继电器工作原理知识整理
简述继电器工作原理

简述继电器工作原理继电器是一种电子控制器件,它通过感应和动作来控制电路的通断,从而实现信号的传递、转换和放大等功能。
继电器广泛应用于电力、通信、工业自动化等领域,是现代电子设备中不可或缺的一部分。
一、继电器的基本结构继电器主要由感应机构、驱动机构和触点组成。
感应机构负责接收输入信号,驱动机构由铁芯和线圈组成,是继电器的主要动作元件,触点则用于控制电路的通断。
二、继电器的工作原理1.感应机构:感应机构的作用是接收输入信号,并将其转化为磁场的变化。
当输入信号达到一定强度时,会在驱动机构中产生一个足够的磁场,以驱动继电器的动作。
2.驱动机构:驱动机构主要由铁芯和线圈组成。
当接收到感应机构的信号后,驱动机构中的铁芯在磁场的作用下产生动作,进而带动触点的闭合或断开。
3.触点:触点是继电器控制电路的重要部分。
根据设计,触点可以控制电路的通断,从而实现信号的传递、转换和放大等功能。
三、继电器的种类根据结构和功能的不同,继电器可以分为以下几类:1.电磁继电器:电磁继电器是最常见的一种继电器,它利用电磁原理实现动作。
当线圈通电时,会产生磁场,磁场会吸引铁芯动作,从而带动触点闭合或断开。
2.固态继电器:固态继电器是一种电子器件,它利用半导体元件实现动作。
固态继电器具有快速响应、高寿命、低功耗等优点,广泛应用于电力、通信等领域。
3.光电继电器:光电继电器是一种利用光信号实现动作的继电器。
它具有抗干扰能力强、传输距离远等优点,广泛应用于光纤通信等领域。
4.热继电器:热继电器是一种利用温度变化实现动作的继电器。
它主要用于电动机等设备的过载保护。
四、继电器的应用继电器广泛应用于电力、通信、工业自动化等领域,以下是几个典型的应用:1.电力控制:在电力系统中,继电器被广泛应用于各种开关柜、配电柜等设备中,用于控制电路的通断,实现电力设备的自动化控制。
2.通信控制:在通信系统中,继电器用于信号的传递、转换和放大等功能。
例如,在电话交换机中,继电器用于实现通话线路的切换和信号的处理。
继电器的工作原理

继电器的工作原理引言概述:继电器是一种常用的电气控制器件,它在电路中起到开关的作用。
本文将详细介绍继电器的工作原理,包括继电器的基本结构、工作原理以及应用领域。
一、继电器的基本结构1.1 电磁线圈:继电器的核心部分是电磁线圈,它由导线绕成,当通电时产生磁场。
1.2 引线和触点:继电器还包括引线和触点,引线用于将电磁线圈与外部电路连接,触点则负责开关的功能。
1.3 外壳和保护装置:继电器通常有一个外壳来保护内部结构,并且配备了过载保护、短路保护等装置。
二、继电器的工作原理2.1 电磁吸引力:当继电器通电时,电磁线圈产生的磁场会吸引触点,使其闭合。
2.2 断开电路:当继电器断电时,磁场消失,触点则会弹开,断开电路。
2.3 控制信号:继电器可以通过控制信号的输入和断电来控制触点的闭合和断开,实现电路的开关控制。
三、继电器的应用领域3.1 自动化控制:继电器广泛应用于自动化控制系统中,如工业生产线、机械设备等。
3.2 电力系统:继电器在电力系统中起到保护作用,如过载保护、短路保护等。
3.3 通信设备:继电器也被用于通信设备中,如电话交换机、传真机等。
四、继电器的优势4.1 高可靠性:继电器具有较高的可靠性,能够在较恶劣的环境下正常工作。
4.2 适应性强:继电器适用于各种不同的电压和电流,具有较广泛的应用范围。
4.3 维护方便:继电器的结构相对简单,维护和更换触点也相对容易。
五、继电器的发展趋势5.1 小型化:随着科技的发展,继电器正朝着小型化的方向发展,体积越来越小,功能越来越强大。
5.2 集成化:继电器与其他电气元件的集成化趋势也越来越明显,能够实现更多的功能。
5.3 数字化:数字继电器的出现,使得继电器的控制更加智能化,能够实现远程控制和自动化。
结论:继电器作为一种常用的电气控制器件,其工作原理基于电磁吸引力和断开电路的原理。
继电器具有广泛的应用领域,包括自动化控制、电力系统和通信设备等。
它具有高可靠性、适应性强和维护方便等优势。
继电器的工作原理

继电器的工作原理继电器是一种电控制器件,广泛应用于电力系统、自动控制系统以及各种电子设备中。
它具有隔离、放大、转换信号等功能,可以实现电路的开关、保护和控制。
本文将详细介绍继电器的工作原理,包括继电器的结构、工作方式和应用场景。
一、继电器的结构继电器由电磁系统和触点系统组成。
电磁系统包括线圈和铁芯,触点系统包括正常触点和辅助触点。
1. 线圈:继电器的线圈由导线绕成,通常使用铜线或者铝线。
线圈通电时会产生磁场,使铁芯受力,进而控制触点的开闭。
2. 铁芯:铁芯是继电器中的重要部份,通常由软磁材料制成,如硅钢片。
线圈通电时,磁场会使铁芯磁化,产生吸引力或者排斥力,从而控制触点的状态。
3. 正常触点:正常触点是继电器的主要开闭部件,通常由银合金制成。
当继电器的线圈通电时,正常触点会受到铁芯的吸引力而闭合,断开线圈通电时则会弹开。
4. 辅助触点:辅助触点是继电器中的辅助开闭部件,通常与正常触点配合使用。
辅助触点可以实现多种功能,如电路的切换、保护和控制等。
二、继电器的工作方式继电器的工作方式可以分为吸引型和排斥型两种。
1. 吸引型继电器:吸引型继电器的线圈通电时,铁芯受到磁场的吸引力而被吸引,触点闭合。
断开线圈通电时,磁场消失,铁芯失去吸引力,触点弹开。
2. 排斥型继电器:排斥型继电器的线圈通电时,铁芯受到磁场的排斥力而被推开,触点断开。
断开线圈通电时,磁场消失,铁芯回到原位,触点闭合。
三、继电器的应用场景继电器广泛应用于各个领域,以下列举几个常见的应用场景。
1. 电力系统:继电器在电力系统中起到保护和控制的作用。
例如,继电器可以监测电流、电压等参数,一旦超过设定值,继电器会触发报警或者切断电源,保护电力设备和人身安全。
2. 自动控制系统:继电器在自动控制系统中用于实现电路的开关和控制。
例如,继电器可以实现灯光、机电、风扇等设备的自动控制,提高自动化程度和节能效果。
3. 电子设备:继电器在电子设备中用于信号转换和放大。
继电器的工作原理

继电器的工作原理引言概述:继电器是电气控制系统中常见的元件,它起到了电路开关的作用。
本文将详细介绍继电器的工作原理,包括其基本组成、工作方式、工作原理以及应用领域等方面,以帮助读者更好地理解和应用继电器。
正文内容:1. 继电器的基本组成1.1 电磁铁:继电器的核心部件,通过电流激励产生磁场,控制继电器的开关状态。
1.2 触点:继电器的开关部分,由触点片和触点弹簧组成,能够实现电路的通断。
1.3 引脚:连接继电器与外部电路的接口,通常包括控制端和输出端。
2. 继电器的工作方式2.1 电流控制型继电器:通过外部电流控制电磁铁的通断,进而控制触点的闭合和断开。
2.2 电压控制型继电器:通过外部电压控制电磁铁的通断,实现触点的开关。
2.3 磁控型继电器:通过外部磁场控制电磁铁的通断,控制触点的闭合和断开。
3. 继电器的工作原理3.1 吸合过程:当电流通过电磁铁时,电磁铁产生磁场,吸引触点片闭合,实现电路通断。
3.2 断开过程:当电流停止流过电磁铁时,电磁铁的磁场消失,触点弹簧的作用下,触点片断开,电路断开。
3.3 双刀触点:某些继电器具有两组触点,可以同时控制两个电路的通断。
4. 继电器的应用领域4.1 自动控制系统:继电器广泛应用于工业自动化控制系统中,如自动化生产线、机器人控制等。
4.2 电力系统:继电器在电力系统中起到保护和控制的作用,如过流保护、短路保护等。
4.3 交通运输:继电器在交通信号灯、电动车辆充电桩等领域发挥着重要作用。
4.4 电子设备:继电器也广泛应用于电子设备中,如计算机、通信设备等。
5. 继电器的发展趋势5.1 小型化:随着科技的发展,继电器正朝着体积更小、功耗更低的方向发展。
5.2 高可靠性:继电器的可靠性是应用的关键,未来继电器将更加稳定可靠。
5.3 智能化:继电器将与传感器、控制器等智能设备结合,实现更智能化的控制。
总结:通过对继电器的工作原理的详细阐述,我们了解到继电器的基本组成、工作方式和工作原理。
继电器的工作原理

继电器的工作原理继电器是一种电控开关装置,它通过电磁吸合和释放来控制电路的开关状态。
继电器广泛应用于各种电气控制系统中,具有可靠性高、适应性强、使用寿命长等特点。
本文将详细介绍继电器的工作原理。
一、继电器的构造和组成部分继电器主要由线圈、铁芯、触点和外壳等部分组成。
1. 线圈:继电器的线圈通常由绝缘电线绕制而成,其材料可以是铜线、铝线等。
线圈是继电器的控制部分,当通过线圈通电时,会产生电磁场。
2. 铁芯:铁芯是继电器的核心部分,通常由软磁材料制成,如铁氧体等。
铁芯的作用是集中和增强线圈产生的磁场,从而实现吸合和释放。
3. 触点:继电器的触点通常由导电材料制成,如铜、银合金等。
触点有常闭触点和常开触点两种形式,当继电器处于非工作状态时,常闭触点闭合,常开触点断开;当继电器处于工作状态时,常闭触点断开,常开触点闭合。
触点的开闭状态决定了继电器的工作状态。
4. 外壳:继电器的外壳通常由绝缘材料制成,用于保护内部的线圈、铁芯和触点等部分,防止外界灰尘、湿气等对继电器的影响。
二、继电器的工作原理继电器的工作原理可以分为两个过程:吸合和释放。
1. 吸合过程:当继电器的线圈通电时,线圈产生磁场,磁场通过铁芯集中和增强。
当磁场强度足够大时,触点由常闭触点状态转变为常开触点状态,这个过程称为吸合。
吸合后,继电器的常开触点闭合,通电电路得以通路,电器设备开始工作。
2. 释放过程:当继电器的线圈断电时,线圈产生的磁场消失,触点由常开触点状态转变为常闭触点状态,这个过程称为释放。
释放后,继电器的常闭触点闭合,通电电路断开,电器设备停止工作。
三、继电器的应用领域继电器广泛应用于各种电气控制系统中,如家用电器、工业设备、交通信号灯等。
1. 家用电器:继电器在家用电器中起到控制和保护的作用。
例如,冰箱中的压缩机和风扇的启停就是通过继电器来控制的。
2. 工业设备:继电器在工业设备中用于控制电动机、空调设备、照明设备等。
通过继电器可以实现对这些设备的启停、转向和速度调节等功能。
继电器的工作原理

继电器的工作原理继电器是一种电气控制装置,它通过电磁原理来控制较大电流的开关。
继电器通常由线圈、铁芯、触点和外壳组成。
下面将详细介绍继电器的工作原理。
1. 线圈部分:继电器的线圈通常由导线绕制而成,当通过线圈的电流发生变化时,会在线圈周围产生磁场。
这个磁场会对继电器的铁芯产生吸引力或排斥力,从而引起铁芯的运动。
2. 铁芯部分:继电器的铁芯通常由软磁材料制成,它的作用是增强磁场的传导和集中。
当线圈通电时,铁芯会受到磁场的吸引而向线圈移动,反之当线圈断电时,铁芯会被弹簧或其他机械装置弹回原位。
3. 触点部分:继电器的触点通常由导电材料制成,它们分为常闭触点和常开触点。
当线圈通电时,触点会发生状态改变,常闭触点断开,常开触点闭合,反之当线圈断电时,触点会恢复原来的状态。
4. 工作原理:当继电器的线圈通电时,产生的磁场使得铁芯被吸引,铁芯的运动会导致触点状态的改变。
通过控制线圈的通电和断电,可以实现对触点的控制。
继电器常用于控制电路中的开关,当线圈通电时,触点闭合,电流可以通过;当线圈断电时,触点断开,电流无法通过。
继电器的工作原理可以应用于各种电气控制系统中,例如家用电器、工业自动化设备等。
它具有以下优点:1. 电流和电压隔离:继电器的线圈和触点是隔离的,线圈通电时,触点处的电流和电压可以与控制电路隔离,从而保护控制电路的安全性。
2. 支持大电流控制:由于继电器的触点可以承受较大的电流,因此可以用于控制较高功率的电器设备。
3. 可靠性高:继电器的触点采用导电材料制成,具有较好的导电性能和耐久性,能够承受较长时间的开关操作。
4. 易于控制:继电器的线圈可以通过控制电压的变化来实现触点的开关,控制电压的变化可以通过开关、计算机或其他控制设备来实现。
需要注意的是,继电器的工作原理受到电磁干扰的影响,因此在实际应用中需要采取一些措施来减少干扰。
例如,可以采用屏蔽线圈、增加滤波电容等方式来提高继电器的抗干扰能力。
简述继电器工作原理
简述继电器工作原理继电器是一种常用的电气控制元件,它可以将小电流控制大电流的开关动作。
在工业自动化、家庭电器等各个领域都有广泛应用。
一、继电器的基本结构继电器由触点系统、驱动系统和外壳三部分组成。
触点系统包括正常状态下闭合(NO)和断开(NC)两组触点,驱动系统通过线圈产生磁场来控制触点的开关状态。
二、继电器的工作原理当给继电器线圈通上一定的直流或交流信号时,线圈内就会产生磁场。
这个磁场会引起铁芯上的铁芯片移动,使得接在铁芯片上的触点发生变化。
1. 常闭型继电器当线圈未通电时,常闭型继电器中NC触点处于闭合状态,NO触点处于断开状态。
当线圈通上一定信号后,产生磁场使得铁芯片吸引NC 触点打开,同时NO触点被关闭。
2. 常开型继电器当线圈未通电时,常开型继电器中NO触点处于闭合状态,NC触点处于断开状态。
当线圈通上一定信号后,产生磁场使得铁芯片吸引NO触点打开,同时NC触点被关闭。
3. 双刀双掷继电器双刀双掷继电器中有两组NO和NC触点,可以同时控制两个电路的开关。
当线圈未通电时,两组触点均处于常闭状态。
当线圈通上一定信号后,铁芯片会吸引其中一组触点切换到常开状态,同时另一组触点切换到常闭状态。
三、继电器的应用1. 自动控制系统在自动化生产中,继电器被广泛应用于自动控制系统中。
例如,在机床加工过程中可以通过继电器控制工件夹紧、送料等操作。
2. 家庭电器家庭中的许多电器也都使用了继电器来实现开关操作。
例如空调、洗衣机、烤箱等。
3. 保护装置在高压输变电系统中,继电器被广泛应用于保护装置中。
例如过流保护、零序保护等。
四、继电器的优缺点1. 优点:(1)可靠性高:由于采用机械式开关,因此继电器的可靠性较高。
(2)使用范围广:继电器可以控制各种类型的负载,如电动机、灯泡等。
(3)容易实现远距离控制:继电器可以通过信号线实现远距离控制。
2. 缺点:(1)寿命短:由于机械式开关的磨损,继电器的寿命相对较短。
(2)功率损耗大:由于线圈需要消耗一定的功率,因此在大功率负载下会产生一定的功率损耗。
继电器的工作原理
继电器的工作原理继电器是一种电气开关设备,通过控制小电流来开关大电流电路。
它常用于各种电气控制系统中,起到信号放大、电路隔离和自动控制的作用。
下面将详细介绍继电器的工作原理。
一、继电器的构造继电器主要由电磁系统和触点系统组成。
电磁系统包括电磁铁和铁芯,触点系统由触点、触点弹簧等组成。
1. 电磁铁:电磁铁由线圈和铁芯组成。
线圈通电时,会产生磁场,使铁芯磁化。
当线圈断电时,磁场消失,铁芯恢复非磁化状态。
2. 触点:继电器中的触点通常分为常开触点(NO)、常闭触点(NC)和公共触点(COM)。
当继电器处于未动作状态时,常开触点与公共触点断开,常闭触点与公共触点闭合。
当继电器动作时,常开触点闭合,常闭触点断开。
二、继电器的工作原理可以分为两种情况:吸合和释放。
1. 吸合过程:(1) 当线圈通电时,产生磁场,使铁芯磁化。
磁化后的铁芯吸引触点系统,使触点闭合。
(2) 触点闭合后,控制电路中的电流可以通过继电器,实现对大电流电路的控制。
2. 释放过程:(1) 当线圈断电时,磁场消失,铁芯恢复非磁化状态。
(2) 非磁化状态的铁芯再也不吸引触点系统,触点弹簧的作用下,触点恢复到初始状态,常开触点断开,常闭触点闭合。
三、继电器的应用继电器广泛应用于各种电气控制系统中,如家用电器控制、工业自动化控制等。
以下是几个常见的继电器应用实例:1. 家用电器控制:继电器可以用于家用电器的控制开关,如电视机、空调等。
通过继电器的吸合和释放,实现对家用电器的开关控制。
2. 电动机控制:继电器可以用于电动机的启停控制。
通过继电器控制电动机的电源,实现电动机的启动和住手。
3. 照明控制:继电器可以用于照明系统的控制。
通过继电器的开关控制,实现对照明灯的开关和亮度调节。
4. 安防系统:继电器可以用于安防系统的控制。
通过继电器的动作,实现对报警器、摄像头等设备的开关控制。
综上所述,继电器是一种电气开关设备,通过控制小电流来开关大电流电路。
继电器的工作原理
继电器的工作原理继电器是一种电控开关装置,它通过控制小电流来开关大电流,常用于电力系统、自动化设备和通信系统中。
它的工作原理基于电磁感应和电磁吸合。
一、基本结构继电器由铁芯、线圈、触点和外壳组成。
铁芯是继电器的核心部件,由软磁材料制成,起到集中磁场的作用。
线圈是继电器的输入端,通电时产生磁场。
触点是继电器的输出端,根据线圈的磁场强弱来开关电路。
外壳用于保护内部结构。
二、工作原理1. 吸合过程当线圈通电时,产生磁场,磁场通过铁芯,使得铁芯磁化。
磁化后的铁芯会吸引触点,使得触点闭合,从而形成通路,电流可以流过。
这个过程称为吸合。
2. 断开过程当线圈断电时,磁场消失,铁芯失去磁化。
失去磁化后的铁芯不再具有磁性,触点失去吸引力,回到原位,触点断开,电路断开。
这个过程称为断开。
3. 控制电路继电器的线圈通电可以通过开关、传感器、计算机等控制。
通过控制线圈通断电,可以实现对触点的开关控制,从而达到控制电路的目的。
三、应用领域继电器广泛应用于各个领域,包括电力系统、自动化设备和通信系统等。
以下是几个典型的应用案例:1. 电力系统继电器在电力系统中起到了重要的作用,用于保护和控制电力设备。
例如,过流继电器可以监测电流是否超过额定值,当电流超过额定值时,继电器会触发保护动作,切断电路,保护设备安全运行。
2. 自动化设备继电器在自动化设备中用于实现信号的转换和控制。
例如,温度继电器可以根据温度的变化来控制加热或制冷设备的开关,实现温度的自动调节。
3. 通信系统继电器在通信系统中用于信号的转发和放大。
例如,电话继电器可以将低电平的语音信号转换为高电平的信号,以便传输信号的远距离传输。
四、优点和局限性继电器具有以下优点:1. 可靠性高:继电器的触点可以承受较大的电流和电压,具有较高的耐久性。
2. 隔离性好:继电器的线圈和触点之间有良好的隔离,可以避免干扰和电气噪声。
3. 适应性强:继电器可以适应不同的电压和电流要求,具有较大的适应范围。
继电器的工作原理
继电器的工作原理继电器是一种电气控制器件,通过控制一个电路的开关状态来控制另一个电路的通断。
它是电磁原理与机电原理相结合的产物,具有放大、隔离和自锁等功能。
下面将详细介绍继电器的工作原理。
一、继电器的基本结构继电器主要由电磁系统、触点系统和外壳组成。
1. 电磁系统:由线圈和铁芯组成。
线圈是继电器的输入端,通过通电产生磁场。
铁芯是电磁系统的核心部份,能够吸引或者释放触点。
2. 触点系统:包括常闭触点(NC)、常开触点(NO)和公共触点(COM)。
当继电器处于非动作状态时,常闭触点与公共触点连接;当继电器动作时,常开触点与公共触点连接。
3. 外壳:起到保护继电器内部元件和隔离外界环境的作用。
二、继电器的工作原理继电器的工作原理基于电磁感应和机械开关的原理。
1. 非动作状态:当继电器未通电时,线圈中没有电流通过,此时铁芯不具有磁性,触点处于常闭状态。
常闭触点与公共触点连接,常开触点与公共触点断开。
2. 动作状态:当继电器通电时,线圈中产生磁场,磁场使得铁芯具有磁性,吸引触点。
触点由常闭状态转变为常开状态。
常闭触点与公共触点断开,常开触点与公共触点连接。
3. 自锁功能:继电器在动作状态下,即使断开输入电源,触点仍然保持在原来的状态。
这是因为继电器中的自锁回路使得线圈继续通电,保持磁场的存在,从而保持触点的状态。
三、继电器的应用继电器广泛应用于各个领域,包括家用电器、工业自动化、通信设备等。
1. 家用电器:继电器可用于家庭电路的控制,如灯光开关、空调控制等。
2. 工业自动化:继电器可用于自动化设备的控制,如机器人、生产线等。
3. 通信设备:继电器可用于通信设备中的信号转换和信号放大。
四、继电器的优点和局限性继电器具有以下优点:1. 隔离性:继电器能够隔离控制信号和被控制电路,保护控制系统和被控制设备。
2. 放大功能:继电器能够将微弱的控制信号放大到较大的电流或者电压,以控制高功率电路。
3. 可靠性:继电器具有较高的可靠性和稳定性,能够长期工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
继电器工作原理知识整理
继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。
故在电路中起着自动调节、安全保护、转换电路等作用。
继电器是什么?
所属学科:电力(一级学科) ;继电保护与自动化(二级学科)
继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。
故在电路中起着自动调节、安全保护、转换电路等作用。
继电器的定义:继电器是一种当输入量(电、磁、声、光、热)达到一定值时,输出量将发生跳跃式变化的自动控制器件。
继电器常识
继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。
故在电路中起着自动调节、安全保护、转换电路等作用。
继电器几种作用:
1) 扩大控制范围。
例如,多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、开断、接通多路电路。
2) 放大。
例如,灵敏型继电器、中间继电器等,用一个很微小的控制量,可以控制很大功率的电路。
3) 综合信号。
例如,当多个控制信号按规定的形式输入多绕组继电器时,经过比较综合,达到预定的控制效果。
4) 自动、遥控、监测。
例如,自动装置上的继电器与其他电器一起,可以组成程序控制线路,从而实现自动化运行。
电磁继电器的工作原理和特性
电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。
只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。
当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。
这样吸合、释放,从而达到了在电路中的导通、切断的目的。
对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。
固态继电器的原理及结构
SSR按使用场合可以分成交流型和直流型两大类,它们分别在交流或直流电源上做负载的开关,不能混用。
下面以交流型的SSR为例来说明它的工作原理,图1是它的工作原理框图,图1中的部件①-④构成交流SSR的主体,从整体上看,SSR只有两个输入端(A 和B)及两个输出端(C和D),是一种四端器件。
工作时只要在A、B上加上一定的控制信号,就可以控制C、D两端之间的“通”和“断”,实现“开关”的功能,其中耦合电路的功能是为A、B端输入的控制信号提供一个输入/输出端之间的通道,但又在电气上断开SSR中输入端
和输出端之间的(电)联系,以防止输出端对输入端的影响,耦合电路用的元件是“光耦合器”,它动作灵敏、响应速度高、输入/输出端间的绝缘(耐压)等级高;由于输入端的负载是发光二极管,这使SSR的输入端很容易做到与输入信号电平相匹配,在使用可直接与计算机输出接口相接,即受“1”与“0”的逻辑电平控制。
触发电路的功能是产生合乎要求的触发信号,驱动开关电路④工作,但由于开关电路在不加特殊控制电路时,将产生射频干扰并以高次谐波或尖峰等污染电网,为此特设“过零控制电路”。
所谓“过零”是指,当加入控制信号,交流电压过零时,SSR即为通态;而当断开控制信号后,SSR要等待交流电的正半周与负半周的交界点(零电位)时,SSR才为断态。
这种设计能防止高次谐波的干扰和对电网的污染。
吸收电路是为防止从电源中传来的尖峰、浪涌(电压)对开关器件双向可控硅管的冲击和干扰(甚至误动作)而设计的,一般是用“R-C”串联吸收电路或非线性电阻(压敏电阻器)。
图2是一种典型的交流型SSR的电原理图。
直流型的SSR与交流型的SSR相比,无过零控制电路,也不必设置吸收电路,开关器件一般用大功率开关三极管,其它工作原理相同。
不过,直流型SSR在使用时应注意:①负载为感性负载时,如直流电磁阀或电磁铁,应在负载两端并联一只二极管,极性如图3所示,二极管的电流应等于工作电流,电压应大于工作电压的4倍。
②SSR工作时应尽量把它靠近负载,其输出引线应满足负荷电流的需要。
③使用电源属经交流降压整流所得的,其滤波电解电容应足够大。
图4 给出了几种国内、外常见的SSR的外形。