离散数学疑难解析——集合论部分
离散数学总结

离散数学总结离散数学学习总结一、课程内容介绍:1.集合论部分:集合论是离散数学中第一个抽象难关,在老师的生动讲解下,深入浅出,使得集合论成了相当有趣的知识。
只是对于以后的应用还不是很了解,感觉学好它很重要。
直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。
例如:方程x2-1=0的实数解集合;26个英文字母的集合;坐标平面上所有点的集合;集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。
表示一个集合的方法有两种:列元素法和谓词表示法,如果两个集合的交集为,则称这两个集合是不相交的。
例如B和C 是不相交的。
两个集合的并和交运算可以推广成n个集合的并和交:A1∪A2∪…∪An={x|x∈A1∨x∈A2∨…∨x∈An}A1∩A2∩…∩An={x|x∈A1∧x∈A2∧…∧x∈An}2.关系二元关系也可简称为关系。
对于二元关系R,如果∈R,可记作xRy;如果R,则记作x y。
例如R1={<1,2>,},R2={<1,2>,a,b}。
则R1是二元关系,R2不是二元关系,只是一个集合,除非将a和b定义为有序对。
根据上面的记法可以写1R12,aR1b,aR1c等。
给出一个关系的方法有三种:集合表达式,关系矩阵和关系图。
设R是A上的关系,我们希望R具有某些有用的性质,比如说自反性。
如果R不具有自反性,我们通过在R中添加一部分有序对来改得到新的关系R',使得R'具有自反性。
但又不希望R'与R相差太多,换句话说,添加的有序对要尽可能的少。
满足这些要求的R'就称为R的自反闭包。
通过添加有序对来构造的闭包除自反闭保外还有对称闭包和传递闭包。
3.代数系统代数结构也叫做抽象代数,主要研究抽象的代数系统。
抽象的代数系统也是一种数学模型,可以用它表示实际世界中的离散结构。
离散数学第1章 集合论

当n无限增大时,可以记为:
Ai
i1
iZ
Ai
=A1∪A2∪A3∪…
Ai
i1
iZ
A
i=
A1∩A2∩A3∩…
2023/12/1
定理1.2.5
1.等幂律:A∪A=A;A∩A=A; 2.交换律:A∪B=B∪A;A∩B=B∩A 3.结合律:A∪(B∪C)=(A∪B)∪C;
A∩(B∩C)=(A∩B)∩C; 4.恒等律:A∪Φ=A; A∩U=A; 5.零 律:A∪U=U; A∩Φ=Φ; 6.分配律:A∩(B∪C)=(A∩B)∪(A∩C)
定理1.2.2 设A、B是任意两个集合,则 AB,BA A=B
2023/12/1
真包含关系
定义1.2.2 设A,B是任意两个集合,如果 BA并且A≠B
则称B是A的真子集(Proper Subset),记作BA, 称 “ ” 为 真 包 含 关 系 (Properly Inclusion Relation)。 如果B不是A的真子集,则记作B A。
1.2.1 集合的表示方法
集合是由它包含的元素完全确定的,为了表示 一个集合,通常有:
✓ 枚举法 ✓ 隐式法(叙述法) ✓ 归纳法 ✓ 递归指定 ✓ 文氏图
2023/12/1
1、枚举法(显示法)
--列出集合中全部元素或部分元素的方法叫枚举法 适用场景:
一个集合仅含有限个元素 一个集合的元素之间有明显关系
1、互异性-集合中的元素都是不同的,凡是相同的 元素,均视为同一个元素; {1,1,2}={1,2}
2、确定性-能够明确加以“区分的”对象; 3、无序性-集合中的元素是没有顺序的。
{2,1}={1,2}
2023/12/1
例1.2.5
离散数学形考任务2集合论部分概念及性质

离散数学形考任务2集合论部分概念及性质概念在离散数学中,集合论是一个重要的分支。
集合是由对象(元素)组成的全体,这些对象可以是任何事物。
集合论研究集合的性质、操作和关系。
集合集合是指具有相同特性或共同属性的对象的整体。
集合可以用大写字母表示,例如A、B、C。
元素集合中的对象称为元素。
一个元素可以属于一个或多个集合。
子集如果集合A的所有元素也是集合B的元素,那么集合A是集合B的子集。
用符号A ⊆ B表示。
真子集如果集合A是集合B的子集且集合A不等于集合B,那么集合A是集合B的真子集。
用符号A ⊂ B表示。
并集两个集合A和B的并集,表示为A ∪ B,是包含所有A和B 中元素的集合。
交集两个集合A和B的交集,表示为A ∩ B,是同时属于A和B 的元素构成的集合。
补集给定一个集合U,集合A的补集,表示为A'或A^c,是指属于U但不属于A的元素构成的集合。
性质集合论有一些基本性质和规则,以帮助我们理解和操作集合。
1. 交换律:对于任意两个集合A和B,A ∪ B = B ∪ A,A ∩B = B ∩ A。
交换律:对于任意两个集合A和B,A ∪ B = B ∪ A,A ∩B = B ∩ A。
2. 结合律:对于任意三个集合A、B和C,(A ∪ B) ∪ C = A∪ (B ∪ C),(A ∩ B) ∩ C = A ∩ (B ∩ C)。
结合律:对于任意三个集合A、B和C,(A ∪ B) ∪ C = A ∪ (B ∪ C),(A ∩ B) ∩ C = A ∩(B ∩ C)。
3. 分配律:对于任意三个集合A、B和C,A ∪ (B ∩ C) = (A∪ B) ∩ (A ∪ C),A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)。
分配律:对于任意三个集合A、B和C,A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)。
4. 幂集性质:对于任意集合A,A的幂集是指包含A的所有子集的集合。
2、离散数学-集合论

6.1 集合的基本概念 零星定义:
集合代数
一些事物汇集到一起组成的一个整体称为集合,而 这些事物就是这个集合的元素或成员。 集合通常用大写字母来标记,如N、Z、Q、R、 C。 集合表示方法: 列元素法 A={1,2,3,4,5}
谓词表示法 B={x | x∈N ∧1≤x≤5 }
2007-10-20 1
定义6.6 在一个具体问题中,若所涉及的集合都是某个集合的 子集,则称这个集合为全集,记作E。
2007-10-20
9
第六章
6.2 集合的运算 定义6.7
集合代数
设A,B集合,A与B的并集A∪B,交集A∩B,B对A的相对补 集A-B,分别定义如下: A∪B={x|x ∈A ∨ x ∈B} A∩B={x|x ∈A ∧ x ∈B} A - B={x|x ∈A ∧ x ∉ B} 如:A={1,2,3}, B={3,4,5},C={6,7} 则A∪B、A∩B、A-B、 C∩B、C-B、C-C分别为??? 两个集合的并交运算可推广至n个集合: A1∪A2 ∪… ∪An ={x|x ∈A1∨x∈A2∨…∨ x∈An } A1∩A2 ∩ …∩An ={x|x ∈A1 ∧x∈A2∧ …∧ x∈An }
2007-10-20
12
第六章
定义6.10 <了解>
作∪R ,符号化表示为:
集合代数
设R 为集合, R 的元素的元素构成的集合称为R的广义并,记
∪R ={x| ∃z(z∈R ∧x∈z)} 例:设A={{1,2,3},{1,3,4},{1,4,5}}, B={{0}}, 则 ∪A={1,2,3,4,5} ∪B={0} 不难证明:若R ={A1,A2,… ,An},则 ∪ R = A1 ∪ A 2 ∪ … ∪ A n 特别强调: ∪ φ= φ
离散数学形考任务3集合论部分概念及性质

离散数学形考任务3集合论部分概念及性质本文档将介绍离散数学形考任务3中集合论部分的概念及性质。
以下是相关内容:集合的定义集合是由一些确定的、互不相同的元素组成的整体。
集合中的元素可以是任何事物,如数字、字母、符号等。
一般使用大写字母表示集合,元素用小写字母表示,并用大括号{}将元素括起来。
集合的性质1. 互异性:集合中的元素是互不相同的,即集合中的每个元素只出现一次。
2. 无序性:集合中的元素没有先后之分,元素的排列顺序不影响集合本身。
3. 确定性:一个元素要么属于集合,要么不属于集合,不存在中间状态。
4. 外延性:两个集合中的元素完全相同,则这两个集合相等。
5. 空集:不包含任何元素的集合称为空集,用符号{}或∅表示。
集合的运算1. 并集:将两个集合中的所有元素合并在一起,形成一个新的集合。
用符号∪表示。
例如,A∪B表示集合A和集合B的并集。
2. 交集:两个集合中共同拥有的元素组成的集合。
用符号∩表示。
例如,A∩B表示集合A和集合B的交集。
3. 差集:从一个集合中排除掉与另一个集合中相同的元素,得到的新集合。
用符号-表示。
例如,A-B表示集合A和集合B的差集。
4. 补集:相对于全集U,集合A在全集U中未包含的元素组成的集合。
用符号A'表示。
例如,A'表示集合A的补集。
应用举例1. 假设有两个集合A = {1, 2, 3}和B = {2, 3, 4},则A∪B = {1, 2, 3, 4},A∩B = {2, 3},A-B = {1}。
2. 如果全集U是整数集,A = {x | x > 0}表示大于0的整数集合,补集A' = {x | x ≤ 0}。
以上是离散数学形考任务3集合论部分的概念及性质。
希望本文档能对您有所帮助!。
离散数学中的集合论问题

离散数学中的集合论问题离散数学是一个重要的数学分支,其中集合论问题是离散数学的核心内容之一。
集合论研究的是集合的性质、操作和关系,并提供了一种描述和推理离散对象之间关系的框架。
本文将介绍离散数学中的集合论问题,包括集合的定义、运算、性质以及一些常见的集合论问题。
一、集合的定义和表示方法在离散数学中,集合可以通过定义和表示方法来描述。
集合的定义是指明集合中的元素和满足的条件,通常用大写字母表示。
例如,集合A表示为:A = {1, 2, 3, 4, 5},表示集合A包含了元素1、2、3、4和5。
除了列举元素的方法表示集合外,还可以通过描述或表示集合中元素的性质来定义集合。
例如,集合B = {x | x 是偶数}表示B是所有偶数的集合。
集合可以用不同的表示方法来表达。
常见的表示方法包括:1. 列举法:将集合中的元素一一列举出来,写在花括号{}中;2. 描述法:通过描述集合中元素的性质来定义集合,使用竖线或冒号表示;3. Venn图:用图形方式表示集合之间的关系,通常用圆圈或矩形表示集合。
二、集合的运算在集合论中,集合之间可以进行不同的运算,包括并集、交集、差集和补集。
1. 并集:两个集合A和B的并集(A∪B)是包含A和B中所有元素的集合。
符号∪表示并集。
例如,A = {1, 2, 3},B = {3, 4, 5},则A∪B = {1, 2, 3, 4, 5}。
2. 交集:两个集合A和B的交集(A∩B)是包含A和B中公共元素的集合。
符号∩表示交集。
例如,A = {1, 2, 3},B = {3, 4, 5},则A∩B = {3}。
3. 差集:集合A减去集合B中的元素形成的集合称为差集(A-B)。
符号-表示差集。
例如,A = {1, 2, 3},B = {3, 4, 5},则A-B = {1, 2}。
4. 补集:在给定的全集中,集合A的补集(A')是包含全集中不属于A的元素的集合。
符号'表示补集。
离散数学集合论

离散数学集合论离散数学是数学的一个重要分支,主要研究离散结构和关系。
其中,集合论是离散数学的基础部分,它研究集合及其性质和关系。
在计算机科学、数学、逻辑学等领域,集合论都发挥着重要的作用。
集合是具有相同性质的一组元素的组合。
在集合论中,元素可以是任何东西,例如数字、文字、图形等。
集合本身也是一种元素,因此可以形成嵌套集合。
集合的性质和关系是离散数学中的重要概念。
集合的基本性质包括互异性、无序性、明确性和无穷性。
互异性指集合中的元素互不相同;无序性指集合中的元素没有顺序;明确性指集合中的元素必须明确;无穷性指集合可以包含无限个元素。
这些性质是集合的基本特征,也是离散数学中的基础概念。
除了基本性质,集合还具有一些重要的运算和操作。
并集、交集、差集等是常见的集合运算。
并集表示两个或多个集合中所有元素的组合;交集表示两个或多个集合中共有的元素;差集表示在一个集合中去掉另一个集合中的元素后所剩下的元素。
这些运算是离散数学中常用的工具,也是计算机科学和数学中的基本操作。
离散数学集合论在各个领域都有应用。
例如,在计算机科学中,集合论可以用于处理数据结构和关系数据库等问题;在数学中,集合论可以用于研究数理逻辑和代数结构等;在逻辑学中,集合论可以用于研究形式逻辑和推理系统等。
总之,离散数学集合论是数学中的一个重要分支,它研究集合的性质和关系,并在各个领域得到广泛应用。
通过深入了解集合论的基本概念和运算,我们可以更好地理解和应用离散数学的相关知识。
离散数学及应用离散数学及其应用离散数学是数学的一个重要分支,主要研究离散结构(如自然数、整数、图论、逻辑等)的数学规律和性质。
它的应用领域十分广泛,包括计算机科学、电气工程、物理学、化学、生物学、经济学等。
离散数学在各个领域都有着重要的作用和应用价值。
在计算机科学中,离散数学是基础课程之一。
它为程序设计语言、数据结构、算法分析等方面提供了数学基础。
离散数学中的图论为解决网络优化、软件工程等问题提供了理论支持。
离散数学PPT教学课件 集合论ppt2

-3/3
[6]
0/2 0/3 0/4
[2]
→
-3/1[11]…
3/2[12]…
1/3[8] 1/4[14]
2/3[9]
3/3…
3/4[13]…
-3/4[16]
-2/4
-1/4[15]
2/4
所以,有理数集合必是可数集合。
2018/7/1
67-30
习题类型
1. 基本概念题:涉及集合的表示;
2. 判断题:涉及元素与集合、集合与集合间的关 系; 3. 计算题:涉及集合的运算和幂集的计算; 4. 证明题:涉及集合相等以及集合间包含关系的 证明。
2018/7/1
67-31
2018/7/1
可数集合(可列集)
定义 1.3.2 凡是与自然数集合等势的集合, 统称为可数集合 ( 可列集 )(Countable Set ) 。可 数集合记为:א0 (读作阿列夫零) 。
例1.3.1 下列集合都是可数集合: 1)O+={x|xN,x是正奇数}; 2)P={x|xN,x是素数}; 3)有理数集合Q.
67-8
定理1.3.1
两个有限集合等势当且仅当它们有相同 的元素个数; 有限集合不和其任何真子集等势;
可数集合可以和其可数的真子集等势。
2018/7/1
67-9
不可数集合
定义1.3.3
开区间 (0,1) 称为不可数集合,其基数设为 (א读作阿列夫);
凡是与开区间 (0,1) 等势的集合都是不可数 集合。
2018/7/1 67-12
1.4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学疑难解析——集合论部分
第一章 集合
[集合的知识点]
1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集
2、集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、 De Morgan 律等),文氏(Venn )图
3、序偶与迪卡尔积
[集合的疑难解析]
1.集合的概念
因为集合的概念大家在中学阶段已经学过,这里只多介绍了一个幂集的概念,所重点要对幂集加以掌握,一是掌握幂集的构成,一个集合A 的幂集是由A 的所有子集组成的集合。
二是掌握幂集元数为2n ,其中n 是集合A 的元素个数。
2.集合恒等式的证明
通过对集合恒等式证明的练习,既可以加深对集合性质的理解与掌握;又可以为第三章命题逻辑中公式的基本等价式的应用打下良好的基础。
实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式在B A B A ~⋂=-证明中的特殊作用。
第二章 关系与映射
[二元关系的知识点]
1、关系、关系矩阵与关系图
2、复合关系与逆关系
3、关系的性质(自反性、对称性、反对称性、传递性)
4、关系的闭包(自反闭包、对称闭包、传递闭包)
5、等价关系与等价类
6、偏序关系与哈斯图(Hasse )、极大/小元、最大/小元、上/下界、最小上界、最大下界
7、函数及其性质(单射、满射、双射)
8、复合函数与反函数
[二元关系疑难解析]
1.关系的概念
关系的概念是第二章全章的基础,又是第一章集合概念的应用。
因此,大家应该真正理解并熟练掌握二元关系的概念及关系矩阵、关系图表示。
2.关系的性质及其判定
关系的性质既是对关系概念的加深理解与掌握,又是关系的闭包、等价关系、半序关系的基础。
对于四种性质的判定,可以依据教材中P49上总结的规律。
这其中对传递性的判定,难度稍大一点,这里要提及两点:一是不破坏传递性定义,可认为具有传递性。
如空关系具有传递性,同时空关系具有对称性与反对称性,但是不具有自反性。
另一点是介绍一种判定传递性的“跟踪法”,即若()()()R a a R a a R a a i i ∈∈∈-,,
,,,,13221 ,则()R a a i ∈,1。
如若()()R a b R b a ∈∈,,,,则有()R a a ∈,,且()R b b ∈,。
3.关系的闭包
在理解掌握关系闭包概念的基础上,主要掌握闭包的求法。
关键是熟记三个定理的结论:定理2 ()A I R R r ⋃=;定理3 ()1-⋃=R R R s ;定理4的推论 () n i i R
R t 1==。
4.半序关系及半序集中特殊元素的确定
理解与掌握半序关系与半序集概念的关键是哈斯图。
哈斯图画法掌握了,对于确定任一子集的最大(小)元,极大(小)元也就容易了。
这里要注意,最大(小)元与极大(小)元只能在子集内确定,而上界与下界可在子集之外的全集中确定,最小上界为所有上界中最小者,最小上界再小也不小于子集中的任一元素,可以与某一元素相等,最大下界也同样。
5.映射的概念与映射种类的判定
映射的种类主要指单射、满射、双射与非单非满射。
判定的方法除定义外,可借助于关系图,而实数集的子集上的映射也可以利用直角坐标系表示进行,尤其是对各种初等函数。