类
定义1.4 设p、q为任意命题,复合命题“如 果p,则q”称作p与q的蕴涵式,记作p→q,并称p 是蕴涵式的前件(hypothesis or premise),q为 蕴涵式的后件(conclusion or consequence)。 →称为蕴涵联结词。
规定:p→q为假当且仅当p为真q为假。即当 p为真q为假时,p→q为假;其它情况都为真。
(4)如果2是素数,则3也是素数。
简单命题:2是素数。3是素数。联结词:如果,则
(5)2是素数当且仅当3也是素数。
简单命题:2是素数。3是素数。联结词:当且仅当
17
解:简单命题的符号化为:
p:3是偶数。 q:2是偶数。 r:2是素数。 s:4是素数。
为了得到复合命题的符号化 形式,我们还必须对五个联 结词进行符号化!
(6)a能被4整除仅当a能被2整除。 p→q
(7)除非a能被2整除,a才能被4整除。 p→q
(8)除非a能被2整除,否则a不能被4整除。 p→q
(9)只有a能被2整除,a才能被4整除。 p→q
(1)3不是偶数。 Î 非3是偶数。
简单命题:3是偶数。
联结词:非
(2)2是偶素数。
Î 2是偶数并且2是素数。
简单命题:2是偶数。2是素数。 联结词:并且
(3)2或4是素数。
Î 2是素数或4是素数。
简单命题:2是素数。4是素数。 联结词:或
离散数学教程PPT课件

A=B C或A=B C或A=B C,则公式A是n+1层公式, n max( i, j)。
例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
离散数学PPT课件

定义2.1设A,B是两个命题公式,若A,B构成的等价 式AB为重言式,则称A与B等值,记为AB。
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理
离散数学课件ppt课件

联结词可以嵌套使用,在嵌套使用时,规定如下优先顺序: ( ),┐,∧,∨,→, ,对于同一优先级的联结词,先出现 者先运算。
例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑
例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)吴颖不仅用功而且聪明.
pq
(3)吴颖虽然聪明,但不用功. pq
(4)张辉与王丽都是三好生.
设p:张辉是三好生, q:王丽是三好生 pq
21
合取联结词的实例
p :今天下雨 q:明天下雨 p q:今天下雨并且明天下雨 今天与明天都下雨 这两天都下雨
p :我们唱歌 q:我们跳舞 p q:我们一边唱歌一边跳舞
过了一会儿,A喊道: “我知道我戴的帽子的颜 色了”,请问他的帽子是 什么颜色的?
6
数理逻辑
逻辑学是一门研究思维形式及思维规律的科 学。
数理逻辑是用数学方法来研究推理的规律科 学,就是引进一套符号体系的方法,所以又 称为符号逻辑。
数理逻辑是现代计算机技术的基础 。
7
第一部分 数理逻辑
爱德斯格·维伯·迪克斯特拉 (Edsger Wybe Dijkstra )
1930-2019
“我现在年纪大了,搞了 这么多年软件,错误不 知犯了多少,现在觉悟 了。我想假如我早年
在数理逻辑上好好下 点功夫的话,我就不会 犯这么多的错误。不
少东西逻辑学家早就 说了,可我不知道。要 是我能年轻20岁,我要 回去学逻辑。”
8
数理逻辑
莫绍揆 中国数理逻辑学家
(1917-)
“事实上,它们(程 序设计)或者就是 数理逻辑,或者是 用计算机语言书写 的数理逻辑,或者 是数理逻辑在计算 机上的应用。”
分析与设计、数据库原理与设计、人工智能、 操作系统、编译原理、计算机网络等课程联 系紧密。
2
本书的主要内容
数理逻辑 集合论 图论 组合数学 代数系统简介
3
教学目的
为计算机专业理论讲授作好必要的知识准备; 培养抽象思维和推理能力; 培养解决实际问题的能力.
4
教材及参考书
《离散数学》 屈婉玲等编著 高等教育出版社出版 2019
17
否定联结词
定义1.1 设 p为命题,复合命题“非p”(或“p
的否定”)称为p的否定式,记作p,符号
称作否定联结词. 规定p 为真当且仅当p为
假.
p
p
0
1
1
0
18
合取联结词
定义1.2 设p,q为两个命题,复合命题“p并且 q”(或“p与 q”)称为p与q的合取式,记作p q, 称作合取联结词. 规定p q为真当且仅当p与 q同时为真.
绪论
离散数学是研究离散量的结构及相互关系的 学科,其研究对象一般是有限个或可数个元 素。它充分描述了计算机科学离散性的特点, 在计算机理论研究及软、硬件开发的各个领 域有着广泛的应用。
离散数学形成于七十年代初期,是现代数学 的重要分支。
1
绪论
离散数学在计算机科学中起着工具性的作用。 离散数学与计算机科学中的数据结构、算法
9
说谎者悖古典论形式逻辑 亚里士多德,古希腊人,是世界
一个人说古 家:代和“史教我上育正最家在伟之大一说的。谎哲他学在。家直”、言科命学题 如果这个中 础人引上进建说了立的主了谓直是项言真的三变段话元论,,的在理那此论基。 么根据他的麦话加拉可学以派和推斯知多阿他学说派发的现了 公元亚是A前里ri3s假 如士8to4多t—l话果德e32,这2 矛个说 提 真盾人谎出值者了表。说悖相。的论当于,是现创假代立命了话题命,演题算逻既中辑的, “ 真我话没,有矛说盾立在的中谎。科世”学纪,得,到形既了式他发逻展辑说。作的为一是门独
p
q pq
0
0
0
0
1
0
1
0
0
1
1
1
同真则真
19
合取联结词的实例
例2 将下列命题符号化. (1) 吴颖既用功又聪明. (2) 吴颖不仅用功而且聪明. (3) 吴颖虽然聪明,但是不用功. (4) 张辉与王丽都是三好生.
20
合取联结词的实例
解 令p:吴颖用功, q:吴颖聪明
(1)吴颖既用功又聪明.
pq
11
第一部分 数理逻辑
主要内容 命题逻辑基本概念 命题逻辑等值演算 命题逻辑推理理论 一阶逻辑基本概念 一阶逻辑等值演算
12
第一章 命题逻辑的基本概念
命题与联结词
命题及其分类 联结词与复合命题
命题公式及其赋值
命题变项与合式公式 公式的赋值
13
1.1 命题与联结词
命题与真值 命题:非真即假的陈述句 命题的真值:判断的结果 真值的取值:真与假 真命题与假命题
《离散数学》 左孝凌 上海科学技术文献出版社
《《离散数学及其应用》(中、英文版) Kenneth H.Rosen 机械工业出版社 mhhe/rosen
5
土耳其商人和帽子
三个人:一个商人,两个 应试者A和B。
五顶帽子,两顶是红色的, 三顶是黑色的。
两个应试者看到商人头上 戴的是一顶红帽子。
p:π是有理数,则 p 的真值为0, q:2 + 5 = 7,则 q 的真值为1。
16
实例
将下面各命题中出现的原子命题符号化. 是有理数是不对的。 p: 是有理数 2是偶素数。 p: 2是偶数, q: 2是素数 2或4是素数。 p: 2是素数, q: 4是素数 如果2是素数,则3是素数。 p: 2是偶数 2是素数当且仅当3是素数。 q: 3是素数
注意: 感叹句、祈使句、疑问句都不是命题 陈述句中的悖论不是命题
14
命题概念
例1 下列句子中那些是命题? (1) 是有理数. (2) 2 + 5 = 7.
假命题 真命题
(3) x + 5 > 3.
不是命题
(4) 你去教室吗?
不是命题
(5) 这个苹果真大呀!
不是命题
(6) 请不要讲话!
不是命题
(7) 2050年元旦下大Байду номын сангаас. 命题(真值现在未知)
10
数理逻辑创始人
1eibniz 1646—1716
德国哲学家和数学家莱布 尼茨是德国最重要的自然 科学家、数学家、物理学 家和哲学家,一个举世罕 见的科学天才,和牛顿同 为微积分的创建人。
莱布尼茨是现在公认的数 理逻辑创始人,他的目的 是建立一种“表意的符号 语言”,其中把一切思维 推理都化归为计算。实际 上这正是数理逻辑的总纲 领。
(8)我正在说假话。
不是命题(悖论)
15
命题分类
命题分类:
简单命题(也称原子命题):不能分解为更简单的命题。 复合命题:由简单命题通过联结词联结而成的命题。
简单命题符号化
用小写英文字母 p, q, r, …, pi, qi, ri (i1)
表示简单命题。 用“1”表示真,用“0”表示假。例如,令