单相异步电容运转电机设计程序

合集下载

集中绕组单相电容运转电机设计及工艺

集中绕组单相电容运转电机设计及工艺

铁心 既能 大幅降低 电机 的漆 包线材料用量 ,同时也 能大 幅提高 了硅钢 片的利用 率 ;辅 以合理 的在排 料上正/ 反嵌 套 高速冲载 、自动叠扣 、多头绕线 、抱箍 自动成 圆等创新工艺 ,能大幅度提 高铁心和 电机的生产效 率 ;在定子齿上 的 虚拟齿槽 设计 、转子“ V ” 型斜槽 创新设计 、一 端的端盖随定 子塑封成 型工艺 ,町以有效地 改善 和降低电机噪 音 ;理 论与实际生产证明 :这种铁心的设计和制造工艺提高 了电机 的质量 、生产效率 ,降低 电机 的材料 和制造成本 。
Co n c e nt r a t e d Wi nd i ng Abo ut S i n g l e - p ha s e Ca p a c i t o r Ru nn i ng
Mo t o r De s i g n a nd Ma n uf a c t u r i ng Te c h no l o g y
mo t o r ,s e g me n t e d e o r e d e s i g n a n d p r o c e s s i n g t e c h n o l o g y .T h e s e g me n t e d c o r e n o t o n l y s i g n i i f c a n t l y r e d u c e d
关键词 :分块铁心 ;有限元分析 ;集 中绕组 ;抱箍成 圆工艺 ;单相塑封异步 电动机
中图 分 类 号 :T M 3 0 5 . 1 ;T M 3 4 3 文 献 标 志 码 :A 文 章 编 号 :1 0 0 1 — 6 8 4 8 ( 2 0 1 5 ) 0 2 — 0 0 8 4 — 0 4
L0U Zh i g a n g

单相电容运转异步电机

单相电容运转异步电机

单相电容运转异步电机
单相电容运转异步电机:
单相电容运转异步电动机简称电容电动机。

这类电机在运行时,副绕组也连于电网上同时工作,且经适当设计可使电机对既定负载呈圆形旋转磁场运行。

单相双电容电动机称为单相双值电容异步电动机,属于电容分相原理电动机。

1、结构原理:
电容分相电动机的转子绕组是浇筑成型的鼠笼式,定子上饶有2组空间位置上相差90°的启动绕组B和工作绕组A,从而获得电角度ω为90°的两相交变电流,保证旋转磁场的形成条件。

(如图一所示)2、工作原理:
电容式单相电动机通过电容移相作用,将单相交流电分离出另一相相位差90度的交流电,获得两相交变电流并分别送入2个绕组。

工作原理流程如下:
定子绕组通入电角度相差90°的两相电流→定子上形成旋转磁场→转子切割磁力线产生感应电流→感应电流产生旋转磁场→转子磁场与定子磁场相互作用→转子转动。

扩展资料
在单相电动机中,产生旋转磁场的另一种方法称为罩极法,又称单相罩极式电动机。

此种电动机定子做成凸极式的,有两极和四极两种。

每个磁极在1/3-1/4全极面处开有小槽,把磁极分成两个部分,在小的部分上套装上一个短路铜环,好象把这部分磁极罩起来一样,所以叫罩极式电动机。

单相绕组套装在整个磁极上,每个极的线圈是串联的,连接时必须使其产生的极性依次按N、S、N、S排列。

当定子绕组通电后,在磁极中产生主磁通,根据楞次定律,其中穿过短路铜环的主磁通在铜环内产生一个在相位上滞后90度的感应电流,此电流产生的磁通在相位上也滞后于主磁通,它的作用与电容式电动机的起动绕组相当。

从而产生旋转磁场使电动机转动起来。

单相异步双电容电机工作制

单相异步双电容电机工作制

单相异步双电容电动机的工作制通常是指电机在不同负载条件下的运行方式,它主要设计用于克服单相交流电源供电时产生的启动困难和运行效率低的问题。

这种电机通过添加两个电容器(启动电容和运行电容)来模拟两相电源的效果,从而产生旋转磁场驱动转子运转。

工作制可以分为以下几种情况:
1. 启动阶段:
- 启动时,电机使用一个较大的启动电容(C1),该电容与主绕组串联或并联以提高起始启动扭矩,帮助电机克服静摩擦力和负载阻力而开始旋转。

2. 运行阶段:
- 一旦电机达到一定的自维持速度(即接近同步转速的某一百分比),启动电容可以通过离心开关或者电子控制装置被断开,不再参与工作。

- 运行电容(C2)继续保持与辅助绕组(或有时是主绕组的一部分)连接,继续提供必要的相位差,维持一个相对稳定的旋转磁场,确保电机在正常工作负荷下持续稳定运行。

3. 连续运行:
- 在连续运行状态下,电机依靠运行电容提供适当的移相作用,保持电机的稳定旋转和输出功率。

总之,单相异步双电容电机的工作制主要关注其从启动到运行状态的转换过程,以及如何利用不同容量的电容有效地应对不同的电机运行工况。

单相电机设计程序

单相电机设计程序

18 端环修正系数: 19 卡氏系数: 定子: 转子: 20 气隙有效长度: (四)主绕组计算 1 平均跨距:正弦分布查表13,非正弦按附录A计算 绕组系数: 2 初选气隙磁密:4000~7500,大容量选大值 3 假设齿饱和系数:ks'=1.1~1.5 由ks'从表3或图3查得极弧系数:α 波形系数:kB 4 每极磁通量初值: 5 总串联有效导线数初值: 压降系数Ke'=0.75~0.92,功率大者与极少数者取大值 6 总串联导线数初值: 7 每极串联导线数:
3 输出功率: 4 最大转矩: (十一)发热因素计算 1) 电阻起动、电容起动 1 线负荷: 2 发热因素: 2) 电容运转、双值电容: 1 主绕组线负荷: 2 负绕组线负荷: 3 发热因素: (十二)有效材料计算 1 硅钢片重: 2 主绕组铜重: 3 副绕组铜重: 4 总铜重: 5 转子导条铝重: 6 转子端环铝重:
L2=0.623
2 漏磁系数: 3 每极磁通: 4 气隙磁密: 电容运转、双值电容: 电阻启动、电容启动: 5 定子齿磁密: 6 转子齿磁密: 7 定子轭磁密: 8 转子轭磁密: 9 由磁密按硅钢牌号从表5、7、9中查出安匝数
10 气隙安匝数: 11 定子齿安匝数: 12 转子齿安匝数: 13 定子轭安匝数: 14 转子轭安匝数: 轭部磁路校正系数C1、C2查图11 15 磁饱和系数: 若│ks-ks'│/ks>0.05,重新假设ks',再计算 16 总安匝数: 17 总饱和系数: 18 满载激磁电流: 19 激磁电抗: (七)铁耗、机械耗 1 2 3 4 5 6 系数: 定子齿重: 定子轭重: 转子齿重: 转子轭重: 单位铁耗: 由Bt1、Bt2、By1、By2按硅钢片牌号 从表6、8、10中查出单位损耗

电容启动式单相异步电机介绍

电容启动式单相异步电机介绍

电容启动式单相异步电机介绍电容启动式单相异步电机是一种常见的单相电机类型,它通过电容来实现启动和运行。

本文将对电容启动式单相异步电机的原理、结构和应用进行详细介绍。

一、原理电容启动式单相异步电机利用了电容在电路中的特性,通过改变电路的相位关系来实现启动。

在电机启动的过程中,通过一个启动电容器与主线圈并联,形成一个相位差90°的人工磁场,从而产生一个旋转的磁场。

这个旋转的磁场与电机的转子磁场相互作用,产生转矩,使电机启动并运行。

二、结构电容启动式单相异步电机的结构与普通的单相异步电机基本相同,主要由定子、转子和电容器组成。

定子是一个具有齿槽的铁心,上面绕有主线圈和辅助线圈。

转子是一个由导体材料制成的铁心,通常是一个铝制的圆筒形结构。

电容器则是连接在辅助线圈上的一个电容器,用来实现启动过程中的相位差。

三、工作过程电容启动式单相异步电机的工作过程可以分为启动和运行两个阶段。

1. 启动阶段:在电机启动时,电容器与辅助线圈并联,形成一个相位差90°的人工磁场。

当电机通电后,主线圈和辅助线圈中的电流会产生一个旋转的磁场,与转子磁场相互作用,产生转矩。

这个转矩将使电机开始转动,并逐渐加速。

2. 运行阶段:当电机达到一定的转速后,启动电容器会被一个启动开关断开,此时电容器不再参与电路,电机只依靠主线圈来运行。

主线圈产生的磁场仍然与转子磁场相互作用,维持电机的运转。

四、应用电容启动式单相异步电机由于其简单、可靠、经济的特点,广泛应用于家用电器、电动工具、小型机械和农业领域等。

例如,家用洗衣机、空调、冰箱等都采用了电容启动式单相异步电机作为驱动装置。

此外,电容启动式单相异步电机还可以用于水泵、风扇、压缩机等领域。

总结:电容启动式单相异步电机是一种常见的单相电机类型,通过电容来实现启动和运行。

它的原理是利用电容在电路中的特性,通过改变电路的相位关系来实现启动。

电容启动式单相异步电机的结构包括定子、转子和电容器。

单相异步电动机运行电容和启动电容接法

单相异步电动机运行电容和启动电容接法

单相异步电动机运行电容和启动电容接法
单相异步电动机运行电容和启动电容的接法有两种常见的方式:"串联接法"和"并联接法"。

1. 串联接法(运行电容和启动电容串联接法):
- 这种接法中,运行电容器和启动电容器连接在一起,并串联
连接到电机的起动线圈。

- 在电机启动的时候,启动电容器提供起动电流帮助电机启动,一旦电机达到正常运行速度后,启动电容器自动脱离电路。

- 运行电容器的作用是提供电机运行所需的支持电流,以维持
电机的运行。

2. 并联接法(运行电容和启动电容并联接法):
- 在这种接法中,运行电容器和启动电容器分别并联连接到电
机的运行线圈和起动线圈。

- 运行电容器是一直处于电机运行状态下的,它提供所需的功
率因数校正和线圈发热控制。

- 启动电容器则主要用于电机的起动,提供起动电流帮助电机
启动,一旦电机达到正常运行速度后,启动电容器自动脱离电路。

这两种接法的选择依赖于电机的具体应用和要求。

串联接法主要适用于低功率的单相异步电动机,而并联接法适用于较高功率的单相异步电动机。

单相电机的设计

单相电机的设计

1.2 单相电动机的绕组
1 2 3 4 5 6
单相异步电动机的绕组主要是定子铁心上放置的两相绕组:主绕组和副绕组,2 个 绕组在定子内圆空间要互差 90 电度角,如果已知定子槽数 N 1 =16,极对数 p =2:
D D
1 单层同心式绕组的连接方法如绕组展开图 1-6
C
m'
a'
C
m
a
1
2
3
4 5
6
5
1.3 单相异步电动机的磁势
1.3.1 电机内一个整距线圈产生的磁势
如图所示电机定子槽内有一个整距线圈 AX,匝数为 W y 通入电流为 i y 它将在电机内 产生一个两极磁场。设其一时间,线圈中电流方向如图中所示,可以画出电机中磁力线 的分布。线圈的匝数 W y 愈多,电流 i y 愈大,电机内每极磁通量也就愈大。在电机内任 取一个磁力线回路来分析,如图中 abcd 回路,这个磁回路是由一段定子磁路 ab,一段 转子磁路 cd, 二段空气隙磁路 bc 和 da 组成。 根据磁路的全电流定律, 沿任一个磁回路, 各段磁路的磁位降之和应等于该磁路包围的全部安匝数,可用公式表示为
H L W
y
iy
(1-3)
式中: H 为各段磁路的平均磁场强度; L 为各段磁路的平均长度。
图 1-8 定子圆周内的磁势分布
可以看到, 在上图中定子内圆周上各处都有磁力线回路, 对于任何一个磁力线回路, 它们都象 abcd 回路那样, 每个回路包围一定的安匝数即磁动势, 每个回路都经过两次气 隙磁路中一次定子铁心,一次转子铁心。因为铁心的导磁率碧空气隙的导磁率大得多, 所以一段空气隙磁路的磁阻 R m 。比一段铁心磁路的磁阻 R m 要大得多,即 R m 0 》 R m 。为 了简化问题,我们可以忽略铁心磁路的磁阻 R m ,可以认为磁动势 W y i y 全部消耗在两个 空气隙磁路中,这时每个空气隙磁路消耗的磁势,即磁位降为 1 H L W y i y (1-4) 2 式中: H 为空气隙磁路的磁场强度; L 为空气防磁路酌长度。 对应于各个磁回路,可以计算出各个空气隙磁路所消耗的磁势,它们有可能相同, 有可能不同,视该回路包围的安匝数大小来确定。为了把通过定子内圆圆周上不同点的 磁力钱回路中所包围的安匝数,即气隙磁路所消耗的磁势形象地表示出来,我们可画出 如图 1-8 所示的磁势分布图。我们在定子内圆上先选一个坐标原点 0,经常把它设在线

毕业设计单相电容运转异步电动机

毕业设计单相电容运转异步电动机

毕业设计单相电容运转异步电动机
标题:单相电容运转异步电动机的设计和性能分析
摘要:
单相电容运转异步电动机是一种常用的电力驱动设备,本文通过对该电动机的设计和性能进行分析,探讨了其工作原理、特点以及在实际应用中的优缺点。

本文采用了电机设计软件进行电机的参数计算,并通过实验验证设计结果的准确性。

通过对电机的性能测试与分析,评估了电机在不同负载和转速条件下的效率和功率因数等性能指标,为实际应用提供了参考依据。

1.引言
1.1研究背景
1.2目的和意义
1.3研究内容和方法
2.单相电容运转异步电动机的工作原理
2.1双绕组异步电动机的基本组成
2.2单相电容运转异步电动机的工作原理
3.单相电容运转异步电动机的设计
3.1设计参数计算
3.2设计结果分析
4.实验验证
4.1实验设置和过程
4.2实验结果分析
5.电机性能分析
5.1效率与功率因数特性曲线分析
5.2负载特性分析
6.单相电容运转异步电动机的优缺点
6.1优点
6.2缺点
7.结论
以上是一个关于单相电容运转异步电动机的毕业设计文档的大致框架。

在具体编写过程中,可根据实际情况进行适度调整和补充,确保文档内容
完整、合理。

在每个章节中,应包括相关理论知识、设计方法和结果分析
等内容,以便读者全面了解该电动机的设计和性能。

同时,通过实验验证
和性能分析,可提供对该电动机在实际应用中的指导建议。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单相异步电容运转电机设计程序
单相异步电容运转电机(Capacitor Start Motor)是一种常见的电
动机类型,它通过使用一个辅助电容器来提供额外的相位差,从而帮助电
动机启动和运转。

在这篇文章中,我们将介绍单相异步电容运转电机的设
计程序。

首先,我们需要确定电机的额定功率和额定电压。

根据应用需求和负
载情况,选择适当的额定功率和额定电压。

通常,可以参考相关标准和规
范来选择电机的额定参数。

第二步是确定电机的工作频率。

单相异步电容运转电机通常在50Hz
或60Hz的工频下运转。

根据所在地区的电网标准,确定电机的工作频率。

接下来,我们需要计算所需的电容值。

电容器的选择应该考虑到负载
特性、启动需求和额定功率。

通常,可以使用以下公式计算所需的电容值:
C = (7 to 10) x (P / V^2)
其中,C表示所需的电容值(单位为法拉),P表示额定功率(单位
为瓦特),V表示额定电压(单位为伏特)。

根据计算结果,选择合适的
电容器。

然后,我们需要选择适当的启动电容器和启动电阻。

启动电容器用于
提供相位差,启动电阻用于限制启动电流。

根据电动机的大小和额定功率,可以参考相关的数据表和图表来选择适当的启动电容器和启动电阻。

此外,我们还需要选择合适的启动开关和保护装置。

启动开关用于控
制电机的启动和停止,保护装置用于保护电机免受过载、短路和其他故障
的影响。

根据电动机的规格和应用需求,选择适当的启动开关和保护装置。

最后,我们需要设计电机的整体结构和外壳。

根据电机的类型和应用
需求,选择适当的材料和制造工艺,设计合适的外壳和支架。

确保电机的
结构和外壳符合相关的安全标准和规范。

在电机的设计过程中,还应考虑到电机的效率、功率因数和噪音水平。

通过合适的设计和选择合适的组件,可以提高电机的效率和功率因数,并
减少噪音水平。

总结来说,单相异步电容运转电机的设计程序包括确定额定功率和额
定电压、确定工作频率、计算电容值、选择启动电容器和启动电阻、选择
启动开关和保护装置,以及设计电机的整体结构和外壳。

通过合适的设计
和选择合适的组件,可以设计出高效、可靠和安全的单相异步电容运转电机。

相关文档
最新文档