实验5 戴维南定理的验证

合集下载

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。

2、验证戴维南定理、诺顿定理和置换定理的正确性。

3、进一步学习常用直流仪器仪表的使用方法。

二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。

2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。

这一串联电路称为该网络的代维南等效电路。

3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流I SC,其等效内阻R0定义与戴维南定理的相同。

4、有源二端网络等效参数的测量方法U0C、I SC和R0称为有源二端网络的等效电路参数,可由实验测得。

(一)开路电压U OC的测量方法(1)可直接用电压表测量。

(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图3-1所示。

零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。

图3-1 图3-2(二)等效电阻R0的测量方法(1)开路电压、短路电流法测R0该方法只实用于内阻较大的二端网络。

因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。

该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SCOCO I U R = (2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。

戴维南定理实验报告doc

戴维南定理实验报告doc

戴维南定理实验报告篇一:验证戴维南定理实验报告一、实验目的1. 验证戴维南定理和诺顿定理的正确性,加深对该定理的理解。

2. 掌握测量有源二端网络等效参数的一般方法。

二、原理说明1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。

戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。

诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流ISC,其等效内阻R0定义同戴维南定理。

Uoc(Us)和R0或者ISC(IS)和R0称为有源二端网络的等效参数。

2. 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法测R0在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,然后再将其输出端短路,用电流表测其短路电流Isc,则等效内阻为如果二端网络的内阻很小,若将其输出端口短路则易损坏其内部元件,因此不宜用此法。

(2) 伏安法测R0用电压表、电流表测出有源二端网络的外特性曲线,如图3-1所示。

根据外特性曲线求出斜率tgφ,则内阻图3-1也可以先测量开路电压Uoc,再测量电流为额定值IN时的输出端电压值UN,则内阻为(3) 半电压法测R0 如图3-2所示,当负载电压为被测网络开路电压的一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效内阻值。

图3-2 (4) 零示法测UOC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图3-3所示。

零示法测量原理是用一低阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

电路实验 验证戴维南定理

电路实验   验证戴维南定理

实验三 戴维南定理一、实验目的1.通过实验来验证戴维南定理,并加深对等效电路的理解; 2.学习用实验方法求含源一端口网络的等效电路; 3.灵活运用等效电源定理来简化复杂线性电路的分析; 4.进一步学习使用常用直流仪器仪表的方法。

二、实验原理1.任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源的二端网络(或称为含源一端口网络)。

根据戴维南定理:对任一线性含源一端口电阻网络(见图 3.1(a)),就其端口而言总可以用一个电压源串联电阻来等效,如图3.1(b)所示,其电压源的电压为原网络端口a 、b 两端的开路电压U oc , 电阻为原网络将内部电源化零以后从端口看进去的等效电阻R i 。

这里所谓的等效是指含源一端口网络被等效电路替代后,对原一端口网络的外电路没有影响,也就是外电路的电流和电压保持替代前后不变。

(a)(b)图 3.1 一端口网络及其等效电路2.含源一端口网络输入电阻R i 的实验测定法(1)测量含源一端口网络的开路电压U oc 和短路电流I sc ,则输入电阻为scoci I U R =(2)将含源一端口网络内所有电压源的电压和电流源的电流变成零,即含源一端口网络化为无源一端口网络。

然后在这无源一端口网络的端口处,外加一个电压U s ,测量端口的电流I ,则入端电阻为IU R Si =三、实验内容将原网络改接一根线的等效法。

(1) 用数字万用表测量R1 ~R3 电阻元件的参数取100~300Ω之间,将直流稳压电源接入电路,令u=20V,实验中调好后保持不变。

(2) 按图3.2(a)接线,调节R从0~∞,测量出U AB 和I R 的数值,特别要注意测出R=0及R=∞时的电压、电流值,将电压表和电流表的读数填入表4-1中。

(3) 将图3.2 (b) 的CD连线断开,连接CE,此时由R3与R1并联再与R2串联的电阻值(即AE间的电阻),由实验原理可知即为等效电阻,再将原先20V的电源改为由实验内容(2)测得的等效电压源U OC,也就是内容(2)将电流表断开时的电压表指示值,然后重复内容(2)的测量,并将测得结果填入表3.1中。

实验报告戴维南定理(3篇)

实验报告戴维南定理(3篇)

第1篇一、实验目的1. 深入理解并掌握戴维南定理的基本原理。

2. 通过实验验证戴维南定理的正确性。

3. 学习并掌握测量线性有源一端口网络等效电路参数的方法。

4. 提高使用Multisim软件进行电路仿真和分析的能力。

二、实验原理戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,都可以用一个理想电压源和电阻的串联形式来等效代替。

理想电压源的电压等于原一端口网络的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req。

三、实验仪器与材料1. Multisim软件2. 电路仿真实验板3. 直流稳压电源4. 电压表5. 电流表6. 可调电阻7. 连接线四、实验步骤1. 搭建实验电路根据实验原理,搭建如图1所示的实验电路。

电路包括一个线性有源一端口网络、电压表、电流表和可调电阻。

图1 实验电路图2. 测量开路电压Uoc断开可调电阻,用电压表测量一端口网络的开路电压Uoc。

3. 测量等效内阻Req将可调电阻接入电路,调节其阻值,记录不同阻值下的电压和电流值。

根据公式Req = Uoc / I,计算等效内阻Req。

4. 搭建等效电路根据戴维南定理,搭建等效电路,如图2所示。

其中,理想电压源的电压等于Uoc,等效内阻为Req。

图2 等效电路图5. 测量等效电路的外特性在等效电路中,接入电压表和电流表,调节可调电阻的阻值,记录不同阻值下的电压和电流值。

6. 比较实验结果比较原电路和等效电路的实验结果,验证戴维南定理的正确性。

五、实验结果与分析1. 测量数据表1 实验数据| 阻值RΩ | 电压V | 电流A | ReqΩ || ------ | ----- | ----- | ---- || 10 | 2.5 | 0.25 | 10 || 20 | 1.25 | 0.125 | 10 || 30 | 0.833 | 0.083 | 10 |2. 分析从实验数据可以看出,随着负载电阻的增大,原电路和等效电路的电压和电流值逐渐接近。

验证戴维南定理实验报告(总6页)

验证戴维南定理实验报告(总6页)

验证戴维南定理实验报告(总6页)
(一)戴维南定理
戴维南定理是拉普拉斯变换的其中一个重要的定理,是现代电学的重要理论基础。


指出:若一个函数在定义域內正则,负则在其反函数上正则,零则在其反函数上零,那么
在拉普拉斯变换上,这个函数一定有复数和零常数相乘的形式,这称为戴维南定理。

(二)实验背景
本实验主要目的是希望验证戴维南定理,在理论上给出一个公式,在实验室中实际动
手让人们更好地理解,更好地深入戴维南定理。

实验所使用仪器包括数字处理仪器、函数
发生器、示波器和电路板等。

(三)实验步骤
1. 将函数发生器通过示波器调节出三波形:方波、三角波、抛物线波,并调节出一
定的频率。

2. 使用数字处理仪器(比如MATLAB)将函数发生器中调节出来的三种波形信号,分
别进行傅立叶变换和拉普拉斯变换,计算出三个信号的傅立叶变换结果后的图形,得出拉
普拉斯变换结果后的图形。

3. 根据拉普拉斯变换结果,计算三种信号的谐波丰度,当三种信号的拉普拉斯变换
都出现零时,就会得出戴维南定理的结果。

(五)总结
戴维南定理实验验证了戴维南定理的正确性,在实验室中实际动手证明了其真实可信,使我们对定理有更加深刻的理解。

本次实验在设备和实验程序等方面都有所改进,给我们
和以后的学习者带来了更大的启发,也为我们在今后的学习工作中提供了更有力的理论支持。

戴维南定理的验证实验报告总结

戴维南定理的验证实验报告总结

戴维南定理的验证实验报告总结
戴维南定理是一个三角形内部的定理,它指出了三角形内部三条线段的关系。

在验证戴维南定理时,我们需要进行以下步骤:
1.绘制一个三角形ABC,并标出三边长a、b、c。

2.从三角形的顶点A开始,向对边BC引一条平分线AD。

3.从顶点A开始,向对边BC引一条高线AE。

4.从顶点A开始,向对边BC引一条角平分线AF。

5.测量线段AD、AE和AF的长度,并记录下来。

6.根据戴维南定理,有以下公式成立:AD²=
bc(b+c-a)/(a+b+c),AE²= b²- (c*(b-c)(b+c-a))/(a+b+c),AF ²= bc(a+b-c)*(a-b+c)/(a+b+c)。

7.将测量得到的线段长度代入公式中进行计算,如果计算结果符合公式,则说明戴维南定理成立。

通过以上步骤,我们可以验证戴维南定理的正确性。

在实验报告总结中,我们应该详细记录实验过程、数据记录和计算结果,并对实验结果进行分析和总结。

同时,我们还应该指出实验中可能存在的误差和改进方法,以便于今后的实验工作。

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据在电路分析中,戴维南定理和诺顿定理是两个非常重要的定理,它们为复杂电路的简化和分析提供了有力的工具。

为了深入理解和验证这两个定理,我们进行了一系列的实验,并对实验数据进行了详细的分析。

一、实验目的本次实验的主要目的是通过实际测量和计算,验证戴维南定理和诺顿定理的正确性,并加深对这两个定理的理解和应用。

二、实验原理1、戴维南定理戴维南定理指出,任何一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代。

其中,电压源的电压等于该一端口网络的开路电压 Uoc,电阻等于该一端口网络内部所有独立电源置零(即电压源短路,电流源开路)后的等效电阻 Ro。

2、诺顿定理诺顿定理则表明,任何一个线性含源一端口网络,对外电路来说,可以用一个电流源和电阻的并联组合来等效替代。

电流源的电流等于该一端口网络的短路电流 Isc,电阻仍为网络内部所有独立电源置零后的等效电阻 Ro。

三、实验器材本次实验所使用的器材包括:直流电源、电阻箱、电压表、电流表、导线若干等。

四、实验步骤1、测量含源一端口网络的开路电压 Uoc将含源一端口网络的输出端开路,用电压表测量其两端的电压,即为开路电压 Uoc。

2、测量含源一端口网络的短路电流 Isc将含源一端口网络的输出端短路,用电流表测量其短路电流,即为短路电流 Isc。

3、求含源一端口网络的等效电阻 Ro将含源一端口网络内部的所有独立电源置零(电压源短路,电流源开路),然后用电阻箱测量其等效电阻 Ro。

4、构建戴维南等效电路根据测量得到的 Uoc 和 Ro,用一个电压源和电阻串联的组合来构建戴维南等效电路。

5、构建诺顿等效电路根据测量得到的 Isc 和 Ro,用一个电流源和电阻并联的组合来构建诺顿等效电路。

输出电压和电流,并与原含源一端口网络的测量结果进行比较。

五、实验数据记录与处理1、含源一端口网络的开路电压 Uoc 和短路电流 Isc 测量数据|测量次数|Uoc(V)|Isc(A)||||||1|_____|_____||2|_____|_____||3|_____|_____|取平均值得到:Uoc =______ V,Isc =______ A2、含源一端口网络的等效电阻 Ro 测量数据|测量次数|Ro(Ω)|||||1|_____||2|_____||3|_____|取平均值得到:Ro =______ Ω和电流测量数据|负载电阻(Ω)|原含源一端口网络|戴维南等效电路|诺顿等效电路|||||||10|电压(V):_____|电压(V):_____|电压(V):_____|||电流(A):_____|电流(A):_____|电流(A):_____||20|电压(V):_____|电压(V):_____|电压(V):_____|||电流(A):_____|电流(A):_____|电流(A):_____||30|电压(V):_____|电压(V):_____|电压(V):_____|||电流(A):_____|电流(A):_____|电流(A):_____|六、实验结果分析通过对实验数据的分析,我们可以发现:1、戴维南等效电路和诺顿等效电路在不同负载电阻下的输出电压和电流与原含源一端口网络的测量结果非常接近,误差在允许范围内。

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。

2、验证戴维南定理、诺顿定理和置换定理的正确性。

3、进一步学习常用直流仪器仪表的使用方法。

二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。

2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U 0C ,其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。

这一串联电路称为该网络的代维南等效电路。

3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流 I SC ,其等效内阻R 0定义与戴维南定理的相同。

4、有源二端网络等效参数的测量方法U 0C 、I SC 和R 0称为有源二端网络的等效电路参数,可由实验测得。

(一)开路电压U OC 的测量方法 (1)可直接用电压表测量。

(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图 3-1所示。

零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

然后将电路断开,测量此时稳压电源的输出电压, 即为被测有源二端网络的开路电压。

图3-1 图3-2(二)等效电阻R 0的测量方法 (1)开路电压、短路电流法测R 0该方法只实用于内阻较大的二端网络。

因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。

该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SCOCO I U R(2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验5 戴维南定理的验证
一、实训目的
1. 验证戴维南定理的正确性,加深对该定理的理解。

2. 掌握测量有源二端网络等效参数的一般方法。

二、原理说明
1. 任何具有两个出线端的部分电路称为二端网络。

若网络中含有电源称为有源二端网络,否则称为无源二端网络。

戴维南定理:任何一个线性有源二端网络,对外电路来说,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us 等于这个有源二端网络的开路电压Uoc , 其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。

诺顿南理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is 等于这个有源二端网络的短路电流I SC ,其等效内阻R 0定义同戴维南定理。

Uoc (Us )和R 0或者I SC (I S )和R 0称为有源二端网络的等效参数。

2. 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法测R 0
在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc ,然后再将其输出端短路,用电流表测其短路电流Isc ,则等效内阻为 Uoc R 0= ── Isc
如果二端网络的内阻很小,若将其输出端口短路 则易损坏其内部元件,因此不宜用此法。

(2) 伏安法测R 0 图5-1有源二端网络外特性曲线 用电压表、电流表测出有源二端网 络的外特性曲线,如图5-1所示。

根据 外特性曲线求出斜率tg φ,则内阻 △U U oc R 0=tg φ= ──=── △I Isc
也可以先测量开路电压Uoc , 图5-2半电压法测R 0电路
再测量电流为额定值I N 时的输出
U oc -U N
端电压值U N ,则内阻为 R 0=────
I N
(3) 半电压法测R 0
如图5-2所示,当负载电压为被测网络开
U I A
B
I U
O
ΔU
ΔI
φ
sc
oc /2
路电压的一半时,负载电阻(由电阻箱的读数
确定)即为被测有源二端网络的等效内阻值。

(4) 零示法测U OC图5-3零示法测U OC电路
在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图5-3所示.。

零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。

三、实训设备
序号名称型号与规格数量备注
1 可调直流稳压电源0~30V 1 屏上
2 可调直流恒流源0~200mA 1 屏上
3 直流电压表0~200V 1 屏上
4 直流毫安表0~2000mA 1 屏上
5 万用表 1 自备
6 电阻器若干DDZ-11
7 可调电阻箱0~99999Ω 1 DDZ-12
8 电位器1k/2W 1 DDZ-12
四、实训内容
根据如图线路,按实验要求接好实训线路。

(a) 实验电路图(b)等效图
1. 用开路电压、短路电流法测定戴维南等效
电路的Uoc、R0和诺顿等效电路的I SC、R0。


上图(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。

测出U O c和Isc,并计算出R0(测U OC时,不接入mA表),填入右表中。

Uoc
(v)
Isc
(mA)
R0=Uoc/Isc
(Ω)






R




V
U
U S
2. 负载实验
按上图(a )连线,接入R L 。

根据下表中负载R L 的阻值,测量并绘制有源二端网络(a )
3. 验证戴维南定理:从电阻箱(或者电位器)上取得按步骤“1”所得的等效电阻R 0
之值, 然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc 之值)相串联,如图
4. 有源二端网络等效电阻(又称入端电阻)的直接测量法。

见图(a )。

将被测有源网络内的所有独立源置零(去掉电流源I S 和电压源U S ,并在原电压源所接的两点用一根短路导线相连),然后用伏安法或者直接用万用表的欧姆档去测定负载R L 开路时A 、B 两点间的电阻,此即为被测网络的等效内阻R 0,或称网络的入端电阻R i 。

五、实训注意事项
1. 测量时应注意电流表量程的更换。

2. 用万表直接测R 0时,网络内的独立源必须 先置零,以免损坏万用表。

其次,欧姆档必须经 调零后再进行测量。

3. 改接线路时,要关掉电源。

六、预习思考题
1. 在求戴维南等效电路时,作短路试验,测Isc 的条件是什么?在本实训中可否直接作负载短路实训?请实训前对线路(a)预先作好计算,以便调整实训线路及测量时可准确地选取电表的量程。

七、实训报告
1. 根据步骤2和3,分别绘出曲线,验证戴维南定理的正确性, 并分析产生误差的原因。

2. 归纳、总结实训结果。

3. 心得体会及其它。

图 5-4。

相关文档
最新文档