2016-2017年上海市虹口区高一(上)数学期末试卷与答案

合集下载

【最新文档】2016年上海市虹口区复兴高中高一上学期期末数学试卷

【最新文档】2016年上海市虹口区复兴高中高一上学期期末数学试卷

D.﹣ f( x1)< f(﹣ x2)
18.( 5.00 分)函数 f( x)=ax2+bx+c(a≠0)的图象关于直线
对称.据此
可推测,对任意的非零实数 a, b,c,m, n, p,关于 x 的方程 m[ f (x)] 2+nf
( x)+p=0 的解集都不可能是(

A.{ 1,2} B.{ 1,4} C.{ 1, 2, 3, 4} D. { 1,4,16,64}
求 m 的值. 23.( 18.00 分)已知集合 M 是满足下列性质的函数 f (x)的全体:在定义域内 存在 x0,使得 f (x0+1)=f(x0) +f (1)成立. ( 1)函数 f(x)= 是否属于集合 M ?说明理由;
( 2)设函数 f( x)=lg
∈ M,求 a 的取值范围;
( 3)设函数 y=2x 图象与函数 y=﹣ x 的图象有交点, 证明:函数 f( x)=2x+x2∈M .
第 3 页(共 17 页)
2015-2016 学年上海市虹口区复兴高中高一 (上) 期末数 学试卷
参考答案与试题解析
一、填空题(每题 4 分,共 56 分) 1.(4.00 分)设全集 U={ n∈ N| 1≤n≤10} ,A={ 1,2,3,5,8} ,B={ 1,3,5, 7,9} ,则( ?UA)∩ B= { 7,9} . 【解答】 解:∵全集 U={ n∈ N| 1≤n≤10} ,A={ 1,2,3,5,8} ,B={ 1,3,5, 7,9} , ∴( ?UA)={ 4, 6,7,9 } ,∴( ?UA)∩ B={ 7, 9} , 故答案为: { 7, 9} .
q),则 p2×2q 的值为 12

上海市虹口区高一上期末数学试卷有答案

上海市虹口区高一上期末数学试卷有答案

2016-2017学年上海市虹口区高一(上)期末数学试卷一、填空题(本大题满分30分,共10题)1.(3分)已知集合A={﹣2,﹣1,0,2},B={x|x2=2x},则A∩B= .2.(3分)不等式|x﹣3|≤1的解集是.3.(3分)不等式>4的解集是.4.(3分)已知函数f(x)=3x+a的反函数y=f﹣1(x),若函数y=f﹣1(x)的图象经过(4,1),则实数a的值为.5.(3分)命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是.6.(3分)已知条件p:2k﹣1≤x≤﹣3k,条件q:﹣1<x≤3,且p是q的必要条件,则实数k的取值范围是.7.(3分)已知函数y=f(x)是R上的奇函数,且在区间(0,+∞)单调递增,若f(﹣2)=0,则不等式xf(x)<0的解集是.8.(3分)函数f(x)=|x2﹣4|﹣a恰有两个零点,则实数a的取值范围为.9.(3分)已知函数f(x)=,若f(f(a))=2,则实数a的值为.(2+|x|)﹣,则使得f(x﹣1)>f(2x)成立的x取值范10.(3分)设f(x)=log2围是.11.已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,令h(x)=g (1﹣x2),则关于函数y=h(x)的下列4个结论:①函数y=h(x)的图象关于原点对称;②函数y=h(x)为偶函数;③函数y=h(x)的最小值为0;④函数y=h(x)在(0,1)上为增函数其中,正确结论的序号为.(将你认为正确结论的序号都填上)二、选择题(本大题满分20分,每小题4分,共6小题)12.(4分)设全集U=,集合A={x|1≤x<7,x∈},B={x=2k﹣1,k∈},则A∩(∁B)=()UA.{1,2,3,4,5,6} B.{1,3,5} C.{2,4,6} D.∅13.(4分)设x∈R,则“x<﹣2”是“x2+x≥0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.(4分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=|x| B.y=()x C.y=D.y=﹣x315.(4分)设x,y∈R,a>1,b>1,若a x=b y=3,a+b=6,则+的最大值为()A.B.C.1 D.216.(4分)设集合M=[0,),N=[,1],函数f(x)=.若x∈M且f(f(x0))∈M,则x的取值范围为()A.(0,] B.[0,] C.(,] D.(,)17.设f(x)=5|x|﹣,则使得f(2x+1)>f(x)成立的x取值范围是()A.(﹣1,﹣)B.(﹣3,﹣1)C.(﹣1,+∞)D.(﹣∞,﹣1)∪(﹣,+∞)三、解答题(本大题慢点50分,共7小题)18.(10分)已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(∁UA)∩B={﹣2},求实数p、q、r的值.19.(10分)(1)解不等式:3≤x2﹣2x<8;(2)已知a,b,c,d均为实数,求证:(a2+b2)(c2+d2)≥(ac+bd)2.20.(10分)已知函数f(x)=log2||x|﹣1|.(1)作出函数f(x)的大致图象;(2)指出函数f(x)的奇偶性、单调区间及零点.21.已知f(x)=|x|(2﹣x)(1)作出函数f(x)的大致图象,并指出其单调区间;(2)若函数f(x)=c恰有三个不同的解,试确定实数c的取值范围.22.(10分)如图,在半径为40cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中A,B在直径上,点C,D在圆周上、(1)设AD=x,将矩形ABCD的面积y表示成x的函数,并写出其定义域;(2)怎样截取,才能使矩形材料ABCD的面积最大?并求出最大面积.23.(10分)已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称.(1)若f(g(x))=6﹣x2,求实数x的值;(2)若函数y=g(f(x2))的定义域为[m,n](m≥0),值域为[2m,2n],求实数m,n的值;(3)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a).x(x>0且a≠1)的图象经过点(8,2)和(1,﹣1).24.已知函数f(x)=b+loga(1)求f(x)的解析式;(2)[f(x)]2=3f(x),求实数x的值;(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值时x的值.四、附加题25.设函数φ(x)=a2x﹣a x(a>0,a≠1).(1)求函数φ(x)在[﹣2,2]上的最大值;(2)当a=时,φ(x)≤t2﹣2mt+2对所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立,求实数m的取值范围.2016-2017学年上海市虹口区高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题满分30分,共10题)1.(3分)已知集合A={﹣2,﹣1,0,2},B={x|x2=2x},则A∩B= {0,2} .【解答】解:∵集合A={﹣2,﹣1,0,2},B={x|x2=2x}={0,2},∴A∩B={0,2}.故答案为:{0,2}.2.(3分)不等式|x﹣3|≤1的解集是[2,4] .【解答】解:∵|x﹣3|≤1,∴﹣1≤x﹣3≤1,解得:2≤x≤4,故答案为:[2,4].3.(3分)不等式>4的解集是(2,12).【解答】解:∵>4,∴>0,即<0,解得:2<x<12,故答案为:(2,12).4.(3分)已知函数f(x)=3x+a的反函数y=f﹣1(x),若函数y=f﹣1(x)的图象经过(4,1),则实数a的值为 1 .【解答】解:f(x)=3x+a的反函数y=f﹣1(x),∵函数y=f﹣1(x)的图象经过(4,1),原函数与反函数的图象关于y=x对称∴f(x)=3x+a的图象经过(1,4),即3+a=4,解得:a=1.故答案为:1.5.(3分)命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是若实数a,b满足a=4且b=3,则a+b=7”.【解答】解:命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是“若实数a,b 满足a=4且b=3,则a+b=7”,故答案为:若实数a,b满足a=4且b=3,则a+b=7”6.(3分)已知条件p:2k﹣1≤x≤﹣3k,条件q:﹣1<x≤3,且p是q的必要条件,则实数k的取值范围是k≤﹣1 .【解答】解:∵p:2k﹣1≤x≤﹣3k,条件q:﹣1<x≤3,且p是q的必要条件,∴(﹣1,3]⊆[2k﹣1,﹣3k],∴,解得:k≤﹣1,故答案为:k≤﹣1.7.(3分)已知函数y=f(x)是R上的奇函数,且在区间(0,+∞)单调递增,若f(﹣2)=0,则不等式xf(x)<0的解集是(﹣2,0)∪(0,2).【解答】解:函数y=f(x)是R上的奇函数,在区间(0,+∞)单调递增∴函数y=f(x)在R上单调递增,且f(0)=0∵f(﹣2)=﹣f(2)=0,即f(2)=0.∴当x<﹣2时,f(x)<0,当﹣2<x<0时,f(x)>0,当0<x<2时,f(x)<0,当x>2时,f(x)>0,那么:xf(x)<0,即或,∴得:﹣2<x<0或0<x<2.故答案为(﹣2,0)∪(0,2).8.(3分)函数f(x)=|x2﹣4|﹣a恰有两个零点,则实数a的取值范围为a=0或a>4 .【解答】解:函数g(x)=|x2﹣4|的图象如图所示,∵函数f(x)=|x2﹣4|﹣a恰有两个零点,∴a=0或a>4.故答案为:a=0或a>4.9.(3分)已知函数f(x)=,若f(f(a))=2,则实数a的值为﹣,,16 .【解答】解:由f(x)=,f(f(a))=2,当log2a≤0时,即0<a≤1时,(log2a)2+1=2,即(log2a)2=1,解得a=,当log2a>0时,即a>1时,log2(log2a)=2,解得a=16,因为a 2+1>0,log 2(a 2+1)=2,即a 2+1=4 解得a=(舍去),或﹣,综上所述a 的值为﹣,,16,故答案为:﹣,,16,10.(3分)设f (x )=log 2(2+|x|)﹣,则使得f (x ﹣1)>f (2x )成立的x 取值范围是 (﹣1,) .【解答】解:函数f (x )=log 2(2+|x|)﹣,是偶函数,当x ≥0时,y=log 2(2+x ),y=﹣都是增函数,所以f (x )=log 2(2+x )﹣,x ≥0是增函数,f (x ﹣1)>f (2x ),可得|x ﹣1|>|2x|,可得3x 2+2x ﹣1<0,解得x ∈(﹣1,). 故答案为:(﹣1,).11.已知函数f (x )=()x 的图象与函数y=g (x )的图象关于直线y=x 对称,令h (x )=g (1﹣x 2),则关于函数y=h (x )的下列4个结论: ①函数y=h (x )的图象关于原点对称; ②函数y=h (x )为偶函数;③函数y=h (x )的最小值为0; ④函数y=h (x )在(0,1)上为增函数其中,正确结论的序号为 ②③④ .(将你认为正确结论的序号都填上)【解答】解:∵函数f (x )=()x 的图象与函数y=g (x )的图象关于直线y=x 对称, ∴g (x )=,∴h(x)=g(1﹣x2)=,故h(﹣x)=h(x),即函数为偶函数,函数图象关于y轴对称,故①错误;②正确;当x=0时,函数取最小值0,故③正确;当x∈(0,1)时,内外函数均为减函数,故函数y=h(x)在(0,1)上为增函数,故④正确;故答案为:②③④二、选择题(本大题满分20分,每小题4分,共6小题)B)=()12.(4分)设全集U=,集合A={x|1≤x<7,x∈},B={x=2k﹣1,k∈},则A∩(∁UA.{1,2,3,4,5,6} B.{1,3,5} C.{2,4,6} D.∅【解答】解:全集U=,集合A={x|1≤x<7,x∈}={1,2,3,4,5,6}B={x=2k﹣1,k∈},∴∁B={x=2k,k∈},uB)={2,4,6},∴A∩(∁u故选:C.13.(4分)设x∈R,则“x<﹣2”是“x2+x≥0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由“x2+x≥0”,解得:x>0或x<﹣1,故x<﹣2”是“x>0或x<﹣1“的充分不必要条件,故选:A.14.(4分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=|x| B.y=()x C.y=D.y=﹣x3【解答】解:对于A:y=f(x)=|x|,则f(﹣x)=|﹣x|=|x|是偶函数.对于B:,根据指数函数的性质可知,是减函数.不是奇函数.对于C:定义为(﹣∞,0)∪(0,+∞),在其定义域内不连续,承载断点,∴在(﹣∞,0)和在(0,+∞)是减函数.对于D:y=f(x)=﹣x3,则f(﹣x)=x3=﹣f(x)是奇函数,根据幂函数的性质可知,是减函数.故选D.15.(4分)设x,y∈R,a>1,b>1,若a x=b y=3,a+b=6,则+的最大值为()A.B.C.1 D.2【解答】解:设x,y∈R,a>1,b>1,a x=b y=3,a+b=6,∴x=loga 3,y=logb3,∴+=log3a+log3b=log3ab≤log3()=2,当且仅当a=b=3时取等号,故选:D16.(4分)设集合M=[0,),N=[,1],函数f(x)=.若x∈M且f(f(x0))∈M,则x的取值范围为()A.(0,] B.[0,] C.(,] D.(,)【解答】解:∵0≤x<,∴f(x))∈[,1]⊆N,∴f(f(x0))=2(1﹣f(x))=2[1﹣(x+)]=2(﹣x),∵f(f(x))∈M,∴0≤2(﹣x)<,∴<x≤∵0≤x<,∴<x<故选:D17.设f(x)=5|x|﹣,则使得f(2x+1)>f(x)成立的x取值范围是()A.(﹣1,﹣)B.(﹣3,﹣1)C.(﹣1,+∞)D.(﹣∞,﹣1)∪(﹣,+∞)【解答】解:函数f(x)=5|x|﹣,则f(﹣x)=5|﹣x|﹣=5|x|﹣=f(x)为偶函数,∵y1=5|x|是增函数,y2=﹣也是增函数,故函数f(x)是增函数.那么:f(2x+1)>f(x)等价于:|2x+1|>|x|,解得:x<﹣1或使得f(2x+1)>f(x)成立的x取值范围是(﹣∞,﹣1)∪(,+∞).故选D.三、解答题(本大题慢点50分,共7小题)18.(10分)已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(∁UA)∩B={﹣2},求实数p、q、r的值.【解答】解:集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},∴1+p+1=0,解得p=﹣2;又1+q+r=0,①(∁UA)∩B={﹣2},∴4﹣2q+r=0,②由①②组成方程组解得q=1,r=﹣2;∴实数p=﹣2,q=1,r=﹣2.19.(10分)(1)解不等式:3≤x2﹣2x<8;(2)已知a,b,c,d均为实数,求证:(a2+b2)(c2+d2)≥(ac+bd)2.【解答】解:(1)不等式:3≤x2﹣2x<8,即:,解得:,即x∈(﹣2,﹣1]∪[3,4).(2)证明:∵(a2+b2)(c2+d2)﹣(ac+bd)2=a2c2+a2d2+b2c2+b2d2﹣a2c2﹣2abcd﹣b2d2=a2d2+b2c2﹣2abcd=(ad﹣bc)2≥0∴(a2+b2)(c2+d2)≥(ac+bd)2.20.(10分)已知函数f(x)=log||x|﹣1|.2(1)作出函数f(x)的大致图象;(2)指出函数f(x)的奇偶性、单调区间及零点.||x|﹣1|的定义域为:{x|x≠±1,x∈R}.【解答】解:函数f(x)=log2||x|﹣1|=,x=0时f(x)=0,函数f(x)=log2函数的图象如图:(2)函数是偶函数,单调增区间(﹣1,0),(1,+∞);单调减区间为:(﹣∞,﹣1),(0,1);零点为:0,﹣2,2.21.已知f(x)=|x|(2﹣x)(1)作出函数f(x)的大致图象,并指出其单调区间;(2)若函数f(x)=c恰有三个不同的解,试确定实数c的取值范围.【解答】解:(1)f(x)=|x|(2﹣x)=,函数的图象如图:函数的单调增区间(0,1),单调减区间(﹣∞,0),(1,+∞).(2)函数f(x)=c恰有三个不同的解,函数在x=1时取得极大值:1,实数c的取值范围(0,1).22.(10分)如图,在半径为40cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中A,B在直径上,点C,D在圆周上、(1)设AD=x,将矩形ABCD的面积y表示成x的函数,并写出其定义域;(2)怎样截取,才能使矩形材料ABCD的面积最大?并求出最大面积.【解答】解:(1)AB=2OA=2=2,∴y=f(x)=2x,x∈(0,40).(2)y2=4x2(1600﹣x2)≤4×=16002,即y≤1600,当且仅当x=20时取等号.∴截取AD=20时,才能使矩形材料ABCD的面积最大,最大面积为1600.23.(10分)已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称.(1)若f(g(x))=6﹣x2,求实数x的值;(2)若函数y=g(f(x2))的定义域为[m,n](m≥0),值域为[2m,2n],求实数m,n的值;(3)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a).【解答】解:(1)∵函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,∴g(x)=,∵f(g(x))=6﹣x2,∴=6﹣x2=x,即x2+x﹣6=0,解得x=2或x=﹣3(舍去),故x=2,(2)y=g(f(x2))==x2,∵定义域为[m,n](m≥0),值域为[2m,2n],,解得m=0,n=2,(3)令t=()x,∵x∈[﹣1,1],∴t∈[,2],则y=[f(x)]2﹣2af(x)+3等价为y=m(t)=t2﹣2at+3,对称轴为t=a,当a<时,函数的最小值为h(a)=m()=﹣a;当≤a≤2时,函数的最小值为h(a)=m(a)=3﹣a2;当a>2时,函数的最小值为h(a)=m(2)=7﹣4a;故h(a)=24.已知函数f(x)=b+logax(x>0且a≠1)的图象经过点(8,2)和(1,﹣1).(1)求f(x)的解析式;(2)[f(x)]2=3f(x),求实数x的值;(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值时x的值.【解答】解:(1)由已知得,b+loga 8=2,b+loga1=﹣1,(a>0且a≠1),解得a=2,b=﹣1;故f(x)=log2x﹣1(x>0);(2)[f(x)]2=3f(x),即f(x)=0或3,∴log2x﹣1=0或3,∴x=2或16;(3)g(x)=2f(x+1)﹣f(x)=2[log2(x+1)﹣1]﹣(log2x﹣1)=log2(x++2)﹣1≥1,当且仅当x=,即x=1时,等号成立).于是,当x=1时,g(x)取得最小值1.四、附加题25.设函数φ(x)=a2x﹣a x(a>0,a≠1).(1)求函数φ(x)在[﹣2,2]上的最大值;(2)当a=时,φ(x)≤t2﹣2mt+2对所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立,求实数m的取值范围.【解答】解:(1)∵φ(x)=a2x﹣a x=(a x﹣)2﹣(a>0,a≠1),x∈[﹣2,2],∴当a>1时,φmax(x)=φ(2)=a4﹣a2;当0<a<1时,φmax(x)=φ(﹣2)=a﹣4﹣a﹣2;∴φmax(x)=.(2)当a=时,φ(x)=2x﹣()x,由(1)知,φmax(x)=φ(2)=()4﹣()2=4﹣2=2,∴φ(x)≤t2﹣2mt+2对所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立⇔∀m∈[﹣1,1],t2﹣2mt+2≥φmax(x)=2恒成立,即∀m∈[﹣1,1],t2﹣2mt≥0恒成立,令g(m)=﹣2tm+t2,则,即,解得:t≥2或t≤﹣2,或t=0.∴实数m的取值范围为:(﹣∞,2]∪{0}∪[2,+∞).。

上海市虹口区2019届高一第一学期期末考试数学试题(含答案)

上海市虹口区2019届高一第一学期期末考试数学试题(含答案)

2018-2019学年上海市虹口区高一(上)期末数学试卷一、填空题1.(3分)函数()f x =的定义域为 .2.(3分)函数()21()x f x x R =-∈的值域是 . 3.(3分)函数2()(0)f x x x =≥,则1()f x -= . 4.(3分)已知1≤a ≤2,3≤b ≤6,则3a ﹣2b 的取值范围为 .5.(3分)函数3()2f x x x =+,如果(1)()0f f a +>,则实数a 的范围是 .6.(3分)已知函数2log ,0()2,0xx x f x x >⎧=⎨≤⎩若1()2f a =,则a = . 7.(3分)函数()12f x x x =++-,则此函数的最小值为 .8.(3分)直角三角形的周长等于2,则这个直角三角形面积的最大值为 .9.(3分)已知函数()log a f x x =(a >0且a ≠1),若123()8f x x x =,则222123()()()f x f x f x += .10.(3分)若命题“存在x ∈R ,使得220ax x a ++≤”为假命题,则实数a 的取值范围为 .11.(3分)(A 组题)已知2,1()1 1.1x x f x x x⎧≤⎪=⎨+>⎪⎩,若a <b <c ,满足()()()f a f b f c ++,则()a b f c ++的取值范围是 .12.(3分)(A 组题)已知函数1()2x f x e x -=+-,22()22g x x ax a a =-+-+,若存在实数1x ,2x ,使得12()()0f x g x ==,且121x x -≤,则实数a 的取值范围是 .13.(B 组题)已知2()22f x x x =-+,若a <b <c <d ,满足()()()()f a f b f c f d ===,则a +b +c +d 的值等于 .14.(B 组题)已知()lg f x x =,则实数(())y f f x =的零点0x 等于 . 二、选择题15.(3分)已知幂函数的图象经过点(9,3),则此函数是(( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数16.(3分)对于实数a ,α:101a a ->+,β:关于x 的方程210x ax -+=有实数根,则α是β成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件17.(3分)已知函数()y f x =,记{}(,)|()A x y y f x ==,{}(,)|0,B x y x y R ==∈,则A B 的元素个数( )A .至多一个元素B .至少一个元素C .一个元素D .没有元素18.(3分)(A 组题)已知()(31)12f m m a m =-+-,当m ∈[0,1]时,()1f m ≤恒成立,则实数a 的取值范围是( ) A .0≤a ≤1B .0<a <1C .a ≤0或a ≥1D .a <0或a >119.(B 组题)函数()(32)1f x a x a =-+-,在[﹣2,3]上的最大值是(2)f -,则实数a 的取值范围是( ) A .23a ≥B .23a >C .23a ≤D .23a <三、解答题 20.已知{}2|2220,xx A x x R =--≤∈,{}|lg(1)0,B x x x R =-<∈,求A B ,A B .21.已知函数()1010x x f x -=-. (1)判断()f x 的奇偶性,并说明理由; (2)判断()f x 在R 上的单调性,并说明理由.22.矩形ABCD 的面积为4,如果矩形的周长不大于10,则称此矩形是“美观矩形”. (1)当矩形ABCD 是“美观矩形”时,求矩形周长的取值范围; (2)就矩形ABCD 的一边长x 的不同值,讨论矩形是否是“美观矩形”? 23.已知()f x 是定义在R 上的奇函数,且x ≥0时有2()4f x x x =-. (1)写出函数()f x 的单调区间(不要证明); (2)(A 组题)解不等式()3f x ≥;(3)(A 组题)求函数()f x 在[﹣m ,m ]上的最大值和最小值. (2)(B 组题)求函数()f x 的解析式; (3)(B 组题)解不等式()3f x ≥.24.已知()f x 是定义在R 上且满足(2)()f x f x +=的函数. (1)如果0≤x <2时,有()f x x =,求(3)f 的值;(2)(A 组题)如果0≤x ≤2时,有2()(1)f x f x =-,若﹣2≤a ≤0,求()f a 的取值范围; (3)(A 组题)如果()()g x x f x =+在[0,2]上的值域为[5,8],求()g x 在[﹣2,4]的值域. (2)(B 组题)如果0≤x ≤2时,有2()(1)f x f x =-,若﹣2≤a ≤0且()0f a =,求a 的值; (3)(B 组题)如果0≤x ≤2时,有2()(1)f x f x =-,若﹣2≤a ≤4,求()f a 的取值范围.2018-2019学年上海市虹口区高一(上)期末数学试卷参考答案与试题解析一、填空题1.【分析】直接由根式内部的代数式大于等于0求解. 【解答】解:由x ﹣2≥0,得x ≥2.∴函数()f x =的定义域为[2,+∞).故答案为:[2,+∞).【点评】本题考查函数的定义域及其求法,是基础题. 2.【分析】根据指数函数2x y =的值域减一可得.【解答】解:因为2xy =的值域为(0,+∞),∴21xy =-的值域为(﹣1,+∞) 故答案为:(﹣1,+∞).【点评】本题考察了函数的值域,属基础题. 3.【分析】令2()y f x x ==,由x ≥0,得出y ≥0,并在2y x =中解出x ,即可得出函数()y f x =的反函数的表达式.【解答】解:令2()y f x x ==,由于x ≥0,则y ≥0,所以x =1()0)f x x -=≥,0)x ≥.【点评】本题考查反函数解析式的求解,解决本题的关键在于灵活利用反函数的定义,属于基础题. 4.【分析】法1,根据不等式的运算性质进行判断求解即可.法2利用线性规划的知识进行求解. 【解答】解:方法一、∵1≤a ≤2,3≤b ≤6, ∴3≤3a ≤6,﹣12≤﹣2b ≤﹣6, 则﹣9≤3a ﹣2b ≤0,即3a ﹣2b 的取值范围为[﹣9,0] 方法2:设z =3a ﹣2b , 则322z b a =-, 作出不等式组对应的平面区域如图: 则平移直线322zb a =-,由图象知当直线经过点C (1,6)时, 直线的截距最大,此时z 最小, 最小z =3﹣2×6=3﹣12=﹣9, 当直线经过点A (2,3)时,直线的截距最小,此时z 最大, 最小z =3×2﹣2×3=6﹣6=0, 即3a ﹣2b 的取值范围为[﹣9,0]. 故答案为:[﹣9,0]【点评】本题主要考查不等式性质的应用,根据不等式的关系是解决本题的关键.比较基础.5.【分析】根据题意,分析可得()f x 为奇函数且在R 上为增函数,则原不等式可以转化为a >﹣1,即可得答案. 【解答】解:根据题意,函数3()2f x x x =+, 有33()()2()(2)()f x x x x x f x -=-+-=-+=-, 则函数()f x 为奇函数,2()320f x x '=+>,则函数()f x 在R 上为增函数; 如果(1)()0f f a +>, 则()(1)(1)f a f f >-=-,故a >﹣1, 故答案为:a >﹣1.【点评】本题考查函数的单调性与奇偶性的综合应用,注意分析函数f (x )的奇偶性与单调性,属于基础题.6.【分析】当a >0时,21log 2a =;当a ≤0时,122a=.由此能求出a 的值. 【解答】解:当a >0时,21log 2a =当a ≤0时,121log 22a -==, ∴a =﹣1.∴a =﹣1故答案为:﹣1【点评】本题考查孙数值的求法,解题时要认真审题,注意分段函数的函数值的求法.7.【分析】根据x a -的几何意义,得到()12f x x x =++-的几何意义,再求出函数的最小值. 【解答】解:∵x a -几何意义表示数轴上坐标为x 与坐标为a 的点的距离, ∴()12f x x x =++-表示X 轴上的点X 到点﹣1,2的距离和, ∴最小值为此两点线段上的点, 即当﹣1≤x ≤2时,()f x 最小值为3, 故答案为:3.【点评】本题考查了绝对值式子的几何意义的应用,属于基础题.8.【分析】设直角三角形的两直角边为a 、b ,斜边为c ,因为L a b c =++,c 即可求解.【解答】解:直角三角形的两直角边为a 、b ,斜边为c ,面积为s ,周长L =2,由于a b L +=≥a =b 时取等号)≤∴21122S ab =≤221(22)3[]3224L L --===-故答案为:3-.【点评】利用均值不等式解决实际问题时,列出有关量的函数关系式或方程式是均值不等式求解或转化的关键. 9.【分析】表示出123()8f x x x =,再表示出122123()()()f x f x f x +,根据对数运算法则化简即可【解答】解:∵()log a f x x =且123()8f x x x = ∴123log ()8a x x x =又222222123123()()()log ()log ()log ()a a a f x f x f x x x x +=++1231231232[log ()log ()log ()]2[log ()]2log ()2816a a a a a x x x x x x x x x =++===⨯=故答案为:16【点评】本题考查对数运算,要求能熟练应用对数运算法则.属简单题10.【分析】命题“0x R ∃∈,使得220x x a ++≤”是假命题,则命题“x R ∀∈,使得220x x a ++>”是真命题,可得:△<0,解出a 的范围.【解答】解:命题“0x R ∃∈,使得220x x a ++≤”是假命题, 则命题“x R ∀∈,使得220x x a ++>”是真命题, ∴440a ∆=-<,解得a >1. 实数a 的取值范围是:(1,+∞). 故答案为:(1,+∞).【点评】本题考查了简易逻辑的判定方法、不等式的解法,考查了推理能力与计算能力,属于中档题. 11.【分析】画出函数()f x 的图象,如图所示,结合图象,即可求出. 【解答】解:画出函数()f x 的图象,如图所示, 若a <b <c ,满足()()()f a f b f c ++, ∴0a b += ,1()2f c <<, ∴()a b f c ++的范围为(1,2), 故答案为:(1,2)【点评】本题考查了分段函数的图象和性质,考查了函数的值域,属于中档题. 12.【分析】求出1()10x f x e-'=+>,()f x 在R 上递增,由(1)0f =,得1x =1,从而2()0g x =且211x -≤,进而22220x ax a a -+-+=在0≤x ≤2有解,由此能求出a 的范围. 【解答】解:函数1()2x f x ex -=+-的导数为1()10x f x e -'=+>,()f x 在R 上递增,由(1)0f =,可得1()0f x =,解得1x =1,存在实数1x ,2x ,使得12()()0f x g x ==.且121x x -≤, 即为2()0g x =且211x -≤,即22220x ax a a -+-+=在0≤x ≤2有解, 即22220x ax a a -+-+=在0≤x ≤2有解, ∴2244(2)0a a a ∆=--+≥, 解得a ≥2.故a 的范围为[2,+∞). 故答案为:[2,+∞).【点评】本题考查实数的取值范围的求法,考查导数、二次函数的性质等基础知识,考查运算求解能力,是中档题. 13.【分析】根据题意,由函数的解析式分析可得()()f x f x -=,即函数()f x 为偶函数,进而分析可得直线y =m 与函数()f x 最多只有4个交点;据此分析可得a +d =b +c =0,进而分析可得答案.【解答】解:根据题意,2()22f x x x =-+,则2()22()f x x x f x -=-+=,即函数()f x 为偶函数,22222,0()2222,0x x x f x x x x x x ⎧-+≥⎪=-+=⎨++<⎪⎩,则直线y =m 与函数()f x 最多只有4个交点;若a <b <c <d ,满足()()()()f a f b f c f d ===,则有a +d =b +c =0, 故a +b +c +d =0; 故答案为:0【点评】本题考查函数的奇偶性的判定以及应用,注意分析f (x )的奇偶性. 14.(B 组题)已知()lg f x x =,则实数(())y f f x =的零点0x 等于 10 .【分析】根据题意,由函数的解析式可得(())lg(lg )f f x x =,令00(())lg(lg )0f f x x ==,解可得0x 的值,由零点的定义即可得答案.【解答】解:根据题意,()lg f x x =,则(())lg(lg )f f x x =, 若00(())lg(lg )0f f x x ==,即lgx 0=1,解可得0x =10, 即函数(())y f f x =的零点0x 等于10; 故答案为:10.【点评】本题考查函数零点的计算,关键是掌握函数零点的定义,属于基础题. 二、选择题 15.【分析】由幂函数ay x = 的图象经过点(9,3),求出12a = ,由此能求出此函数是12y x = ,是非奇非偶函数.【解答】解:∵幂函数y =x a的图象经过点(9,3), ∴93a = , 解得12a =, ∴此函数是12y x =,是非奇非偶函数. 故选:D .【点评】本题考查命题真假的判断,考查幂函数的性质等基础知识,考查运算求解能力,是基础题. 16.【分析】求出α,β的等价条件,结合不等式的关系,利用充分条件和必要条件的定义进行判断即可. 【解答】解:α:101a a ->+得a >1或a <﹣1,β:关于x 的方程210x ax -+=有实数根, 则判别式240a ∆=-≥,得a ≥2或a ≤﹣2, ∵{}{}|22|11a a a a a a ≥≤-><-或或Ö, ∴α是β成立的必要不充分条件, 故选:B .【点评】本题主要考查充分条件和必要条件的判断,求出命题的等价条件是解决本题的关键. 17.【分析】根据函数的定义,在定义域内有且只有一个函数值与它对应,()y f x =定义域是F ,当F 包括x =0,则x =0时候,有且只有一个函数值,所以函数图象与x =0只有一个交点,也就是两个集合的交集元素个数只有1个,则答案可求.【解答】解:设函数()y f x =定义域是F , 当0F ∈,A B 中所含元素的个数为1.∴AB 中所含元素的个数是1.故选:A .【点评】本题考查交集及其运算,解答此题的关键是对题意的理解,是基础题. 18.【分析】利用一次函数的最值求解即可.【解答】解:()(31)12(32)1f m m a m a m a =-+-=--+①3a ﹣2=0,即23a =时,1()13f m =<,符合题意; ②3a ﹣2>0,即23a >时,max ()(1)21f m f a ==-∵2a ﹣1≤1,∴a ≤1,∴213a <≤;③3a ﹣2<0,即23a <时,max ()(0)1f m f a ==-+∵﹣a +1≤1,∴a ≥0,∴203a ≤<;综上可知:实数a 的取值范围是[0,1]; 故选:A .【点评】本题主要考查了函数恒成立问题的求解,分类讨论思想的应用,一次函数闭区间的最值以及单调性的应用. 19.【分析】根据函数的最值和函数单调性的关系即可求出a 的范围【解答】解:函数()(32)1f x a x a =-+-,在[﹣2,3]上的最大值是(2)f -, 则函数f (x )在[﹣2,3]上为减函数, 则3a ﹣2<0,解得23a <, 故选:D .【点评】本题考查了函数的单调性和最值得关系,考查了转化与化归思想,属于基础题 三、解答题20.【分析】先分别求出集合A 和B ,由此能求出A B ,A B .【解答】解:{}{}2|2220,|1xx A x x R x x =--≤∈=≤,{}{}|lg(1)0,|2112B x x x R x x x =-<∈=-<<-<<或,∴{}|21AB x x =-<<-,{}|2A B x x =<.【点评】本题考查交集、并集的求法,考查交集、并集定义、不等式性质等基础知识,考查运算求解能力,是基础题. 21.【分析】(1)容易求出()()f x f x -=-,从而判断出()f x 是奇函数;(2)可以看出函数10x y =和10xy -=-在R 上都是增函数,从而得出()f x 在R 上的单调性.【解答】解:(1)()1010(1010)()xx x x f x f x ---=---=-;∴()f x 为奇函数;(2)∵10x y =和10xy -=-x在R 上都是增函数;∴()1010x xf x -=-在R 上是增函数.【点评】考查奇函数的定义及判断,指数函数的单调性,以及增函数的定义. 22.【分析】(1)根据基本不等式和定义即可得出周长的范围; (2)令周长不大于10,列不等式求出x 的范围,得出结论. 【解答】解:(1)设AB =x ,则4BC x=,故而矩形ABCD 的周长为442()2()228AB BC x x x x+=+≥=,当且仅当4x x=即x =2时取等号. 又矩形ABCD 是“美观矩形”,故而矩形的周长不大于10. ∴当矩形ABCD 是“美观矩形”时,矩形周长的取值范围是[8,10]. (2)设矩形ABCD 的周长为f (x ),则4()2()(0)f x x x x==>, 令f (x )≤10得2540x x -+≤,解得:1≤x ≤4,∴当x ∈[1,4]时,矩形是“美观矩形”,当x ∈(0,1)∪(4,+∞)时,矩形不是“美观矩形”. 【点评】本题考查了基本不等式的应用,属于基础题. 23.【分析】(1)根据题意,由函数的解析式结合函数的奇偶性可得()f x 的单调区间;(2)(A 组题),根据题意,由函数的奇偶性可得函数()f x 的解析式,则有243()30x x f x x ⎧-≥≥⇒⎨≥⎩或243x x x ⎧--≥⎨<⎩,解可得不等式的解集,即可得答案;(3)(A 组题)由函数的解析式可得在区间(﹣∞,﹣2)上为增函数,在(﹣2,2)上为减函数,在(2,+∞)为增函数;对m 的值进行分情况讨论,求出函数的最值,即可得答案;(2)(B 组题)设x <0,则﹣x >0,由函数的解析式可得()f x -的表达式,由函数的奇偶性可得()f x 在x <0时的解析式,综合即可得答案;(3)(B 组题)根据题意,由函数的奇偶性可得函数()f x 的解析式,则有243()30x x f x x ⎧-≥≥⇒⎨≥⎩或2430x x x ⎧--≥⎨<⎩,解可得不等式的解集,即可得答案.【解答】解:(1)根据题意,()f x 是定义在R 上的奇函数,且x ≥0时有2()4f x x x =-;则()f x 的单调递增区间为(﹣∞,﹣2]或[2,+∞),递减区间为[﹣2,2];(2)(A 组题)()f x 是定义在R 上的奇函数,且x ≥0时有2()4f x x x =-,设x <0,则﹣x >0,则22()()4()4f x x x x x -=---=+, 则2()()4f x f x x x =--=--,综合可得:224,0()4,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩,若243()30x x f x x ⎧-≥≥⇒⎨≥⎩或2430x x x ⎧--≥⎨<⎩,解可得:﹣3≤x ≤﹣1或2x ≥则不等式()3f x ≥的解集为[﹣3,﹣1]∪[2x ≥++∞);(3)(A 组题)由(2)的结论,224,0()4,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩,在区间(﹣∞,﹣2)上为增函数,在(﹣2,2)上为减函数,在(2,+∞)为增函数;对于区间[﹣m ,m ],必有m >﹣m ,解可得m >0;故当0<m ≤2时,2max ()4f x m m =-+,2min ()4f x m m =-,当2<m ≤4时,max ()4f x =,min ()4f x =-,当m >4时,2max ()4f x m m =-,2min ()4f x m m =-+,(2)(B 组题)()f x 是定义在R 上的奇函数,且x ≥0时有2()4f x x x =-,设x <0,则﹣x >0,则22()()4()4f x x x x x -=---=+, 则2()()4f x f x x x =--=--,综合可得:224,0()4,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩,(3)(B 组题)由(2)的结论,224,0()4,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩,若243()30x x f x x ⎧-≥≥⇒⎨≥⎩或2430x x x ⎧--≥⎨<⎩,解可得:﹣3≤x ≤﹣1或x ≥2则不等式()3f x ≥的解集为[﹣3,﹣1]∪[2+∞).【点评】本题考查函数奇偶性的性质以及应用,涉及分段函数的性质以及应用,属于基础题. 24.【分析】根据(2)()f x f x +=的函数.可知函数()f x 是周期2的函数;依次求解各式即可. 【解答】解:(1)(3)(12)(1)1f f f =+==; (2)(A 组题)若﹣2≤a ≤0,则0≤a +2≤2,∴22()(2)(21)(1)[0,1]f a f a a a =+=+-=+∈;(3)(A 组题)因为()()g x x f x =+在[0,2]上的值域为[5,8],所以()f x 在[0,2]上的值域为[3,6], 所以()g x 在[﹣2,4]上的值域为[1,10];(2)(B 组题)根据(2)(A 组题)可得2()(1)0f a f a =+=,可得a =﹣1; (3)(B 组题)由题意,当0≤a ≤2时,2()(1)0[0,1]f a f a =-=∈; 当﹣2≤a ≤0时,则0≤a +2≤2,可得2()(1)0[0,1]f a f a =+=∈,当2≤a ≤4时,则0≤a ﹣2≤2,可得2()(3)[0,1]f a f a =-∈,故得当﹣2≤a ≤4,()f a 的取值范围是[0,1].【点评】本题考查抽象函数的问题,值域的求法,体现了分类讨论的数学思想方法,解答此题的关键是理解题意,是中档题.。

最新版上海市虹口区高一上学期期末考试数学试题 Word版含答案

最新版上海市虹口区高一上学期期末考试数学试题  Word版含答案

虹口区2016学年第一学期期终质量监控测试高一数学试卷2017.1一、填空题:本大题满分30分.本大题共10题,只要求在答题纸相应题号的空格内直接写出结果,每题填对得3分,否则一律不得分.1.已知集合{}{}22,1,0,1,2,|2A B x x x =--==,则A B = .2.不等式31x -≤的解集为 .3.不等式3442x x +>-的解集是 . 4.已知函数()3x f x a =+的反函数为()1y fx -=,若函数()1y f x -=的图象过点()4,1,则实数a 的值为 . 5. 命题“若实数,a b 满足4a ≠或3b ≠,则7a b +≠”的否命题为 .6. 已知条件:213p k x k -≤≤-,条件:13q x -<≤,且p 是q 的必要条件,则实数k 的取值范围为 .7. 已知函数()y f x =是R 上的奇函数,且在区间()0,+∞上单调递增,若()20f -=,则不等式()0xf x <的解集为 .8. 函数()24f x x a =--恰有两个零点则实数a 的取值范围为 .9. 已知函数()221,0log ,0x x f x x x ⎧+≤⎨>⎩,若()()2f f a =,则实数a 的值为 .10. (A 组题)设()()221log 22f x x x=+-+,则要()()12f x f x ->使得成立的x 的取值范围为 .(B 组题)已知函数()12x f x ⎛⎫= ⎪⎝⎭的图象与函数()y g x =的图象关于直线y x =对称,令()()21h x g x =-,则关于函数()y h x =的下列4个结论:①函数()y h x =的图象关于原点对称;②函数()y h x =为偶函数;③函数()y h x =的最小值为0;④函数()y h x =在()0,1上为增函数.其中,正确结论的序号为 .(将你认为正确结论的序号都填上)二、选择题:(本大题20分)本大题共5小题,每题4分.11.设全集U Z =,集合{}{}|17,|21,A x x B x x k k Z =≤<==-∈,则()U AC B =( )A. {}1,2,3,4,5,6B. {}1,3,5C. {}2,4,6D.∅12.设x R ∈,则"2"x <-是2"0x x +≥的( )A. 充分不必要条件B. 必要不充分条件C.充要条件D.既不充分也不必要条件13.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A. y x = B. 3y x =- C. 12xy ⎛⎫= ⎪⎝⎭ D.1y x = 14.设,,1,1a R b R a b ∈∈>>,若3,6x y a b a b ==+=,则11x y+的最大值为( ) A. 13 B. 12C. 1D.2 15.(A 组题)设集合110,,,122M N ⎡⎫⎡⎤==⎪⎢⎢⎥⎣⎭⎣⎦,函数()()1,,221,,x x M f x x x N ⎧+∈⎪=⎨⎪-∈⎩,若0x M ∈且()()0f f x M ∈,则0x 的取值范围是( ) A. 10,4⎛⎤ ⎥⎝⎦ B. 30,8⎡⎤⎢⎥⎣⎦ C. 11,42⎛⎤ ⎥⎝⎦ D.11,42⎛⎫ ⎪⎝⎭ (B 组题)设()2151x f x x=-+,则使得()()21f x f x +>成立的x 的取值范围是( ) A. 11,3⎛⎫-- ⎪⎝⎭ B.()3,1-- C. ()1,-+∞ D.()1,1,3⎛⎫-∞--+∞ ⎪⎝⎭三、解答题:本大题共5小题,共50分.解答应写出必要的文字说明或推理、验算过程.16.(本题满分10分)已知集合{}{}22|10,|0A x x px B x x qx r =++==++=,且{}(){}1,2.U A B C A B ==-,求实数,,p q r 的值.17.(本题满分10分)(1)解不等式:2328x x ≤-<(2)已知,,,a b c d 均为是实数,求证:()()()22222.a bc d ac bd ++≥+18.(本题满分10分)本大题共2个小题,每小题5分.(A 组题)已知函数()2log 1.f x x =-(1)作出函数()f x 的大致图像;(2)指出函数()f x 的奇偶性、单调区间及零点.(B 组题)已知()()2.f x x x =-(1)作出函数()f x 的大致图像,并指出其单调区间;(2)若函数()f x c =恰有三个不同的解,试确定实数c 的取值范围.19.(本题满分10分)如图,在半径为40cm 的平面图形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A,B 在直径上,点C,D 在圆周上.(1)设AD x =,将矩形ABCD 的面积表示成y 的函数,并写出其定义域;(2)怎样截取,才能使矩形材料ABCD 的面积最大?并求出最大面积.20.(本题满分12分)本题共3个小题,每小题4分.(请考生务必看清自己应答的试题)(A 组题)已知函数()12x f x ⎛⎫= ⎪⎝⎭的图象与函数()y g x =的图象关于直线y x =对称.(1)若()()26f g x x =-,求实数x 的值; (2)若函数()()2y g f x=的定义域为[](),0m n m ≥,值域为[]2,2m n ,求实数,m n 的值; (3)当[]1,1x ∈-时,求函数()()223y f x af x =-+⎡⎤⎣⎦的最小值()h a .(B 组题)已知函数()()log 0,1a f x b x a a =+>≠的图象经过点()8,2和()1,1.-(1)求()f x 的解析式;(2)若()()23f x f x =⎡⎤⎣⎦,求实数x 的值;(3)令()()()21y g x f x f x ==+-,求()y g x =的最小值及其取最小值时x 的值.附加题:(本题满分10分,计入总分,若总分超过100分,按100分记) 本题共2小题,第(1)小题4分,第(2)小题6分.设函数()()20,1.x x x a a a a ϕ=->≠(1)求()x ϕ在[]2,2-上的最大值;(2)当a =()222x t mt ϕ≤-+对所有的[]2,2x ∈-及[]1,1m ∈-恒成立,求实数m 的取值范围.。

上海市虹口区2019届高一第一学期数学期末考试( 解析版)

上海市虹口区2019届高一第一学期数学期末考试( 解析版)

2018-2019学年上海市虹口区高一(上)期末数学试卷一、填空题1.(3分)函数的定义域为.2.(3分)函数f(x)=2x﹣1(x∈R)的值域是.3.(3分)函数f(x)=x2(x≥0),则f﹣1(x)=.4.(3分)已知1≤a≤2,3≤b≤6,则3a﹣2b的取值范围为.5.(3分)函数f(x)=x3+2x,如果f(1)+f(a)>0,则实数a的范围是.6.(3分)已知函数f(x)=若f(a)=,则a=.7.(3分)函数f(x)=|x+1|+|x﹣2|,则此函数的最小值为.8.(3分)直角三角形的周长等于2,则这个直角三角形面积的最大值为.9.(3分)已知函数f(x)=log a x(a>0且a≠1),若f(x1•x2•x3)=8,则f(x12)+f (x22)+f(x32)=.10.(3分)若命题“存在x∈R,使得ax2+2x+a≤0”为假命题,则实数a的取值范围为.11.(3分)(A组题)已知f(x)=,若a<b<c,满足f(a)=f(b)=f(c),则a+b+f(c)的取值范围是.12.(3分)(A组题)已知函数f(x)=e x﹣1+x﹣2,g(x)=x2﹣2ax+a2﹣a+2,若存在实数x1,x2,使得f(x1)=g(x2)=0,且|x1﹣x2|≤1,则实数a的取值范围是.13.(B组题)已知f(x)=x2﹣2|x|+2,若a<b<c<d,满足f(a)=f(b)=f(c)=f (d),则a+b+c+d的值等于.14.(B组题)已知f(x)=lgx,则实数y=f(f(x)的零点x0等于.二、选择题15.(3分)已知幂函数的图象经过点(9,3),则此函数是(()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数16.(3分)对于实数a,α:>0,β:关于x的方程x2﹣ax+1=0有实数根,则α是β成立的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件17.(3分)已知函数y =f (x ),记A ={(x ,y )|y =f (x )},B ={(x ,y )|x =0,y ∈R },则A ∩B 的元素个数(( ) A .至多一个元素 B .至少一个元素C .一个元素D .没有元素18.(3分)(A 组题)已知f (m )=(3m ﹣1)a +1﹣2m ,当m ∈[0,1]时,f (m )≤1恒成立,则实数a 的取值范围是( ) A .0≤a ≤1B .0<a <1C .a ≤0或a ≥1D .a <0或a >119.(B 组题)函数f (x )=(3a ﹣2)x +1﹣a ,在[﹣2,3]上的最大值是f (﹣2),则实数a 的取值范围是( )A .a ≥B .a >C .a ≤D .a <三、解答题20.已知A ={x |22x ﹣2x ﹣2≤0,x ∈R },B ={x |lg (|x |﹣1)<0,x ∈R },求A ∩B ,A ∪B . 21.已知函数f (x )=10x ﹣10﹣x . (1)判断f (x )的奇偶性,并说明理由; (2)判断f (x )在R 上的单调性,并说明理由.22.矩形ABCD 的面积为4,如果矩形的周长不大于10,则称此矩形是“美观矩形”. (1)当矩形ABCD 是“美观矩形”时,求矩形周长的取值范围; (2)就矩形ABCD 的一边长x 的不同值,讨论矩形是否是“美观矩形”? 23.已知f (x )是定义在R 上的奇函数,且x ≥0时有f (x )=x 2﹣4x . (1)写出函数f (x )的单调区间(不要证明); (2)(A 组题)解不等式f (x )≥3;(3)(A 组题)求函数f (x )在[﹣m ,m ]上的最大值和最小值. (2)(B 组题)求函数f (x )的解析式; (3)(B 组题)解不等式f (x )≥3.24.已知f (x )是定义在R 上且满足f (x +2)=f (x )的函数. (1)如果0≤x <2时,有f (x )=x ,求f (3)的值;(2)(A 组题)如果0≤x ≤2时,有f (x )=(x ﹣1)2,若﹣2≤a ≤0,求f (a )的取值范围;(3)(A组题)如果g(x)=x+f(x)在[0,2]上的值域为[5,8],求g(x)在[﹣2,4]的值域.(2)(B组题)如果0≤x≤2时,有f(x)=(x﹣1)2,若﹣2≤a≤0且f(a)=0,求a 的值;(3)(B组题)如果0≤x≤2时,有f(x)=(x﹣1)2,若﹣2≤a≤4,求f(a)的取值范围.2018-2019学年上海市虹口区高一(上)期末数学试卷参考答案与试题解析一、填空题1.(3分)函数的定义域为[2,+∞).【分析】直接由根式内部的代数式大于等于0求解.【解答】解:由x﹣2≥0,得x≥2.∴函数的定义域为[2,+∞).故答案为:[2,+∞).【点评】本题考查函数的定义域及其求法,是基础题.2.(3分)函数f(x)=2x﹣1(x∈R)的值域是(﹣1,+∞).【分析】根据指数函数y=2x的值域减一可得.【解答】解:因为y=2x的值域为(0,+∞),∴y=2x﹣1的值域为(﹣1,+∞)故答案为:(﹣1,+∞).【点评】本题考察了函数的值域,属基础题.3.(3分)函数f(x)=x2(x≥0),则f﹣1(x)=.【分析】令y=f(x)=x2,由x≥0,得出y≥0,并在y=x2中解出x,即可得出函数y=f (x)的反函数的表达式.【解答】解:令y=f(x)=x2,由于x≥0,则y≥0,所以,因此,,故答案为:.【点评】本题考查反函数解析式的求解,解决本题的关键在于灵活利用反函数的定义,属于基础题.4.(3分)已知1≤a≤2,3≤b≤6,则3a﹣2b的取值范围为[﹣9,0].【分析】法1,根据不等式的运算性质进行判断求解即可.法2利用线性规划的知识进行求解.【解答】解:方法一、∵1≤a≤2,3≤b≤6,∴3≤3a≤6,﹣12≤﹣2b≤﹣6,则﹣9≤3a﹣2b≤0,即3a﹣2b的取值范围为[﹣9,0]方法2:设z=3a﹣2b,则b=a﹣,作出不等式组对应的平面区域如图:则平移直线b=a﹣,由图象知当直线经过点C(1,6)时,直线的截距最大,此时z最小,最小z=3﹣2×6=3﹣12=﹣9,当直线经过点A(2,3)时,直线的截距最小,此时z最大,最小z=3×2﹣2×3=6﹣6=0,即3a﹣2b的取值范围为[﹣9,0].故答案为:[﹣9,0]【点评】本题主要考查不等式性质的应用,根据不等式的关系是解决本题的关键.比较基础.5.(3分)函数f(x)=x3+2x,如果f(1)+f(a)>0,则实数a的范围是a>﹣1.【分析】根据题意,分析可得f(x)为奇函数且在R上为增函数,则原不等式可以转化为a >﹣1,即可得答案.【解答】解:根据题意,函数f(x)=x3+2x,有f(﹣x)=(﹣x)3+2(﹣x)=﹣(x3+2x)=﹣f(x),则函数f(x)为奇函数,f′(x)=3x2+2>0,则函数f(x)在R上为增函数;如果f(1)+f(a)>0,则f(a)>﹣f(1)=f(﹣1),故a>﹣1,故答案为:a>﹣1.【点评】本题考查函数的单调性与奇偶性的综合应用,注意分析函数f(x)的奇偶性与单调性,属于基础题.6.(3分)已知函数f(x)=若f(a)=,则a=﹣1或.【分析】当a>0时,log2a=;当a≤0时,2a=.由此能求出a的值.【解答】解:当a>0时,log2a=∴a=,当a≤0时,2a==2﹣1,∴a=﹣1.∴a=﹣1或.故答案为:﹣1或.【点评】本题考查孙数值的求法,解题时要认真审题,注意分段函数的函数值的求法.7.(3分)函数f(x)=|x+1|+|x﹣2|,则此函数的最小值为3.【分析】根据|x﹣a|的几何意义,得到f(x)=|x+1|+|x﹣2|的几何意义,再求出函数的最小值.【解答】解:∵|x﹣a|几何意义表示数轴上坐标为x与坐标为a的点的距离,∴f(x)=|x+1|+|x﹣2|表示X轴上的点X到点﹣1,2的距离和,∴最小值为此两点线段上的点,即当﹣1≤x≤2时,f(x)最小值为3,故答案为:3.【点评】本题考查了绝对值式子的几何意义的应用,属于基础题.8.(3分)直角三角形的周长等于2,则这个直角三角形面积的最大值为.【分析】设直角三角形的两直角边为a、b,斜边为c,因为L=a+b+c,c=,两次运用均值不等式即可求解.【解答】解:直角三角形的两直角边为a、b,斜边为c,面积为s,周长L=2,由于a+b+=L≥2+.(当且仅当a=b时取等号)∴≤.∴S=ab≤()2=•[]2=L2=.故答案为:.【点评】利用均值不等式解决实际问题时,列出有关量的函数关系式或方程式是均值不等式求解或转化的关键.9.(3分)已知函数f(x)=log a x(a>0且a≠1),若f(x1•x2•x3)=8,则f(x12)+f (x22)+f(x32)=16.【分析】表示出f(x1x2x3)=8,再表示出,根据对数运算法则化简即可【解答】解:∵f(x)=log a x且f(x1x2x3)=8∴log a(x1x2x3)=8又==2[log a(x1)+log a (x2)+log a(x3)]=2[log a(x1•x2•x3]=2log a(x1x2x3)=2×8=16故答案为:16【点评】本题考查对数运算,要求能熟练应用对数运算法则.属简单题10.(3分)若命题“存在x∈R,使得ax2+2x+a≤0”为假命题,则实数a的取值范围为(1,+∞).【分析】命题“∃x0∈R,使得x2+2x+a≤0”是假命题,则命题“∀x∈R,使得x2+2x+a>0”是真命题,可得:△<0,解出a的范围.【解答】解:命题“∃x0∈R,使得x2+2x+a≤0”是假命题,则命题“∀x∈R,使得x2+2x+a>0”是真命题,∴△=4﹣4a<0,解得a>1.实数a的取值范围是:(1,+∞).故答案为:(1,+∞).【点评】本题考查了简易逻辑的判定方法、不等式的解法,考查了推理能力与计算能力,属于中档题.11.(3分)(A组题)已知f(x)=,若a<b<c,满足f(a)=f(b)=f(c),则a+b+f(c)的取值范围是(1,2).【分析】画出函数f(x)的图象,如图所示,结合图象,即可求出.【解答】解:画出函数f(x)的图象,如图所示,若a<b<c,满足f(a)=f(b)=f(c),∴a+b=0,1<f(c)<2,∴a+b+f(c)的范围为(1,2),故答案为:(1,2)【点评】本题考查了分段函数的图象和性质,考查了函数的值域,属于中档题.12.(3分)(A组题)已知函数f(x)=e x﹣1+x﹣2,g(x)=x2﹣2ax+a2﹣a+2,若存在实数x1,x2,使得f(x1)=g(x2)=0,且|x1﹣x2|≤1,则实数a的取值范围是[2,+∞).【分析】求出f′(x)=e x﹣1+1>0,f(x)在R上递增,由f(1)=0,得x1=1,从而g (x2)=0且|1﹣x2|≤1,进而x2﹣2ax+a2﹣a+2=0在0≤x≤2有解,由此能求出a的范围.【解答】解:函数f(x)=e x﹣1+x﹣2的导数为f′(x)=e x﹣1+1>0,f(x)在R上递增,由f(1)=0,可得f(x1)=0,解得x1=1,存在实数x1,x2,使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,即为g(x2)=0且|1﹣x2|≤1,即x2﹣2ax+a2﹣a+2=0在0≤x≤2有解,即x2﹣2ax+a2﹣a+2=0在0≤x≤2有解,∴△=4a2﹣4(a2﹣a+2)≥0,解得a≥2.故a的范围为[2,+∞).故答案为:[2,+∞).【点评】本题考查实数的取值范围的求法,考查导数、二次函数的性质等基础知识,考查运算求解能力,是中档题.13.(B组题)已知f(x)=x2﹣2|x|+2,若a<b<c<d,满足f(a)=f(b)=f(c)=f (d),则a+b+c+d的值等于0.【分析】根据题意,由函数的解析式分析可得f(﹣x)=f(x),即函数f(x)为偶函数,进而分析可得直线y=m与函数f(x)最多只有4个交点;据此分析可得a+d=b+c=0,进而分析可得答案.【解答】解:根据题意,f(x)=x2﹣2|x|+2,则f(﹣x)=x2﹣2|x|+2=f(x),即函数f(x)为偶函数,f(x)=x2﹣2|x|+2=,则直线y=m与函数f(x)最多只有4个交点;若a<b<c<d,满足f(a)=f(b)=f(c)=f(d),则有a+d=b+c=0,故a+b+c+d=0;故答案为:0【点评】本题考查函数的奇偶性的判定以及应用,注意分析f(x)的奇偶性.14.(B组题)已知f(x)=lgx,则实数y=f(f(x)的零点x0等于10.【分析】根据题意,由函数的解析式可得f(f(x))=lg(lgx),令f(f(x0))=lg(lgx0)=0,解可得x0的值,由零点的定义即可得答案.【解答】解:根据题意,f(x)=lgx,则f(f(x))=lg(lgx),若f(f(x0))=lg(lgx0)=0,即lgx0=1,解可得x0=10,即函数y=f(f(x)的零点x0等于10;故答案为:10.【点评】本题考查函数零点的计算,关键是掌握函数零点的定义,属于基础题.二、选择题15.(3分)已知幂函数的图象经过点(9,3),则此函数是(()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数【分析】由幂函数y=x a的图象经过点(9,3),求出a=,由此能求出此函数是y=,是非奇非偶函数.【解答】解:∵幂函数y=x a的图象经过点(9,3),∴9a=3,解得a=,∴此函数是y=,是非奇非偶函数.故选:D.【点评】本题考查命题真假的判断,考查幂函数的性质等基础知识,考查运算求解能力,是基础题.16.(3分)对于实数a,α:>0,β:关于x的方程x2﹣ax+1=0有实数根,则α是β成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】求出α,β的等价条件,结合不等式的关系,利用充分条件和必要条件的定义进行判断即可.【解答】解:α:>0得a>1或a<﹣1,β:关于x的方程x2﹣ax+1=0有实数根,则判别式△=a2﹣4≥0,得a≥2或a≤﹣2,∵{a|a≥2或a≤﹣2}⊊{a|a>1或a<﹣1},∴α是β成立的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,求出命题的等价条件是解决本题的关键.17.(3分)已知函数y=f(x),记A={(x,y)|y=f(x)},B={(x,y)|x=0,y∈R},则A∩B的元素个数(()A.至多一个元素B.至少一个元素C.一个元素D.没有元素【分析】根据函数的定义,在定义域内有且只有一个函数值与它对应,y=f(x)定义域是F,当F包括x=0,则x=0时候,有且只有一个函数值,所以函数图象与x=0只有一个交点,也就是两个集合的交集元素个数只有1个,则答案可求.【解答】解:设函数y=f(x)定义域是F,当0∈F,A∩B中所含元素的个数为1.∴A∩B中所含元素的个数是1.故选:A.【点评】本题考查交集及其运算,解答此题的关键是对题意的理解,是基础题.18.(3分)(A组题)已知f(m)=(3m﹣1)a+1﹣2m,当m∈[0,1]时,f(m)≤1恒成立,则实数a的取值范围是()A.0≤a≤1B.0<a<1C.a≤0或a≥1D.a<0或a>1【分析】利用一次函数的最值求解即可.【解答】解:f(m)=(3m﹣1)a+1﹣2m=(3a﹣2)m﹣a+1①3a﹣2=0,即a=时,f(m)=<1,符合题意;②3a﹣2>0,即a>时,f(m)max=f(1)=2a﹣1∵2a﹣1≤1,∴a≤1,∴<a≤1;③3a﹣2<0,即a<时,f(m)max=f(0)=﹣a+1∵﹣a+1≤1,∴a≥0,∴0≤a<;综上可知:实数a的取值范围是[0,1];故选:A.【点评】本题主要考查了函数恒成立问题的求解,分类讨论思想的应用,一次函数闭区间的最值以及单调性的应用.19.(B组题)函数f(x)=(3a﹣2)x+1﹣a,在[﹣2,3]上的最大值是f(﹣2),则实数a的取值范围是()A.a≥B.a>C.a≤D.a<【分析】根据函数的最值和函数单调性的关系即可求出a的范围【解答】解:函数f(x)=(3a﹣2)x+1﹣a,在[﹣2,3]上的最大值是f(﹣2),则函数f(x)在[﹣2,3]上为减函数,则3a﹣2<0,解得a<,故选:D.【点评】本题考查了函数的单调性和最值得关系,考查了转化与化归思想,属于基础题三、解答题20.已知A={x|22x﹣2x﹣2≤0,x∈R},B={x|lg(|x|﹣1)<0,x∈R},求A∩B,A∪B.【分析】先分别求出集合A和B,由此能求出A∩B,A∪B.【解答】解:A={x|22x﹣2x﹣2≤0,x∈R}={x|x≤1},B={x|lg(|x|﹣1)<0,x∈R}={x|﹣2<x<﹣1或1<x<2},∴A∩B={x|﹣2<x<﹣1},A∪B={x|x<2}.【点评】本题考查交集、并集的求法,考查交集、并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.21.已知函数f(x)=10x﹣10﹣x.(1)判断f(x)的奇偶性,并说明理由;(2)判断f(x)在R上的单调性,并说明理由.【分析】(1)容易求出f(﹣x)=﹣f(x),从而判断出f(x)是奇函数;(2)可以看出函数y=10x和y=﹣10﹣x在R上都是增函数,从而得出f(x)在R上的单调性.【解答】解:(1)f(﹣x)=10﹣x﹣10x=﹣(10x﹣10﹣x)=﹣f(x);∴f(x)为奇函数;(2)∵y=10x和y=﹣10﹣x在R上都是增函数;∴f(x)=10x﹣10﹣x在R上是增函数.【点评】考查奇函数的定义及判断,指数函数的单调性,以及增函数的定义.22.矩形ABCD的面积为4,如果矩形的周长不大于10,则称此矩形是“美观矩形”.(1)当矩形ABCD是“美观矩形”时,求矩形周长的取值范围;(2)就矩形ABCD的一边长x的不同值,讨论矩形是否是“美观矩形”?【分析】(1)根据基本不等式和定义即可得出周长的范围;(2)令周长不大于10,列不等式求出x的范围,得出结论.【解答】解:(1)设AB=x,则BC=,故而矩形ABCD的周长为2(AB+BC)=2(x+)≥2•2=8,当且仅当x=即x=2时取等号.又矩形ABCD是“美观矩形”,故而矩形的周长不大于10.∴当矩形ABCD是“美观矩形”时,矩形周长的取值范围是[8,10].(2)设矩形ABCD的周长为f(x),则f(x)=2(x+)(x>0),令f(x)≤10得x2﹣5x+4≤0,解得:1≤x≤4,∴当x∈[1,4]时,矩形是“美观矩形”,当x∈(0,1)∪(4,+∞)时,矩形不是“美观矩形”.【点评】本题考查了基本不等式的应用,属于基础题.23.已知f(x)是定义在R上的奇函数,且x≥0时有f(x)=x2﹣4x.(1)写出函数f(x)的单调区间(不要证明);(2)(A组题)解不等式f(x)≥3;(3)(A组题)求函数f(x)在[﹣m,m]上的最大值和最小值.(2)(B组题)求函数f(x)的解析式;(3)(B组题)解不等式f(x)≥3.【分析】(1)根据题意,由函数的解析式结合函数的奇偶性可得f(x)的单调区间;(2)(A组题),根据题意,由函数的奇偶性可得函数f(x)的解析式,则有f(x)≥3⇒或,解可得不等式的解集,即可得答案;(3)(A组题)由函数的解析式可得在区间(﹣∞,﹣2)上为增函数,在(﹣2,2)上为减函数,在(2,+∞)为增函数;对m的值进行分情况讨论,求出函数的最值,即可得答案;(2)(B组题)设x<0,则﹣x>0,由函数的解析式可得f(﹣x)的表达式,由函数的奇偶性可得f(x)在x<0时的解析式,综合即可得答案;(B组题)根据题意,由函数的奇偶性可得函数f(x)的解析式,则有f(x)≥3⇒(3)或,解可得不等式的解集,即可得答案.【解答】解:(1)根据题意,f(x)是定义在R上的奇函数,且x≥0时有f(x)=x2﹣4x;则f(x)的单调递增区间为(﹣∞,﹣2]或[2,+∞),递减区间为[﹣2,2];(2)(A组题)f(x)是定义在R上的奇函数,且x≥0时有f(x)=x2﹣4x,设x<0,则﹣x>0,则f(﹣x)=(﹣x)2﹣4(﹣x)=x2+4x,则f(x)=﹣f(﹣x)=﹣x2﹣4x,综合可得:f(x)=,若f(x)≥3⇒或,解可得:﹣3≤x≤﹣1或x≥2+,则不等式f(x)≥3的解集为[﹣3,﹣1]∪[2+,+∞);(3)(A组题)由(2)的结论,f(x)=,在区间(﹣∞,﹣2)上为增函数,在(﹣2,2)上为减函数,在(2,+∞)为增函数;对于区间[﹣m,m],必有m>﹣m,解可得m>0;故当0<m≤2时,f(x)max=﹣m2+4m,f(x)min=m2﹣4m,当2<m≤4时,f(x)max=4,f(x)min=﹣4,当m>4时,f(x)max=m2﹣4m,f(x)min=﹣m2+4m,(2)(B组题)f(x)是定义在R上的奇函数,且x≥0时有f(x)=x2﹣4x,设x<0,则﹣x>0,则f(﹣x)=(﹣x)2﹣4(﹣x)=x2+4x,则f(x)=﹣f(﹣x)=﹣x2﹣4x,综合可得:f(x)=,(3)(B组题)由(2)的结论,f(x)=,若f(x)≥3⇒或,解可得:﹣3≤x≤﹣1或x≥2+,则不等式f(x)≥3的解集为[﹣3,﹣1]∪[2+,+∞).【点评】本题考查函数奇偶性的性质以及应用,涉及分段函数的性质以及应用,属于基础题.24.已知f(x)是定义在R上且满足f(x+2)=f(x)的函数.(1)如果0≤x<2时,有f(x)=x,求f(3)的值;(2)(A组题)如果0≤x≤2时,有f(x)=(x﹣1)2,若﹣2≤a≤0,求f(a)的取值范围;(3)(A组题)如果g(x)=x+f(x)在[0,2]上的值域为[5,8],求g(x)在[﹣2,4]的值域.(2)(B组题)如果0≤x≤2时,有f(x)=(x﹣1)2,若﹣2≤a≤0且f(a)=0,求a 的值;(3)(B组题)如果0≤x≤2时,有f(x)=(x﹣1)2,若﹣2≤a≤4,求f(a)的取值范围.【分析】根据f(x+2)=f(x)的函数.可知函数f(x)是周期2的函数;依次求解各式即可.【解答】解:(1)f(3)=f(1+2)=f(1)=1;(2)(A组题)若﹣2≤a≤0,则0≤a+2≤2,∴f(a)=f(a+2)=(a+2﹣1)2=(a+1)2∈[0,1];(3)(A组题)因为g(x)=x+f(x)在[0,2]上的值域为[5,8],所以f(x)在[0,2]上的值域为[3,6],所以g(x)在[﹣2,4]上的值域为[1,10];(2)(B组题)根据(2)(A组题)可得f(a)=(a+1)2=0,可得a=﹣1;(3)(B组题)由题意,当0≤a≤2时,f(a)=(a﹣1)2∈[0,1];当﹣2≤a≤0时,则0≤a+2≤2,可得f(a)=(a+1)2∈[0,1],当2≤a≤4时,则0≤a﹣2≤2,可得f(a)=(a﹣3)2∈[0,1],故得当﹣2≤a≤4,f(a)的取值范围是[0,1].【点评】本题考查抽象函数的问题,值域的求法,体现了分类讨论的数学思想方法,解答此题的关键是理解题意,是中档题.。

虹口区2017学年高一数学第一学期期终区统考试卷

虹口区2017学年高一数学第一学期期终区统考试卷

虹口区2017学年度第一学期期终教学质量监控测试高一数学 试卷 2018.1一、 填空题(本大题满分30分,每题3分)1. 已知集合2{2,1,0,1,2,3}, {|}A B x x x =--==,则A B ⋂=___________.2. 不等式12x -≤的解集为_____________.3. 不等式402x x +≥-的解集为_____________. 4. 求值:222log log 6log 12log 9a a ++-=_____________.5. 已知条件:38p k x k ≤≤+,条件:35q x -<≤,且p 是q 的必要条件,则实数k 的取值范围为______________.6. 命题“若实数,a b 满足12a b >>且,则32a b ab +>>且”的否命题的真假为________________.(填“真命题”或“假命题”)7. 已知函数()ln()1f x x a =++的反函数为1()y f x -=,若函数1()y f x -=的图像过点(1,5),则实数a 的值为____________.8. 已知函数1()||2f x k x =--不存在零点,则实数k 的取值范围为_____________. 9. 已知函数231, 0()log , 0x x f x x x ⎧+≤=⎨>⎩,若(())1f f a =,则实数a 的取值集合..为___________. 10. (A 组题)已知不等式227x xa -<-在[0,2]x ∈上恒成立,则实数a 的取值范围为_____________________.(B 组题)定义区间[,]()a b a b <的长度为b a -. 若函数13()log f x x =的定义域为[,]p q ,值域为[0,2],则区间[,]p q 长度的最大值为______________.二、 选择题(本大题共5题,每题4分,满分20分)11. 设x R ∈,则“2x ≥ ”是“20x x ->”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件12. 不等式201x x ≥-的解集为 ( ) (A )(1,)+∞ (B ){0}(1,)⋃+∞ (C )[1,)+∞ (D ){0}[1,)⋃+∞13. 设集合{|10}A x ax =-=,{|0}B x x a =-=,若A B A ⋂=,则实数a 的取值集合为 ( )(A )∅ (B ){1} (C ){1,1}- (D ){1,0,1}-14. 若函数1()log (01)x a f x a x a a -=+>≠且在区间[1,2]上的最大值与最小值的和为a ,则a 的值等于 ( )(A )4 (B )2 (C )14 (D )1215. (A 卷题)已知函数8|log |, (0,8]()15, (8,)2x x f x x x ∈⎧⎪=⎨-∈+∞⎪⎩,若,,a b c 为互不相等的正数,且()()()f a f b f c ==,则abc 的取值范围为 ( )(A )(1,8) (B )(4,5) (C )(8,10) (D )(16,20)(B 卷题)若函数22log , (4,)(), (,4]x x f x a x x ∈+∞⎧=⎨-∈-∞⎩的值域为R ,则实数a 的取值范围为( ) (A )(2,)+∞ (B )[2,)+∞ (C )(,2)-∞ (D )(,2]-∞三、解答题(本大题共50分)本大题共5题,解答下列各题必须写出必要的步骤16. (本大题满分8分)已知集合22{|(2)60}A x x a x a =---=,{|lg 0}B x y x y ==≥且,且{2}A B ⋂=,求实数a 的值及集合A .17. (本题满分10分)本题共2个小题,每小题5分(1) 解不等式:24310x x <-≤ ;(2) 已知,a b 均为正实数,求证:33222()()()a b a b a b ++≥+ .18. (本题满分10分)本题共2个小题,每小题5分(A 组题)已知函数2()log ||2f x x =-.(1) 作出函数()f x 的大致图像;(2) 指出函数()f x 的奇偶性、单调区间及零点.(B 组题)已知函数()(2||)f x x x =-.(1)作出函数()f x 的大致图像;(2)指出函数()f x 的奇偶性与单调区间;若方程()f x c =恰有两个不同实根,试确定实数c 的值.19. (本题满分10分)本题共2个小题,每小题5分.如图所示,ABCD 是一个矩形花坛,其中6AB =米,4AD =米. 现将巨型花坛ABCD 扩建成一个更大的矩形花园AMPN ,要求:点B 在AM 上,点D 在AN 上,对角线MN 过C 点,且矩形AMPN 的面积不大于150平方米.(1) 设AN 的长为x 米,矩形AMPN 的面积为y 平方米,试用解析式将y 表示成x 的函数,并写出该函数的定义域;(2) 当AN 的长度是多少时,矩形AMPN 的面积最小?并求最小面积.20. (本题满分12分)本题共3个小题,每小题4分.(A 组题)已知函数()22x x f x -=+.(1) 试判断函数()f x 的奇偶性,并写出其单调区间;(2) 设a R ∈,求函数22()222()x x F x af x -=+-在[0,)+∞的最小值()g a 的表达式;(3) 若关于x 的不等式()21x mf x m -≤+-在(0,)x ∈+∞上恒成立,求实数m 的取值范围.(B 组题)已知函数()(01)x x f x a k a a a -=+⋅>≠且是R 上的奇函数.(1) 求实数k 的值,并判断函数()f x 是否为单调函数;(2) 若12a =,且关于x 的不等式2()(9)0f x mx f x ++-<在R 上恒成立,求实数m 的取值范围; (3) 若2a =,且22()222()x x g x n f x -=+-⋅在[1,)+∞上的最小值为7-,求实数n的值.附加题(本题满分10分)本题共2个小题,每小题5分.1. 设正数,a b 满足1a b +=,若2x a a =+,12y b b=+,求x y +的最小值; 2. 已知函数()2x f x t =-,且函数()y g x =与()y f x =的图像关于y 轴对称,若函数()y f x =与()y g x =在区间[1,2]上同时递增或同时递减,求实数t 的取值范围.。

2020-2021学年上海市虹口区高一(上)期末数学试卷(附答案详解)

2020-2021学年上海市虹口区高一(上)期末数学试卷一、单选题(本大题共6小题,共18.0分)1.已知a、b都是实数,那么“a>b”是“a3>b3”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.函数f(x)=4x+12x的图象()A. 关于y轴对称B. 关于x轴对称C. 关于原点对称D. 关于直线y=x对称3.已知全集U=R及集合A={a|14≤22−a<8,且a∈Z},B={b|b2+3b−10>0,其中b∈R},则A∩B−的元素个数为()A. 4B. 3C. 2D. 14.已知函数y=2x+x,y=lnx+x,y=lgx+x的零点依次为x1、x2、x3,则x1、x2、x3的大小关系为()A. x1<x2<x3B. x2<x1<x3C. x2<x3<x1D. x1<x3<x25.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是()A. [√2,+∞)B. [2,+∞)C. (0,2]D. [−√2,−1]∪[√2,√3]6.若函数y=−|x−a|与y=ax+1在区间[1,2]上都是严格减函数,则实数a的取值范围为()A. (−∞,0)B. (−1,0)∪(0,1]C. (0,1)D. (0,1]二、单空题(本大题共13小题,共39.0分)7.已知集合A={−1,1,2},B={x|x2+x=0},则A∩B=.8.不等式x+3x−1≤0的解集为______ .9.函数f(x)=x+4x ,x∈[12,4]的值域为______ .10.计算:log2209+2log23−log25+7log72=______ .11.用“二分法”求方程x3+x−4=0在区间(1,2)内的实根,首先取区间中点x=1.5进行判断,那么下一个取的点是x=.12. 已知条件p :2k −1≤x ≤1−k ,q :−3≤x <3,且p 是q 的必要条件,则实数k 的取值范围为______ .13. 不等式|x +2|+|x −1|≤5的解集为______ .14. 已知函数f(x)=3x +a 的反函数为y =f −1(x),若函数y =f −1(x)的图象过点(3,2),则实数a 的值为______ .15. 已知函数f(x)=2|x−a|在区间[1,+∞)上是严格增函数,则实数a 的取值范围为______ .16. 已知集合A ={x||x −m|<m +13,其中x ,m ∈Z ,且m >0},B ={x||x +13|<2m ,其中x ,m ∈Z ,且m >0},则A ∩B 的元素个数为______ .(用含正整数m 的式子表示)17. 若集合A ={x|x 2+5x −6=0},B ={x|ax +3=0,a ∈R},且B ⊂A ,则满足条件的实数a 的取值集合为______ .18. 已知函数f(x)={x 2+3x,x ≥03x −x 2,x <0,若f(a 2−3)+f(2a)>0,则实数a 的取值范围为______ .19. 已知函数y =f(x)是定义在实数集R 上的偶函数,若f(x)在区间(0,+∞)上是严格增函数,且f(2)=0,则不等式f(x)x ≤0的解集为______ .三、解答题(本大题共7小题,共84.0分)20. 已知a 、b 是任意实数,求证:a 4+b 4≥a 3b +ab 3,并指出等号成立的条件.21. 某居民小区欲在一块空地上建一面积为1200m 2的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m ,东西的人行通道宽4m ,如图所示(图中单位:m),问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少?22. 已知函数y =|2x−3x+1|.(1)作出这个函数的大致图象; (2)讨论关于x 的方程|2x−3x+1|=t 的根的个数.23. 已知函数f(x)=1−6a x+1+a (a >0,a ≠1)是定义在R 上的奇函数.(1)求实数a 的值及函数f(x)的值域;(2)若不等式t ⋅f(x)≥3x −3在x ∈[1,2]上恒成立,求实数t 的取值范围.24. 已知函数f(x)={log 2(1+x)x ≥0log 12(1−x)x <0.(1)判断函数y =f(x)的奇偶性;(2)对任意的实数x 1、x 2,且x 1+x 2>0,求证:f(x 1)+f(x 2)>0;(3)若关于x 的方程[f(x)]2+af(−x)+a −34=0有两个不相等的正根,求实数a取值范围.25.设a是正常数,函数f(x)=log2(√x2+1+ax)满足f(−1)+f(1)=0.(1)求a的值,并判断函数y=f(x)的奇偶性;(2)是否存在一个正整数M,使得M>f(x)对于任意x∈[1,√3]恒成立?若存在,求出M的最小值,若不存在,请说明理由.26.对于定义在D上的函数y=f(x),设区间[m,n]是D的一个子集,若存在x0∈(m,n),使得函数y=f(x)在区间[m,x0]上是严格减函数,在区间[x0,n]上是严格增函数,则称函数y=f(x)在区间[m,n]上具有性质P.(1)若函数y=ax2+bx在区间[0,1]上具有性质P,写出实数a、b所满足的条件;(2)设c是常数,若函数y=x3−cx在区间[1,2]上具有性质P,求实数c的取值范围.答案和解析1.【答案】C【解析】解:若a >b 则a 3>b 3.是真命题,即a >b ⇒a 3>b 3. 若a 3>b 3则a >b.是真命题,即a 3>b 3⇒a >b . 所以a >b 是a 3>b 3的充要条件. 故选:C .判断命题的真假:若a >b 则a 3>b 3.是真命题,即a >b ⇒a 3>b 3.若a 3>b 3则a >b.是真命题,即a 3>b 3⇒a >b .解决判断充要条件问题可以先判断命题的真假,最好用⇒来表示,再转换为是什么样的命题.2.【答案】A【解析】解:因为f(x)=4x +12x═4x2x +12x =2x +2−x ,所以f(−x)=2−x +2x =2x +2−x =f(x),所以函数f(x)是偶函数,即函数图象关于y 轴对称. 故选A .将函数进行化简,利用函数的奇偶性的定义进行判断.本题主要考查函数奇偶性和函数图象的关系,利用函数奇偶性的定义判断函数的奇偶性是解决本题的关键.3.【答案】B【解析】解:∵A ={a|−2≤2−a <3,a ∈Z}={a|−1<a ≤4,a ∈Z}={0,1,2,3,4},B ={b|b <−5或b >2},且U =R , ∴B −={b|−5≤b ≤2},A ∩B −={0,1,2}, ∴A ∩B −的元素个数为:3. 故选:B .可求出集合A ,B ,然后进行交集和补集的运算求出A ∩B −,然后即可得出A ∩B −的元素本题考查了描述法、列举法的定义,指数函数的单调性,一元二次不等式的解法,交集和补集的运算,考查了计算能力,属于基础题.4.【答案】D【解析】解:已知函数y=2x+x,y=lnx+x,y=lgx+x的零点依次为x1、x2、x3,y=2x+x=0时,2x=−x,即2x1=−x1,y=lnx+x=0时,lnx=−x,即lnx2=−x2,y=lgx+x=0时,lgx=−x,即lgx3=−x3,在同一坐标系中画出函数y=2x,y=lnx,y=lgx和y=−x的图象,由图象可知,这三个函数的零点依次增大,故x1、x2、x3的大小关系为x1<x3<x2.故选:D.化函数的零点为方程的根,然后在同一坐标系中画出函数y=2x,y=lnx,y=lgx和y=−x的图象,根据图象即可判断x1、x2、x3的大小关系.本题考查函数零点的定义,函数零点就是相应方程的根,考查了数形结合思想,属于基础题.5.【答案】A【解析】本题考查函数单调性的应用,利用单调性处理不等式恒成立问题,属于中档题. 由题意可得2f(x)=f(√2x),由题意可知f(x)为R 上的增函数,故对任意的x ∈[t,t +2],不等式f(x +t)≥2f(x)恒成立可转化为x +t ≥√2x 对任意的x ∈[t,t +2]恒成立,求解即可. 【解答】解:当x ≥0时,f(x)=x 2,当x <0时,−x >0,f (−x )=x 2=−f (x ),所以当x <0时,f (x )=−x 2,所以f(x)在R 上单调递增, 对于x ∈R,都有2f (x )=f(√2x),∴f(x +t)≥2f(x)⇒f (x +t )≥f(√2x),即x +t ≥√2x ⇒x ≤√2−1=(√2+1)t 对任意的x ∈[t,t +2]恒成立, ∴x max =t +2≤(√2+1)t ⇒t ≥√2, ∴实数t 的取值范围为[√2,+∞); 故选:A .6.【答案】D【解析】解:因为y =−|x −a|与y =ax+1在区间[1,2]上都是严格减函数, 所以{a ≤1a >0,故0<a ≤1. 故选:D .结合函数图象的变换及反比例函数与一次函数性质可求. 本题主要考查了基本初等函数单调性的应用,属于基础题.7.【答案】{−1}【解析】 【分析】可求出集合B ,然后进行交集的运算即可.本题考查了交集的定义及运算,考查了计算能力,属于基础题. 【解答】解:∵A={−1,1,2},B={−1,0},∴A∩B={−1}.故答案为:{−1}.8.【答案】[−3,1)【解析】解:x+3x−1≤0⇒(x+3)(x−1)≤0且x−1≠0,解得−3≤x<1,即不等式的解集为[−3,1),故答案为:[−3,1).根据题意,原不等式等价于(x+3)(x−1)≤0且x−1≠0,再得到不等式的解集.本题考查分式不等式的解法,注意将分式不等式变形为整式不等式,属于基础题.9.【答案】[4,172]【解析】解:∵f(x)=x+4x 在[12,2]上单调递减,在(2,4]上单调递增,且f(12)=172,f(2)=4,f(4)=5,∴f(x)在[12,4]上的最大值为172,最小值为4,∴f(x)的值域为[4,172].故答案为:[4,172].可看出f(x)在[12,2]上单调递减,在(2,4]上单调递增,这样即可求出f(x)在[12,4]上的最大值和最小值,从而得出f(x)的值域.本题考查了函数值域的定义及求法,函数f(x)=x+4x的单调性,根据函数单调性求函数值域的方法,考查了计算能力,属于基础题.10.【答案】4【解析】解:原式=log2(209×9×15)+2=log24+2=2+2=4,故答案为:4.根据对数的运算法则即可求出.本题考查了对数的运算性质,属于基础题.11.【答案】1.25【解析】 【分析】构造函数f(x)=x 3+x −4,确定f(1),f(2),f(1.5)的符号,根据零点存在定理,即可得到结论.本题考查二分法,考查零点存在定理,考查学生的计算能力,属于基础题. 【解答】解:设函数f(x)=x 3+x −4,易知函数为增函数,∵f(1)=−2<0,f(2)=6>0,f(1.5)=1.53+1.5−4=0.875>0 ∴下一个有根区间是(1,1.5), 那么下一个取的点是x =1+1.52=1.25,故答案为:1.25.12.【答案】(−∞,−2]【解析】解:∵条件p :2k −1≤x ≤1−k ,q :−3≤x <3,且p 是q 的必要条件, ∴{2k −1≤33≤1−k,解得k ≤−2.则实数k 的取值范围是(−∞,−2]. 故答案为:(−∞,−2].条件p :2k −1≤x ≤1−k ,q :−3≤x <3,根据p 是q 的必要条件,可得{2k −1≤33≤1−k ,解得k 实数k 的取值范围.本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.13.【答案】[−3,2]【解析】解:①当x<−2时,不等式可化为−x−2−x+1≤5,∴x≥−3∴−3≤x<−2②当−2≤x≤1时,不等式可化为x+2−x+1≤5,恒成立,−2≤x≤1;③当x>1时,不等式可化为x+2+x−1≤5,x≤2,∴1<x≤2,综上所述:不等式的解集为[−3,2],故答案为:[−3,2].对x分3种情况他要论去绝对值.本题考查了绝对值不等式的解法.属中档题.14.【答案】−6【解析】解:∵y=f−1(x)的图象过点(3,2),∴函数y=f(x)的图象过点(2,3),又f(x)=3x+a,∴32+a=3,即a=−6.故答案为:−6.由y=f−1(x)的图象过点(3,2)得函数y=f(x)的图象过点(2,3),把点(2,3)代入y=f(x)的解析式求得a的值.本题考查了互为反函数的两个函数图象间的关系,是基础的计算题.15.【答案】(−∞,1]【解析】解:令t(x)=|x−a|,原函数化为y=2t,函数y=2t为增函数,要使函数f(x)=2|x−a|在区间[1,+∞)上是严格增函数,则t=|x−a|在[1,+∞)上单调递增,则a≤1.∴实数a的取值范围为(−∞,1].故答案为:(−∞,1].令t(x)=|x−a|,函数y=2t为增函数,问题转化为t=|x−a|在[1,+∞)上单调递增,由此可得a的取值范围.本题考查复合函数的单调性,利用换元法结合复合函数单调性之间的关系是解决本题的关键,是基础题.16.【答案】2m【解析】解:∵A={x|−13<x<2m+13,x,m∈Z,m>0},B={x|−2m−13<x<2m−13,x,m∈Z,m>0},∴A∩B={x|−13<x<2m−13,x,m∈Z,m>0},∵x,m∈Z,且m>0,∴A∩B={0,1,2,…,2m−1},∴A∩B元素的个数为:2m.可求出集合A,B,然后进行交集的运算求出A∩B,根据x,m∈Z且m>0即可得出A∩B 的元素个数.本题考查了绝对值不等式的解法,描述法的定义,考查了计算能力,属于基础题.17.【答案】{−3,0,12}【解析】解:由集合A={x|x2+5x−6=0}={1,−6},∵B⊂A,当B=⌀时,即ax+3=0无解,此时a=0;当B≠⌀时,ax+3=0有解,x=−3a若1=−3a,可得a=−3;若−6=−3a ,可得a=12;∴满足条件的实数a的取值集合为{−3,0,12}.故答案为:{−3,0,12}.根据B⊂A,对B讨论,建立条件关系即可求实数a的取值集合.本题主要考查集合的基本运算,比较基础.18.【答案】{a|a>1或a<−3}【解析】解:因为f(x)={x 2+3x,x ≥03x −x 2,x <0的图象如图所示,故f(x)为单调递增的奇函数, 若f(a 2−3)+f(2a)>0, 则f(a 2−3)>−f(2a)=f(−2a), 所以a 2−3>−2a ,即a 2+2a −3>0, 解得,a >1或a <−3.故a 的取值范围{a|a >1或a <−3}. 故答案为:{a|a >1或a <−3}.先利用图象求解函数的单调性及奇偶性,然后结合单调性及奇偶性即可求解不等式. 本题考查函数的奇偶性和单调性的判断和运用,考查不等式的求解,属于中档题.19.【答案】(−∞,−2]∪(0,2]【解析】解:因为y =f(x)是定义在实数集R 上的偶函数,f(x)在区间(0,+∞)上是严格增函数,且f(2)=0,所以f(x)在(−∞,0)上单调递减,且f(−2)=f(2)=0,所以在(−∞,−2]∪[2,+∞)上f(x)≥0,在(−2,0)∪(0,2)上f(x)<0, 因为不等式f(x)x≤0,所以{f(x)≥0x <0或{f(x)≤0x >0,即x =−2或x =2或{x <−2或x >2x <0或{−2<x <0或0<x <2x >0, 解得x ≤−2或0<x ≤2, 即不等式f(x)x≤0的解集为(−∞,−2]∪(0,2].故答案为:(−∞,−2]∪(0,2].根据题意可得f(x)在(−∞,0)上单调递减,且f(−2)=0,利用单调性即可得出在(−∞,−2]∪[2,+∞)上f(x)≥0,在(−2,0)∪(0,2)上f(x)<0,将不等式合理转化即可求得解集.本题考查了函数的奇偶性与单调性的综合,属于中档题.20.【答案】证明:a 4+b 4−a 3b −ab 3=(a 4−a 3b)+(b 4−ab 3),=a 3(a −b)+b 3(b −a)=(a −b)(a 3−b 3),=(a −b)2(a 2+ab +b 2)=(a −b)2[(a +12)2+34b 2]≥0, 即a 4+b 4≥a 3b +ab 3, 当且仅当a =b 时,等号成立.【解析】作差,再进行配方,与0比较,即可得到结论. 本题考查了不等式的证明,考查了推理论证能力,属于基础题.21.【答案】解:设矩形车场南北侧边长为xm ,则其东西侧边长为1200xm ,人行道占地面积为S =(x +6)(8+1200x)−1200=8x +7200x+48≥2√8x ⋅7200x+48=96, 当且仅当8x =7200x,即x =30(m)时取等号,S min =96(m 2),此时1200x=40(m),所以矩形停车场的南北侧边长为30m ,则其东西侧边长为40m ,才能使人行通道占地面积最小,最小面积是528m 2.【解析】设矩形车场南北侧边长为xm ,则其东西侧边长为1200xm ,人行道占地面积为S =(x +6)(8+1200x)−1200=8x +7200x+48,然后结合基本不等式即可求解.本题主要考查了基本不等式在实际问题中的应用,体现了转化思想的应用.22.【答案】解:(1)∵y =|2x−3x+1|=|2−5x+1|,首先将y =−5x 的图象向左平移1个单位,再向上平移2个单位,得到y =2−5x+1的图象,最后将y =2−5x+1的图象在x 轴下方的部分翻折到x 轴上方, 便可得到y =|2x−3x+1|的图象;(2)当t <0时,方程|2x−3x+1|=t 的根的个数为0; 当t =0或t =2时,|2x−3x+1|=t 的根的个数为1;当0<t<2或t>2时,|2x−3x+1|=t的根的个数为2.【解析】(1)把已知函数解析式变形,再由函数图象的平移与翻折变换可得y=|2x−3x+1|的图象;(2)对t分类,数形结合得答案.本题考查函数零点与方程根的关系,考查数形结合的解题思想,是中档题.23.【答案】解:(1)由f(0)=0,解得:a=3,反之a=3时,f(x)=1−63x+1+3=3x−13x+1,f(−x)=−f(x),符合题意,故a=3,由f(x)=1−23x+1,x→0时,f(x)→−1,x→∞时,f(x)→1,故函数的值域是(−1,1);(2)f(x)=1−23x+1在x∈[1,2]递增,故f(x)∈[12,35 ],故t≥(3x−3)⋅3x+13x−1,故t≥[(3x−3)⋅3x+13x−1]max,令3x−1=m,m∈[2,8],则(3x−3)⋅3x+13x−1=(m−2)⋅m+2m=m−4m随m的增大而增大,最大值是152,故实数t的取值范围是[152,+∞).【解析】(1)根据函数的奇偶性求出a的值,检验即可;(2)问题转化为t≥[(3x−3)⋅3x+13x−1]max,令3x−1=m,m∈[2,8],根据函数的单调性求出t的范围即可.本题考查了函数的奇偶性,单调性问题,考查函数恒成立,转化思想,是一道中档题.24.【答案】解:(1)f(0)=log 2(1+0)=0.当x >0时,−x <0,有f(−x)=log 12[1−(−x)]=−log 2(1+x)=−f(x), 即f(−x)=−f(x).当x <0时,−x >0,有f(−x)=log 2[1+(−x)]=−log 12(1−x)=−f(x), 即f(−x)=−f(x).综上,函数f(x)是R 上的奇函数;证明:(2)∵函数y =log 2x 是(0,+∞)上的严格增函数,函数u =1+x 在R 上也是严格增函数,故函数y =log 2(1+x)在[0,+∞)上是严格增函数.由(1)知,函数y =f(x)在R 上为奇函数,由奇函数的单调性可知,y =log 12(1−x) 在(−∞,0)上也是严格增函数,从而y =f(x)在R 上是严格增函数. 由x 1+x 2>0,得x 1>−x 2,∴f(x 1)>f(−x 2)=−f(x 2), 即f(x 1)+f(x 2)>0;解:(3)由(1)知,y =f(x)是R 上的奇函数,故原方程可化为 [f(x)]2−af(x)+a −34=0.令f(x)=t ,则当x >0时,t =f(x)>0,于是,原方程有两个不等正根等价于: 关于t 的方程t 2−at +(a −34)=0有两个不等的正根.即{△=a 2−4(a −34)>0a >0a −34>0⇔{a <1,或a >3a >0a >34⇔34<a <1或a >3. 因此,实数a 的取值范围是(34,1)∪(3,+∞).【解析】(1)利用函数奇偶性的定义判断函数的奇偶性;(2)证明函数y =log 2(1+x)在[0,+∞)上是严格增函数,结合函数的奇偶性可得y =log 12(1−x)在(−∞,0)上也是严格增函数,从而y =f(x)在R 上是严格增函数,由x 1+x 2>0,即可证明f(x 1)+f(x 2)>0;(3)由(1)知,y =f(x)是R 上的奇函数,故原方程可化为[f(x)]2−af(x)+a −34=0,把原方程有两个不等正根转化为关于a 的不等式组求解.本题考查函数奇偶性的判定及应用,考查函数的单调性,考查函数零点与方程根的关系,考查化归与转化思想,是中档题.25.【答案】解:(1)由f(−1)+f(1)=0得:log2(√2−a)+log2(√2+a)=log2(2−a2)= 0,解得:a=±1,∵a>0,∴a=1,f(x)=log2(√x2+1+x),x∈R,=−log2(√x2+1+x)=−f(x),又f(−x)=log2(√x2+1−x)=−log√x2+1−x∴f(x)为奇函数;(2)由(1)知:f(x)=log2(√x2+1+x),x∈R,设任意的x1,x2满足1≤x1<x2≤√3,则有0<x12+1<x22+1,∴0<√x12+1+x1<√x22+1+x2,∴f(x1)=log2(√x12+1+x1)<f(x2)=log2(√x22+1+x2),∴函数y=f(x)在[1,√3]上单调递增,∴f(x)max=f(√3)=log2(2+√3),又由M>f(x)对于任意x∈[1,√3]恒成立可得:M>f(x)max=log2(2+√3),∵M为正整数,∴存在M,且M min=2.【解析】(1)先由f(−1)+f(1)=0求解出a的值,进而求得函数f(x),再利用函数奇偶性的定义判断其奇偶性即可;(2)先由题设和函数单调性的定义推导出函数f(x)在x∈[1,√3]的单调性,然后利用其单调性求得f(x)的最大值,再由M>f(x)对于任意x∈[1,√3]恒成立求得M的取值范围,进而求得M的最小值即可.本题主要考查函数的奇偶性判断、单调性的定义及单调性在处理恒成立问题中的应用,属于中档题.26.【答案】解:(1)当y=ax2+bx在[0,1]上具有性质P时,由其图象在R上是抛物线,∈(0,1),故此抛物线开口向上即a>0,且对称轴x=−b2a于是,实数a,b满足的条件−2a<b<0;(2)记f(x)=x3−cx,设x1,x2是区间[1,2]上任意给定的两个实数,总有f(x1)−f(x2)=(x1−x2)(x12+x1x2+x22−c),若c≤3,当x1<x2时,总有x1−x2<0且x12+x1x2+x22−c>0,故f(x1)−f(x2)<0,因此y=x3−cx在区间[1,2]上单调递增,不符合题意,若c≥12,x1<x2时,总有x1−x2<0且x12+x1x2+x22−c<0,故f(x1)−f(x2)>0,因此y=x3−cx在区间[1,2]上单调递减,不符合题意,若3<c<12,]时,总有x1−x2<0且x12+x1x2+x22−c>0,当x1<x2,且x1,x2∈[1,√c3故f(x1)−f(x2)>0,]上单调递减,因此y=x3−cx在区间[1,√c3,2]时,总有x1−x2<0且x12+x1x2+x22−c<0,当x1<x2,且x1,x2∈[√c3故f(x1)−f(x2)<0,]上单调递增,因此y=x3−cx在区间[1,√c3故3<c<12.综上,c的范围(3,12)【解析】本题以新定义为载体,综合考查了函数性质,考查了逻辑推理的能力,体现了分类讨论思想的应用.∈(0,1),从而可求,(1)由题意得,抛物线开口向上即a>0,且对称轴x=−b2a(2)利用作差法f(x1)−f(x2)=(x1−x2)(x12+x1x2+x22−c),结合x的范围对c的范围分类讨论,结合已知新定义可求.。

最新上海市虹口区高一上学期期末数学试题(解析版)

2019-2020学年上海市虹口区高一上学期期末数学试题一、单选题1.已知13a <<,24b <<,现给出以下结论:(1)37a b <+<;(2)31a b -<-<;(3)212a b <⋅<;(4)1342a b <<,以上结论正确的个数是( ) A .1个B .2个C .3个D .4个 【答案】D【解析】根据不等式的可加性,同向不等式且为正值的可乘性即可得到答案.【详解】因为13a <<,24b <<,所以37a b <+<,故(1)正确.因为42b -<-<-,所以31a b -<-<,故(2)正确.因为13a <<,24b <<,根据同向不等式且为正值的可乘性知: 212a b <⋅<,故(3)正确. 因为11142b <<,13a <<,根据同向不等式且为正值的可乘性知: 1342a b <<,故(4)正确. 故选:D【点睛】本题主要考查不等式的基本性质,属于简单题.2.已知a R ∈,则“1a <”是“11a>”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件【答案】B【解析】首先解不等式11a >,再根据充分条件和必要条件即可得到答案. 【详解】 因为1111100(1)001a a a a a a a->⇔->⇔>⇔-<⇔<<. 所以“1a <”是“11a >”的必要非充分条件. 故选:B【点睛】本题主要考查充分条件和必要条件,同时考查了分式不等式的解法,属于简单题.3.已知函数32x y =-的值域是( )A .RB .()2,-+∞C .[)2,-+∞D .[)1,-+∞【答案】D【解析】首先令x t =,根据指数函数的图像得到:31t ≥,即1y ≥-.【详解】 令x t =,0t ≥,则32t y =-, 因为31t ≥,所以1y ≥-.故选:D【点睛】本题主要考查指数函数的值域问题,同时考查了换元法求函数的值域,属于简单题.4.定义在R 上的函数()f x 的图象是连续不断的,此函数有两个不同的零点,这两个零点分别在区间()0,2和()4,6内,那么下列不等式中一定正确的是( )A .()()020f f ⋅<B .()()020f f ⋅>C .()()240f f ⋅>D .()()260f f ⋅>【答案】C【解析】首先根据题意得到函数()f x 在区间(2,4)上没有零点,即可得到(2)(4)0f f >.【详解】因为定义在R 上的函数()f x 的图象是连续不断的,此函数有两个不同的零点, 这两个零点分别在区间()0,2和()4,6内,所以函数()f x 在区间(2,4)上没有零点,若(2)f 与(4)f 的函数值异号,根据零点存在性定理可得以函数()f x 在区间(2,4)上必有零点,所以(2)f 与(4)f 的函数值同号,即(2)(4)0f f >.故选:C【点睛】本题主要考查函数的零点存在定义和零点的区间,属于简单题.5.已知函数()f x 是定义在R 上的奇函数,现给出以下结论:(1)此函数一定有零点;(2)此函数可能没有零点;(3)此函数有奇数个零点;(4)此函数有偶数个零点.以上结论正确的个数是( )A .1个B .2个C .3个D .4个 【答案】B【解析】根据奇函数的定义及性质,对题目中的命题判断正误即可.【详解】因为()f x 是定义在R 上的奇函数,所以(0)=0f .故0是函数()f x 的零点,所以(1)正确,(2)错误.根据奇函数的对称性知:函数()f x 有零点,则零点关于原点对称,再加上原点,共有奇数个零点,所以(3)正确,(4)错误.故选:B【点睛】本题主要考查函数的奇偶性,同时考查了方程与零点,属于中档题.二、填空题6.用列举法表示集合{}2230,x x x x Z --<∈=________.【答案】{}0,1,2【解析】首先解不等式2230x x --<,再用列举法表示集合即可.【详解】 2{|230,}{|13,}{0,1,2}x x x x Z x x x Z --<∈=-<<∈=.故答案为:{0,1,2}【点睛】本题主要考查集合的表示,同时考查了二次不等式的解法,属于简单题.7.命题“若2x >且3y >,则5x y +>”的否命题是__________命题.(填入“真”或“假”)【答案】假【解析】写出否命题,即可判断命题的真假.【详解】命题“若2x >且3y >,则5x y +>”的否命题:“若2x ≤或3y ≤,则5x y +≤”是假命题,例如1,9x y ==,满足2x ≤或3y ≤,但不能推出5x y +≤.故答案为:假【点睛】此题考查根据已知命题写出否命题,并判断真假,涉及含有逻辑联结词的命题的否定.8.函数4y x=,[]1,12x ∈的值域为________. 【答案】1,43⎡⎤⎢⎥⎣⎦【解析】根据函数的单调性即可求出值域.【详解】 因为函数4y x=在区间[]1,12为减函数, 所以值域为1,43⎡⎤⎢⎥⎣⎦. 故答案为:1,43⎡⎤⎢⎥⎣⎦ 【点睛】本题主要考查反比例函数的单调性,属于简单题.9.己知函数()2x f x =.则()()2f f =________.【答案】16【解析】首先计算(2)f ,再代入计算((2))f 即可.【详解】2(2)24f ==,4((2))(4)216f f ===.故答案为:16【点睛】本题主要考查函数值的求法,属于简单题.10.不等式|x ﹣1|<2的解集为 .【答案】(﹣1,3).【解析】试题分析:由不等式|x ﹣1|<2,可得﹣2<x ﹣1<2,解得﹣1<x <3. 解:由不等式|x ﹣1|<2可得﹣2<x ﹣1<2,∴﹣1<x <3,故不等式|x ﹣1|<2的解集为(﹣1,3),故答案为(﹣1,3).【考点】绝对值不等式的解法.11.已知112112322α⎧⎫∈---⎨⎬⎩⎭,,,,,,,若幂函数()a f x x =为奇函数,且在()0+∞,上递减,则a =____.【答案】-1【解析】由幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,得到a 是奇数,且a <0,由此能求出a 的值.【详解】∵α∈{﹣2,﹣1,﹣1122,,1,2,3},幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,∴a 是奇数,且a <0,∴a=﹣1.故答案为﹣1.【点睛】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.已知()y f x =是定义在R 上的奇函数,当0x >时,()21x f x =-,则(2)f -=____.【答案】3-【解析】 由题意得,函数()y f x =为奇函数,所以()2(2)2(21)3f f -=-=--=-. 13.已知2m >,且()110lg 100lg x m m=+则x 的值为________. 【答案】lg 2【解析】首先计算1lg(100)lglg1002m m+==,再解方程102x =即可. 【详解】因为1lg(100)lglg1002m m +==, 所以,102x =,即lg 2x =.故答案为:lg 2【点睛】本题主要考查对数的运算,同时考查了指数方程,熟练掌握对数的运算法则是解题的关键,属于简单题.14.已知0a >,0b >,且44a b +=,则a b 的最大值等于________. 【答案】1【解析】首先根据题意得到114a b =-,代入a b 得到21=(2)14a a b --+,再利用二次函数的性质即可得到最大值.【详解】 因为44a b +=,所以114a b =-. 因为0a >,0b >,所以104a ->,即04a <<. 所以21=(1)(2)144a a a ab -=--+. 当2a =时,max ()=1a b . 故答案为:1【点睛】本题主要考查二次函数的最值,将a b 转化为二次函数的形式为解题的关键,属于中档题. 15.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += . 【答案】32- 【解析】若1a >,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+=,此方程组无解; 若01a <<,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=-,解得1{22a b ==-,所以32a b +=-. 【考点】指数函数的性质.16.记函数()f x x b =+,[]2,2x Î-的最大值为()g b ,则()g b =________.【答案】()2 02 0b b g b b b +≥⎧=⎨-<⎩【解析】首先将()f x 转化为分段函数,再对b 进行讨论,即可求出最大值()g b【详解】,(),x b x b f x x b x b x b +≥-⎧=+=⎨--<-⎩. 当0b =时,()f x x =,max ()2f x =,即()2g b =.当0b -<,即0b >时,max ()(2)2f x f b ==+,即()2g b b =+.当0b ->,即0b <时,max ()(2)2f x f b =-=-,即()2g b b =-.综上:2? 0()2? 0b b g b b b +≥⎧=⎨-<⎩. 故答案为:2? 0()2? 0b b g b b b +≥⎧=⎨-<⎩【点睛】本题主要考查含参绝对值函数的最值问题,同时考查了分类讨论的思想,属于中档题.17.已知()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,则关于x 的不等式()()2110f x f x -+-<的解是________.【答案】()1,1-【解析】首先将不等式变形,根据()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,设2()()g x f x x =+,得到()g x 在R 上为偶函数,且在[)0,+∞上单调递增,再解不等式即可.【详解】因为2()(1)10f x f x -+-<,所以2()(1)1f x x f +<+.因为()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增.设2()()g x f x x =+,()g x 在R 上为偶函数,且在[)0,+∞上单调递增.所以2()(1)1f x x f +<+,即()()1g x g <. 所以1x <,解得11x -<<.故答案为:(1,1)-.【点睛】本题主要考查抽象函数的单调性和奇偶性,属于中档题.18.函数()22f x x x =-,[]2,2x ∈-的最大值为________. 【答案】8【解析】首先画出()f x 的图象,根据图象即可求出函数的最大值.【详解】函数()f x 的图象如图所示:由图可知,max ()(2)44=8f x f =-=+.故答案为:8【点睛】本题主要考查利用函数的图象求最值,熟练画出函数图象为解题的关键,属于中档题.19.已知()42f x x x =+,则关于x 的不等式()()12f x f +<的解是________. 【答案】()3,1-【解析】首先根据函数()f x 的解析式,得到()f x 为偶函数,且在(0,)+∞为增函数,再利用偶函数的对称性解不等式即可.【详解】因为42()f x x x =+,所以()f x 为偶函数,且在(0,)+∞为增函数.所以(1)(2)f x f +<根据偶函数的对称性知:212x -<+<,解得:31x -<<.故答案为:(3,1)-【点睛】本题主要考查函数的奇偶性和单调性,熟练掌握奇偶函数的性质为解题的关键,属于中档题.三、解答题20.解下列方程(1)2223x x -+⋅=;(2)2lg lg 20x x --=【答案】(1)0x =或1x =(2)100x =或110x = 【解析】(1)首先令2x t =,根据二次方程和指数方程即可解出方程的根.(2)根据二次方程和对数方程即可解出方程的根.【详解】(1)令2x t =,0t >,得23t t+=. 整理得:2320t t -+=.解得:1t =或2t =.即:21x =或22x =,0x =或1x =.(2)因为2lg lg 20x x --=,所以(lg 2)(lg 1)0x x -+=.解得:lg 2x =或lg 1=-,100x =或110x =. 【点睛】本题主要考查了指数方程和对数方程的求解,同时考查了二次方程的求解,属于简单题. 21.设a R ∈,函数()221x x a f x +=+. (1)当1a =-时,判断()f x 的奇偶性,并给出证明;(2)当0a =时,证明此函数在(),-∞+∞上单调递增.【答案】(1)奇函数;证明见解析(2)证明见解析【解析】(1)首先求出函数()f x 的定义域为R ,再判断()f x 与()f x -的关系即可.(2)根据题意设任意12,x x R ∈,且12x x <,作差比较12()()f x f x -即可.【详解】(1)当1a =-时,21()21x x f x -=+,定义域关于原点对称. 112112222()()11212121221xx x x x x x x x xf x f x ----====+--=-+++. 所以()f x 为奇函数.(2)当0a =时,2()21xx f x =+,设任意12,x x R ∈,且12x x <. 1212211212121212222(21)2(21)22()()2121(21)(21)(21)(21)x x x x x x x x x x x x x x f x f x +-+--=-==++++++. 因为12220x x -<,1210x +>,2210x +>,所以12())0(f x f x -<.即:12()()f x f x <. 所以2()21xx f x =+在R 上为增函数. 【点睛】本题第一问考查函数奇偶性的判断,第二问考查了函数单调性的判断,属于中档题.22.某商场在促销期间规定:商场内所有商品按标价的80%出售,同时当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,然后还能获得对应的奖券金额为28元.于是,该顾客获得的优惠额为:4000.228108⨯+=元.设购买商品得到的优惠率=购买商品获得的优惠额商品的标价.试问: (1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)当商品的标价为[]100,600元时,试写出顾客得到的优惠率y 关于标价x 元之间的函数关系式;(3)当顾客购买标价不超过600元的商品时,该顾客是否可以得到超过30%的优惠率?试说明理由.【答案】(1)25.8%(2)[)[]0.2 100,360280.2 360,600x y x x ⎧∈⎪=⎨+∈⎪⎩(3)不能,详见解析 【解析】(1)根据题意得到购买1000元商品,则消费800元,获得对应的奖券58元,再计算优惠率即可.(2)根据题意,分段讨论当标价为[100,360)元和标价为[360,600]元时的优惠率即可.(3)根据(2)得到当顾客在买标价为360元商品时,优惠率最大,再计算最大优惠率比较即可.【详解】(1)购买1000元商品的优惠率10000.25810025.81000%%=⨯+=⨯. (2)当标价为[100,360)元时,则消费[80,288)元,不能获得优惠券. 所以顾客得到的优惠率为:0.20.2x y x==. 当标价为[360,600]元时,则消费[288,480]元,获得28元优惠券. 所以顾客得到的优惠率为:0.228280.2x y x x+==+. 综上[)[]0.2? 100,360280.2? 360,600x y x x ⎧∈⎪=⎨+∈⎪⎩. (3)当顾客买标价不超过360元商品时,优惠率为20%.当顾客买标价在[360,600]元商品时,优惠率为280.2y x=+,为减函数. 所以当顾客在买标价为360元商品时,优惠率最大. max 280.227.8%30%360y =+≈<. 所以顾客不能得到超过30%的优惠率.【点睛】本题主要考查函数的实际应用,弄清题意为解题的关键,属于中档题.23.已知函数()222f x x ax =-+,[]1,1x ∈-.(1)当1a =时,求()11f-; (2)当12a =-时,判断此函数有没有反函数,并说明理由; (3)当a 为何值时,此函数存在反函数?并求出此函数的反函数()1f x -.【答案】(1)1,(2)没有,详见解析,(3)1a ≥或1a ≤-;当1a ≥时,()1f x a -=[]32,32x a a ∈-+,当1a ≤-时,()1f x a -=[]32,32x a a ∈+-.【解析】(1)当1a =时,由互为反函数的性质可得:1(1)f-等价于()1f x =在[1,1]x ∈-求解,再解方程即可.(2)当12a =-时,2()2f x x x =++,根据函数在区间[1,1]-的单调性即可判定. (3)首先根据函数()f x 存在反函数,得到1a ≥或1a ≤-,在分类讨论求反函数即可.【详解】(1)当1a =时,2()22f x x x =-+.求1(1)f -即等价于()1f x =在[1,1]x ∈-求解.2221x x -+=,解得:1x =.所以1(1)1f -=.(2)当12a =-时,2217()2()24f x x x x =++=++. [1,1]x ∈-时,显然函数不单调,所以在区间[1,1]-没有反函数.(3)若函数()f x 存在反函数,则函数()f x 在区间[1,1]-单调.222()22()2f x x ax x a a =-+=-+-,对称轴为x a =.所以当1a ≥或1a ≤-时,函数()f x 存在反函数.当1a ≥时,1)(f a x -=,[]32,32x a a ∈-+.当1a ≤-时,()1f x a -=[]32,32x a a ∈+-.【点睛】本题主要考查反函数的求法,同时考查了学生的计算能力,属于中档题.24.已知函数()f x 的定义域是使得解析式有意义的x 集合,如果对于定义域内的任意实数x ,函数值均为正,则称此函数为“正函数”.(1)证明函数()()2lg 11f x x =++是“正函数”; (2)如果函数()11a f x x x =+-+不是“正函数”,求正数a 的取值范围. (3)如果函数()()()222242122x a x a f x x a x a +--+=+--+是“正函数”,求正数a 的取值范围. 【答案】(1)证明见解析,(2)(,1]-∞(3)(){}6,13-U【解析】(1)有题知:()1f x ≥,即证.(2)首先讨论当0a ≤时,显然()11a f x x x =+-+不是“正函数”. 当0a >时,从反面入手,假设()f x 是“正函数”,求出a 的范围,再取其补集即可.(3)根据题意得到:22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩或12242122a a a a --+==--+,解方程和不等式组即可.【详解】(1)2()lg(1)1lg111f x x =++≥+=.函数值恒为正数,故函数2()lg(1)1f x x =++是“正函数”.(2)当0a ≤时,(0)10f a =-<, 显然()11a f x x x =+-+不是“正函数”. 当0a >时 假设()11a f x x x =+-+为“正函数”.则()f x 恒大于零.()1221a f x x x =++-≥+.所以20>,即1a >所以()11a f x x x =+-+不是“正函数”时, 01a <≤.综上:1a ≤.(3)有题知:若函数()22(2)242(1)22x a x a f x x a x a +--+=+--+是“正函数”, 则22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩或12242122a a a a --+==--+. 解得:61a -<<或3a =.【点睛】本题主要考查函数的新定义,同时考查了对所学知识的综合应用,属于难题.。

上海市虹口区2019-2020学年高一第一学期数学期末统考试卷(含答案)

上海市虹口区2019-2020学年高一第一学期期末统考数学试卷2020.01一. 填空题1. 用列举法表示集合2{|230,}x x x x −−<∈=Z2. 命题“若2x >且3y >,则5x y +>”的否命题是 命题(“真”或“假”)3. 函数4y x=,[1,12]x ∈的值域为 4. 已知函数()2x f x =,则((2))f f =5. 不等式|1|2x −<的解为6. 已知11{2,1,,,1,2,3}22a ∈−−−,若幂函数()a f x x =为奇函数,且在(0,)+∞上递减, 则a =7. 已知函数()f x 为R 上的奇函数,当0x ≥时,()21x f x =−,则(2)f −= 8. 已知2m >,且110lg(100)lgx m m=+,则x 的值为 9. 已知0a >,0b >,且44a b +=,则a b 的最大值等于 10. 已知函数()x f x a b =+(0a >,1a ≠)的定义域和值域都是[1,0]−,则a b +=11.(A 组)记函数()||f x x b =+,[2,2]x ∈−的最大值为()g b ,则()g b = (B 组)函数2()|2|f x x x =−,[2,2]x ∈−的最大值为12.(A 组)已知()f x 是定义在R 上的偶函数,且在[0,)+∞上单调递增,则关于x 的不等式2()(1)10f x f x −+−<的解是(B 组)已知42()f x x x =+,则关于x 的不等式(1)(2)f x f +<的解是二. 选择题13. 已知13a <<,24b <<,现给出以下结论:(1)37a b <+<;(2)31a b −<−<;(3)212a b <⋅<;(4)1342a b <<;以上结论正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 14. 已知a ∈R ,则“1a <”是“11a >”的( ) A. 充分非必要条件 B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件15. 已知函数||32x y =−的值域是( )A. RB. (2,)−+∞C. [2,)−+∞D. [1,)−+∞16.(A 组)定义在R 上的函数()f x 的图像是连续不断的,此函数有两个不同的零点,这两个零点分别在区间(0,2)和(4,6)内,那么下列不等式中一定正确的是( )A. (0)(2)0f f ⋅<B. (0)(6)0f f ⋅>C. (2)(4)0f f ⋅>D. (2)(6)0f f ⋅>(B 组)已知函数()f x 是定义在R 上的奇函数,现给出以下结论:(1)此函数一定有零点;(2)此函数可能没有零点;(3)此函数有奇数个零点;(4)此函数有偶数个零点;以上结论正确的个数是( )A. 1个B. 2个C. 3个D. 4个三. 解答题17. 解下列方程:(1)2223x x −+⋅=;(2)2lg lg 20x x −−=.18. 设a ∈R ,函数2()21x x a f x +=+. (1)当1a =−时,判定()f x 的奇偶性,并给出证明;(2)当0a =时,证明此函数在(,)−∞+∞上单调递增.19. 某商场在促销期间规定:商场内所有商品按标价的80%出售,同时当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如:购买标价为400元的商品, 则消费金额为320元,然后还能获得对应的奖券金额为28元,于是,该顾客获得的优惠额 为:4000.228108⨯+=元,设购买商品得到的优惠率=购买商品获得的优惠额商品的标价,试问: (1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)当商品的标价为[100,600]元时,试写出顾客得到的优惠率y 关于标价x 元之间的函 数关系式;(3)当顾客购买标价不超过600元的商品时,该顾客是否可以得到超过30%的优惠率? 试说明理由.20. 已知函数2()22f x x ax =−+,[1,1]x ∈−.(1)当1a =时,求1(1)f −;(2)当12a =−时,判定此函数有没有反函数,并说明理由; (3)当a 为何值时,此函数存在反函数?并求出此函数的反函数1()f x −.21. 已知函数()f x 的定义域是使得解析式有意义的x 集合,如果对于定义域内的任意实 数x ,函数值均为正,则称此函数为“正函数”.(1)证明函数2()lg(1)1f x x =++是“正函数”;(2)(A 组题)如果函数()||1||1a f x x x =+−+不是“正函数”,求正数a 的取值范围; (B 组题)如果函数1()||||f x x a x =+−不是“正函数”,求实数a 的取值范围; (3)(A 组题)如果函数22(2)24()2(1)22x a x a f x x a x a +−−+=+−−+是“正函数”,求正数a 取值范围; (B 组题)如果函数2()2f x ax ax =++是“正函数”,求实数a 的取值范围;参考答案一. 填空题1. {0,1,2}2. 假3. 1[,4]34. 165. (1,3)−6. 1−7. 3−8. lg 29. 1 10. 32−11.(A 组题)20()20b b g b b b +≥⎧=⎨−<⎩;(B 组题)8 12.(A 组题)(1,1)−;(B 组题)(3,1)−二. 选择题13. D 14. B 15. D 16. (A 组题)C ;(B 组题)B三. 解答题17.(1)0x =或1x =;(2)100x =或110x =. 18.(1)奇函数;(2)证明略(用定义证明).19.(1)25.8%;(2)0.2[100,360)280.2[360,600]x y x x ∈⎧⎪=⎨+∈⎪⎩;(3)不能,最大优惠为27.8%.20.(1)1;(2)没有,函数不单调;(3)1a ≥或1a ≤−,当1a ≥时,1()f x a −=−[32,32]x a a ∈−+;当1a ≤−时,1()f x a −=[32,32]x a a ∈+−.21.(1)()1f x ≥,函数值恒为正;(2)(A 组题)(0,1);(B 组题)2a >;(3)(A 组题)(6,1){3}−;(B 组题)[0,8).。

【期末试卷】上海市虹口区2016-2017学年高一上学期期末考试数学试题 Word版含答案

虹口区2016学年第一学期期终质量监控测试高一数学试卷2017.1一、填空题:本大题满分30分.本大题共10题,只要求在答题纸相应题号的空格内直接写出结果,每题填对得3分,否则一律不得分.1.已知集合{}{}22,1,0,1,2,|2A B x x x =--==,则A B = .2.不等式31x -≤的解集为 .3.不等式3442x x +>-的解集是 . 4.已知函数()3xf x a =+的反函数为()1y f x -=,若函数()1y f x -=的图象过点()4,1,则实数a 的值为 .5. 命题“若实数,a b 满足4a ≠或3b ≠,则7a b +≠”的否命题为 .6. 已知条件:213p k x k -≤≤-,条件:13q x -<≤,且p 是q 的必要条件,则实数k 的取值范围为 .7. 已知函数()y f x =是R 上的奇函数,且在区间()0,+∞上单调递增,若()20f -=,则不等式()0xf x <的解集为 .8. 函数()24f x x a =--恰有两个零点则实数a 的取值范围为 .9. 已知函数()221,0log ,0x x f x x x ⎧+≤⎨>⎩,若()()2f f a =,则实数a 的值为 .10. (A 组题)设()()221log 22f x x x=+-+,则要()()12f x f x ->使得成立的x 的取值范围为 .(B 组题)已知函数()12xf x ⎛⎫= ⎪⎝⎭的图象与函数()y g x =的图象关于直线y x =对称,令()()21h x g x =-,则关于函数()y h x =的下列4个结论:①函数()y h x =的图象关于原点对称;②函数()y h x =为偶函数;③函数()y h x =的最小值为0;④函数()y h x =在()0,1上为增函数.其中,正确结论的序号为 .(将你认为正确结论的序号都填上)二、选择题:(本大题20分)本大题共5小题,每题4分.11.设全集U Z =,集合{}{}|17,|21,A x x B x x k k Z =≤<==-∈,则()U A C B = ( )A. {}1,2,3,4,5,6B. {}1,3,5C. {}2,4,6D.∅ 12.设x R ∈,则"2"x <-是2"0x x +≥的( )A. 充分不必要条件B. 必要不充分条件C.充要条件D.既不充分也不必要条件13.下列函数中,在其定义域内既是奇函数又是减函数的是( )A. y x =B. 3y x =- C. 12xy ⎛⎫= ⎪⎝⎭D.1y x =14.设,,1,1a R b R a b ∈∈>>,若3,6x y a b a b ==+=,则11x y+的最大值为( ) A.13 B. 12C. 1D.2 15.(A 组题)设集合110,,,122M N ⎡⎫⎡⎤==⎪⎢⎢⎥⎣⎭⎣⎦,函数()()1,,221,,x x M f x x x N ⎧+∈⎪=⎨⎪-∈⎩,若0x M ∈且()()0ff x M ∈,则0x 的取值范围是( )A. 10,4⎛⎤ ⎥⎝⎦ B. 30,8⎡⎤⎢⎥⎣⎦C. 11,42⎛⎤⎥⎝⎦ D.11,42⎛⎫⎪⎝⎭(B 组题)设()2151xf x x=-+,则使得()()21f x f x +>成立的x 的取值范围是( ) A. 11,3⎛⎫-- ⎪⎝⎭ B.()3,1-- C. ()1,-+∞ D.()1,1,3⎛⎫-∞--+∞ ⎪⎝⎭三、解答题:本大题共5小题,共50分.解答应写出必要的文字说明或推理、验算过程. 16.(本题满分10分)已知集合{}{}22|10,|0A x x px B x x qx r =++==++=,且{}(){}1,2.U A B C A B ==- ,求实数,,p q r 的值.17.(本题满分10分)(1)解不等式:2328x x ≤-<(2)已知,,,a b c d 均为是实数,求证:()()()22222.a b c d ac bd ++≥+18.(本题满分10分)本大题共2个小题,每小题5分. (A 组题)已知函数()2log 1.f x x =- (1)作出函数()f x 的大致图像;(2)指出函数()f x 的奇偶性、单调区间及零点. (B 组题)已知()()2.f x x x =-(1)作出函数()f x 的大致图像,并指出其单调区间;(2)若函数()f x c =恰有三个不同的解,试确定实数c 的取值范围.19.(本题满分10分)如图,在半径为40cm 的平面图形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A,B 在直径上,点C,D 在圆周上.(1)设AD x =,将矩形ABCD 的面积表示成y 的函数,并写出其定义域; (2)怎样截取,才能使矩形材料ABCD 的面积最大?并求出最大面积.20.(本题满分12分)本题共3个小题,每小题4分.(请考生务必看清自己应答的试题)(A 组题)已知函数()12xf x ⎛⎫= ⎪⎝⎭的图象与函数()y g x =的图象关于直线y x =对称.(1)若()()26f g x x =-,求实数x 的值;(2)若函数()()2y g f x =的定义域为[](),0m n m ≥,值域为[]2,2m n ,求实数,m n的值;(3)当[]1,1x ∈-时,求函数()()223y f x af x =-+⎡⎤⎣⎦的最小值()h a . (B 组题)已知函数()()log 0,1a f x b x a a =+>≠的图象经过点()8,2和()1,1.- (1)求()f x 的解析式;(2)若()()23f x f x =⎡⎤⎣⎦,求实数x 的值;(3)令()()()21y g x f x f x ==+-,求()y g x =的最小值及其取最小值时x 的值.附加题:(本题满分10分,计入总分,若总分超过100分,按100分记) 本题共2小题,第(1)小题4分,第(2)小题6分. 设函数()()20,1.xx x aa a a ϕ=->≠(1)求()x ϕ在[]2,2-上的最大值;(2)当a =()222x t mt ϕ≤-+对所有的[]2,2x ∈-及[]1,1m ∈-恒成立,求实数m 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年上海市虹口区高一(上)期末数学试卷一、填空题(本大题满分30分,共10题)1.(3分)已知集合A={﹣2,﹣1,0,2},B={x|x2=2x},则A∩B=.2.(3分)不等式|x﹣3|≤1的解集是.3.(3分)不等式>4的解集是.4.(3分)已知函数f(x)=3x+a的反函数y=f﹣1(x),若函数y=f﹣1(x)的图象经过(4,1),则实数a的值为.5.(3分)命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是.6.(3分)已知条件p:2k﹣1≤x≤﹣3k,条件q:﹣1<x≤3,且p是q的必要条件,则实数k的取值范围是.7.(3分)已知函数y=f(x)是R上的奇函数,且在区间(0,+∞)单调递增,若f(﹣2)=0,则不等式xf(x)<0的解集是.8.(3分)函数f(x)=|x2﹣4|﹣a恰有两个零点,则实数a的取值范围为.9.(3分)已知函数f(x)=,若f(f(a))=2,则实数a的值为.10.(3分)设f(x)=log2(2+|x|)﹣,则使得f(x﹣1)>f(2x)成立的x取值范围是.11.已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,令h(x)=g(1﹣x2),则关于函数y=h(x)的下列4个结论:①函数y=h(x)的图象关于原点对称;②函数y=h(x)为偶函数;③函数y=h(x)的最小值为0;④函数y=h(x)在(0,1)上为增函数其中,正确结论的序号为.(将你认为正确结论的序号都填上)二、选择题(本大题满分20分,每小题4分,共6小题)12.(4分)设全集U=Z,集合A={x|1≤x<7,x∈Z},B={x=2k﹣1,k∈Z},则A∩(∁U B)=()A.{1,2,3,4,5,6}B.{1,3,5}C.{2,4,6}D.∅13.(4分)设x∈R,则“x<﹣2”是“x2+x≥0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件14.(4分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=|x|B.y=()x C.y= D.y=﹣x315.(4分)设x,y∈R,a>1,b>1,若a x=b y=3,a+b=6,则+的最大值为()A.B.C.1 D.216.(4分)设集合M=[0,),N=[,1],函数f(x)=.若x0∈M且f(f(x0))∈M,则x0的取值范围为()A.(0,]B.[0,]C.(,]D.(,)17.设f(x)=5|x|﹣,则使得f(2x+1)>f(x)成立的x取值范围是()A.(﹣1,﹣)B.(﹣3,﹣1)C.(﹣1,+∞)D.(﹣∞,﹣1)∪(﹣,+∞)三、解答题(本大题慢点50分,共7小题)18.(10分)已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(∁U A)∩B={﹣2},求实数p、q、r的值.19.(10分)(1)解不等式:3≤x2﹣2x<8;(2)已知a,b,c,d均为实数,求证:(a2+b2)(c2+d2)≥(ac+bd)2.20.(10分)已知函数f(x)=log2||x|﹣1|.(1)作出函数f(x)的大致图象;(2)指出函数f(x)的奇偶性、单调区间及零点.21.已知f(x)=|x|(2﹣x)(1)作出函数f(x)的大致图象,并指出其单调区间;(2)若函数f(x)=c恰有三个不同的解,试确定实数c的取值范围.22.(10分)如图,在半径为40cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中A,B在直径上,点C,D在圆周上、(1)设AD=x,将矩形ABCD的面积y表示成x的函数,并写出其定义域;(2)怎样截取,才能使矩形材料ABCD的面积最大?并求出最大面积.23.(10分)已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x 对称.(1)若f(g(x))=6﹣x2,求实数x的值;(2)若函数y=g(f(x2))的定义域为[m,n](m≥0),值域为[2m,2n],求实数m,n的值;(3)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a).24.已知函数f(x)=b+log a x(x>0且a≠1)的图象经过点(8,2)和(1,﹣1).(1)求f(x)的解析式;(2)[f(x)]2=3f(x),求实数x的值;(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值时x的值.四、附加题25.设函数φ(x)=a2x﹣a x(a>0,a≠1).(1)求函数φ(x)在[﹣2,2]上的最大值;(2)当a=时,φ(x)≤t2﹣2mt+2对所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立,求实数m的取值范围.2016-2017学年上海市虹口区高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题满分30分,共10题)1.(3分)已知集合A={﹣2,﹣1,0,2},B={x|x2=2x},则A∩B={0,2} .【分析】先分别求出集合A和B,由此能求出A∩B.【解答】解:∵集合A={﹣2,﹣1,0,2},B={x|x2=2x}={0,2},∴A∩B={0,2}.故答案为:{0,2}.2.(3分)不等式|x﹣3|≤1的解集是[2,4] .【分析】去掉绝对值,求出不等式的解集即可.【解答】解:∵|x﹣3|≤1,∴﹣1≤x﹣3≤1,解得:2≤x≤4,故答案为:[2,4].3.(3分)不等式>4的解集是(2,12).【分析】解不等式变形,得到<0,解出即可.【解答】解:∵>4,∴>0,即<0,解得:2<x<12,故答案为:(2,12).4.(3分)已知函数f(x)=3x+a的反函数y=f﹣1(x),若函数y=f﹣1(x)的图象经过(4,1),则实数a的值为1.【分析】根据反函数的性质可知:原函数与反函数的图象关于y=x对称,利用对称关系可得答案.【解答】解:f(x)=3x+a的反函数y=f﹣1(x),∵函数y=f﹣1(x)的图象经过(4,1),原函数与反函数的图象关于y=x对称∴f(x)=3x+a的图象经过(1,4),即3+a=4,解得:a=1.故答案为:1.5.(3分)命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是若实数a,b满足a=4且b=3,则a+b=7”.【分析】根据四种命题的定义,结合原命题,可得其否命题.【解答】解:命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是“若实数a,b满足a=4且b=3,则a+b=7”,故答案为:若实数a,b满足a=4且b=3,则a+b=7”6.(3分)已知条件p:2k﹣1≤x≤﹣3k,条件q:﹣1<x≤3,且p是q的必要条件,则实数k的取值范围是k≤﹣1.【分析】根据集合的包含关系得到关于k的不等式组,解出即可.【解答】解:∵p:2k﹣1≤x≤﹣3k,条件q:﹣1<x≤3,且p是q的必要条件,∴(﹣1,3]⊆[2k﹣1,﹣3k],∴,解得:k≤﹣1,故答案为:k≤﹣1.7.(3分)已知函数y=f(x)是R上的奇函数,且在区间(0,+∞)单调递增,若f(﹣2)=0,则不等式xf(x)<0的解集是(﹣2,0)∪(0,2).【分析】函数y=f(x)是R上的奇函数,在区间(0,+∞)单调递增即在R上单调递增,f(﹣2)=﹣f(2)=0,即f(2)=0,分段讨论x的值,可得不等式xf (x)<0的解集.【解答】解:函数y=f(x)是R上的奇函数,在区间(0,+∞)单调递增∴函数y=f(x)在R上单调递增,且f(0)=0∵f(﹣2)=﹣f(2)=0,即f(2)=0.∴当x<﹣2时,f(x)<0,当﹣2<x<0时,f(x)>0,当0<x<2时,f(x)<0,当x>2时,f(x)>0,那么:xf(x)<0,即或,∴得:﹣2<x<0或0<x<2.故答案为(﹣2,0)∪(0,2).8.(3分)函数f(x)=|x2﹣4|﹣a恰有两个零点,则实数a的取值范围为a=0或a>4.【分析】画出函数y=|x2﹣4|,与y=a的图象,利用函数的两个零点,写出结果即可.【解答】解:函数g(x)=|x2﹣4|的图象如图所示,∵函数f(x)=|x2﹣4|﹣a恰有两个零点,∴a=0或a>4.故答案为:a=0或a>4.9.(3分)已知函数f(x)=,若f(f(a))=2,则实数a的值为﹣,,16.【分析】f(f(a))=2,由此利用分类讨论思想能求出a.【解答】解:由f(x)=,f(f(a))=2,当log2a≤0时,即0<a≤1时,(log2a)2+1=2,即(log2a)2=1,解得a=,当log2a>0时,即a>1时,log2(log2a)=2,解得a=16,因为a2+1>0,log2(a2+1)=2,即a2+1=4解得a=(舍去),或﹣,综上所述a的值为﹣,,16,故答案为:﹣,,16,10.(3分)设f(x)=log2(2+|x|)﹣,则使得f(x﹣1)>f(2x)成立的x取值范围是(﹣1,).【分析】判断函数的奇偶性,通过x大于0,判断函数是增函数,然后转化求解不等式的解集即可.【解答】解:函数f(x)=log2(2+|x|)﹣,是偶函数,当x≥0时,y=log2(2+x),y=﹣都是增函数,所以f(x)=log2(2+x)﹣,x≥0是增函数,f(x﹣1)>f(2x),可得|x﹣1|>|2x|,可得3x2+2x﹣1<0,解得x∈(﹣1,).故答案为:(﹣1,).11.已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,令h(x)=g(1﹣x2),则关于函数y=h(x)的下列4个结论:①函数y=h(x)的图象关于原点对称;②函数y=h(x)为偶函数;③函数y=h(x)的最小值为0;④函数y=h(x)在(0,1)上为增函数其中,正确结论的序号为②③④.(将你认为正确结论的序号都填上)【分析】由已知求出h(x)=,分析函数的奇偶性,单调性,最值,可得答案.【解答】解:∵函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,∴g(x)=,∴h(x)=g(1﹣x2)=,故h(﹣x)=h(x),即函数为偶函数,函数图象关于y轴对称,故①错误;②正确;当x=0时,函数取最小值0,故③正确;当x∈(0,1)时,内外函数均为减函数,故函数y=h(x)在(0,1)上为增函数,故④正确;故答案为:②③④二、选择题(本大题满分20分,每小题4分,共6小题)12.(4分)设全集U=Z,集合A={x|1≤x<7,x∈Z},B={x=2k﹣1,k∈Z},则A ∩(∁U B)=()A.{1,2,3,4,5,6}B.{1,3,5}C.{2,4,6}D.∅【分析】根据求出B的补集,找出A与B补集的交集即可.【解答】解:全集U=Z,集合A={x|1≤x<7,x∈Z}={1,2,3,4,5,6}B={x=2k﹣1,k∈Z},∴∁u B={x=2k,k∈Z},∴A∩(∁u B)={2,4,6},故选:C.13.(4分)设x∈R,则“x<﹣2”是“x2+x≥0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】解不等式,根据集合的包含关系判断充分必要性即可.【解答】解:由“x2+x≥0”,解得:x>0或x<﹣1,故x<﹣2”是“x>0或x<﹣1“的充分不必要条件,故选:A.14.(4分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=|x|B.y=()x C.y= D.y=﹣x3【分析】根据奇函数和减函数的定义判断即可.【解答】解:对于A:y=f(x)=|x|,则f(﹣x)=|﹣x|=|x|是偶函数.对于B:,根据指数函数的性质可知,是减函数.不是奇函数.对于C:定义为(﹣∞,0)∪(0,+∞),在其定义域内不连续,承载断点,∴在(﹣∞,0)和在(0,+∞)是减函数.对于D:y=f(x)=﹣x3,则f(﹣x)=x3=﹣f(x)是奇函数,根据幂函数的性质可知,是减函数.故选:D.15.(4分)设x,y∈R,a>1,b>1,若a x=b y=3,a+b=6,则+的最大值为()A.B.C.1 D.2【分析】根据对数的运算性质和基本不等式即可求出.【解答】解:设x,y∈R,a>1,b>1,a x=b y=3,a+b=6,∴x=log a3,y=log b3,∴+=log3a+log3b=log3ab≤log3()=2,当且仅当a=b=3时取等号,故选:D.16.(4分)设集合M=[0,),N=[,1],函数f(x)=.若x0∈M且f(f(x0))∈M,则x0的取值范围为()A.(0,]B.[0,]C.(,]D.(,)【分析】根据分段函数的解析即可求出x0的范围.【解答】解:∵0≤x0<,∴f(x0))∈[,1]⊆N,∴f(f(x0))=2(1﹣f(x0))=2[1﹣(x0+)]=2(﹣x0),∵f(f(x0))∈M,∴0≤2(﹣x0)<,∴<x0≤∵0≤x0<,∴<x 0<故选:D.17.设f(x)=5|x|﹣,则使得f(2x+1)>f(x)成立的x取值范围是()A.(﹣1,﹣)B.(﹣3,﹣1)C.(﹣1,+∞)D.(﹣∞,﹣1)∪(﹣,+∞)【分析】判断函数f(x)的单调性和奇偶性,利用函数f(x)的单调性和奇偶性求解.【解答】解:函数f(x)=5|x|﹣,则f(﹣x)=5|﹣x|﹣=5|x|﹣=f(x)为偶函数,∵y1=5|x|是增函数,y2=﹣也是增函数,故函数f(x)是增函数.那么:f(2x+1)>f(x)等价于:|2x+1|>|x|,解得:x<﹣1或使得f(2x+1)>f(x)成立的x取值范围是(﹣∞,﹣1)∪(,+∞).故选:D.三、解答题(本大题慢点50分,共7小题)18.(10分)已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(∁U A)∩B={﹣2},求实数p、q、r的值.【分析】根据A∩B={1}求出p的值以及1+q+r=0①,再根据(∁U A)∩B={﹣2}得出4﹣2q+r=0②,由①②组成方程组求出q、r的值.【解答】解:集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},∴1+p+1=0,解得p=﹣2;又1+q+r=0,①(∁U A)∩B={﹣2},∴4﹣2q+r=0,②由①②组成方程组解得q=1,r=﹣2;∴实数p=﹣2,q=1,r=﹣2.19.(10分)(1)解不等式:3≤x2﹣2x<8;(2)已知a,b,c,d均为实数,求证:(a2+b2)(c2+d2)≥(ac+bd)2.【分析】(1)直接利用二次不等式化简求解即可.(2)利用作差法化简,证明即可.【解答】解:(1)不等式:3≤x2﹣2x<8,即:,解得:,即x∈(﹣2,﹣1]∪[3,4).(2)证明:∵(a2+b2)(c2+d2)﹣(ac+bd)2=a2c2+a2d2+b2c2+b2d2﹣a2c2﹣2abcd﹣b2d2=a2d2+b2c2﹣2abcd=(ad﹣bc)2≥0∴(a2+b2)(c2+d2)≥(ac+bd)2.20.(10分)已知函数f(x)=log2||x|﹣1|.(1)作出函数f(x)的大致图象;(2)指出函数f(x)的奇偶性、单调区间及零点.【分析】(1)求出函数的定义域,化简函数的解析式,然后作出函数f(x)的大致图象;(2)利用函数的图象,指出函数f(x)的奇偶性、单调区间及零点.【解答】解:函数f(x)=log2||x|﹣1|的定义域为:{x|x≠±1,x∈R}.函数f(x)=log2||x|﹣1|=,x=0时f(x)=0,函数的图象如图:(2)函数是偶函数,单调增区间(﹣1,0),(1,+∞);单调减区间为:(﹣∞,﹣1),(0,1);零点为:0,﹣2,2.21.已知f(x)=|x|(2﹣x)(1)作出函数f(x)的大致图象,并指出其单调区间;(2)若函数f(x)=c恰有三个不同的解,试确定实数c的取值范围.【分析】(1)化简函数的表达式,然后画出函数的图象,写出单调区间即可.(2)利用函数的图象,推出实数c的取值范围.【解答】解:(1)f(x)=|x|(2﹣x)=,函数的图象如图:函数的单调增区间(0,1),单调减区间(﹣∞,0),(1,+∞).(2)函数f(x)=c恰有三个不同的解,函数在x=1时取得极大值:1,实数c的取值范围(0,1).22.(10分)如图,在半径为40cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中A,B在直径上,点C,D在圆周上、(1)设AD=x,将矩形ABCD的面积y表示成x的函数,并写出其定义域;(2)怎样截取,才能使矩形材料ABCD的面积最大?并求出最大面积.【分析】(1)OA=2=2,可得y=f(x)=2x,x∈(0,40).(2)平方利用基本不等式的性质即可得出.【解答】解:(1)AB=2OA=2=2,∴y=f(x)=2x,x∈(0,40).(2)y2=4x2(1600﹣x2)≤4×=16002,即y≤1600,当且仅当x=20时取等号.∴截取AD=20时,才能使矩形材料ABCD的面积最大,最大面积为1600.23.(10分)已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x 对称.(1)若f(g(x))=6﹣x2,求实数x的值;(2)若函数y=g(f(x2))的定义域为[m,n](m≥0),值域为[2m,2n],求实数m,n的值;(3)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a).【分析】(1)根据函数的对称性即可求出g(x),即可得到f(g(x))=x,解得即可.(2)先求出函数的解析式,得到,解得m=0,n=2,(3)由x∈[﹣1,1]可得t∈[,2],结合二次函数的图象和性质,对a进行分类讨论,即可得到函数y=f2(x)﹣2af(x)+3的最小值h(a)的表达式.【解答】解:(1)∵函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,∴g(x)=,∵f(g(x))=6﹣x2,∴=6﹣x2=x,即x2+x﹣6=0,解得x=2或x=﹣3(舍去),故x=2,(2)y=g(f(x2))==x2,∵定义域为[m,n](m≥0),值域为[2m,2n],,解得m=0,n=2,(3)令t=()x,∵x∈[﹣1,1],∴t∈[,2],则y=[f(x)]2﹣2af(x)+3等价为y=m(t)=t2﹣2at+3,对称轴为t=a,当a<时,函数的最小值为h(a)=m()=﹣a;当≤a≤2时,函数的最小值为h(a)=m(a)=3﹣a2;当a>2时,函数的最小值为h(a)=m(2)=7﹣4a;故h(a)=24.已知函数f(x)=b+log a x(x>0且a≠1)的图象经过点(8,2)和(1,﹣1).(1)求f(x)的解析式;(2)[f(x)]2=3f(x),求实数x的值;(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值时x的值.【分析】(1)由已知得b+log a8=2,b+log a1=﹣1,从而求解析式即可;(2)[f(x)]2=3f(x),即f(x)=0或3,即可求实数x的值;(3)化简g(x)=2[log2(x+1)﹣1]﹣(log2x﹣1)=log2(x++2)﹣1,从而利用基本不等式求最值.【解答】解:(1)由已知得,b+log a8=2,b+log a1=﹣1,(a>0且a≠1),解得a=2,b=﹣1;故f(x)=log2x﹣1(x>0);(2)[f(x)]2=3f(x),即f(x)=0或3,∴log2x﹣1=0或3,∴x=2或16;(3)g(x)=2f(x+1)﹣f(x)=2[log2(x+1)﹣1]﹣(log2x﹣1)=log2(x++2)﹣1≥1,当且仅当x=,即x=1时,等号成立).于是,当x=1时,g(x)取得最小值1.四、附加题25.设函数φ(x)=a2x﹣a x(a>0,a≠1).(1)求函数φ(x)在[﹣2,2]上的最大值;(2)当a=时,φ(x)≤t2﹣2mt+2对所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立,求实数m的取值范围.【分析】(1)利用指数函数的单调性,分a>1与0<a<1两种情况讨论,即可求得函数φ(x)在[﹣2,2]上的最大值;(2)当a=时,φ(x)≤t2﹣2mt+2对所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立⇔∀m∈[﹣1,1],t2﹣2mt+2≥φmax(x)=2恒成立,构造函数g(m)=﹣2tm+t2,则,解之即可得到实数m的取值范围.【解答】解:(1)∵φ(x)=a2x﹣a x=(a x﹣)2﹣(a>0,a≠1),x∈[﹣2,2],∴当a>1时,φmax(x)=φ(2)=a4﹣a2;当0<a<1时,φmax(x)=φ(﹣2)=a﹣4﹣a﹣2;∴φmax(x)=.(2)当a=时,φ(x)=2x﹣()x,由(1)知,φmax(x)=φ(2)=()4﹣()2=4﹣2=2,∴φ(x)≤t2﹣2mt+2对所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立⇔∀m∈[﹣1,1],t2﹣2mt+2≥φmax(x)=2恒成立,即∀m∈[﹣1,1],t2﹣2mt ≥0恒成立,令g(m)=﹣2tm+t2,则,即,解得:t≥2或t≤﹣2,或t=0.∴实数m的取值范围为:(﹣∞,2]∪{0}∪[2,+∞).。

相关文档
最新文档