动能定理机械能守恒定律和能量守恒定律
机械能守恒定律、能量守恒定律讲解

这个式子就是质点系的功能原理,它表示质点系机械能的增量等于外力与非保 守内力所做的功之和,当外力与非保守内力等于零时,可以推导出ΣEki + ΣEpi = ΣEpi0 + ΣEki0,这就是质点系的机械能守恒定律,它表明当外力和非保守内 力不做功或者做功的代数和为零时,质点系的总机械能保持不变;
《机械能守恒定律与能量守恒定律, 理想与现实的对抗》
前两章分别讲了动能和势能,并介绍了相应的定理,在此基础上,本章将对由 动能和势能所组成的机械能进行详细地讲解,并说明他们所遵循的定律。
如果有一个力作用于某个质点系,第一个质点的初动能为Ek10,末动能为Ek1; 第二个质点的初动能为Ek20,末动能为Ek2;第三个质点的初动能为Ek30,末 动能为Ek3。那么第i个质点就是Eki0、Eki,用Σ表示求和符号,于是以上规律 就可以写成ΣWi=ΣEki-ΣEki0,这就是质点系的动能定理。
发动机产生的动能通过传动机构传给轮胎,使整个汽车具有平动动能,转动部 分则具有转动动能,而汽车运动时又会与空气和地面摩擦,因此一部分化学能 又转化为摩擦热,图中的箭头表示了汽油化学能的最终去处。
介绍完了机械能守恒定律,那么在下一章《不要把宇宙速度看得太神秘,他们 的诞生都是以逃离地球为出发点》中,就以机械能守恒然界完全隔离,那这个系统必然会和自然界发 生能量转化,以汽车为例子,我们知道汽车的最终能量来源是汽油,汽油存储 着化学能,当汽油进入发动机气缸燃烧时,化学能释放出来,其中一部分转化 为发动机转子的转动动能,由于发动机与整个汽车都有接触,因此汽油燃烧的 化学能还要转化为汽车各个部件热能,也就是汽车升温,同时汽车与空气接触, 这些热量还会传向空气分子;
机械能守恒定律3种表达式_机械能量守恒定律公式汇总

机械能守恒定律3种表达式_机械能量守恒定律公式汇总机械能守恒定律的概念在只有重力或弹力做功的物体系统内(或者不受其他外力的作用下),物体系统的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总能量保持不变。
这个规律叫做机械能守恒定律。
机械能守恒定律(lawofconservationofmechanicalenergy)是动力学中的基本定律,即任何物体系统。
如无外力做功,系统内又只有保守力(见势能)做功时,则系统的机械能(动能与势能之和)保持不变。
外力做功为零,表明没有从外界输入机械功;只有保守力做功,即只有动能和势能的转化,而无机械能转化为其他能,符合这两条件的机械能守恒对一切惯性参考系都成立。
这个定律的简化说法为:质点(或质点系)在势场中运动时,其动能和势能的和保持不变;或称物体在重力场中运动时动能和势能之和不变。
这一说法隐含可以忽略不计产生势力场的物体(如地球)的动能的变化。
这只能在一些特殊的惯性参考系如地球参考系中才成立。
如图所示,若不考虑一切阻力与能量损失,滚摆只受重力作用,在此理想情况下,重力势能与动能相互转化,而机械能不变,滚摆将不断上下运动。
机械能守恒定律守恒条件机械能守恒条件是:只有系统内的弹力或重力所做的功。
【即忽略摩擦力造成的能量损失,所以机械能守恒也是一种理想化的物理模型】,而且是系统内机械能守恒。
一般做题的时候好多是机械能不守恒的,但是可以用能量守恒,比如说把丢失的能量给补回来。
从功能关系式中的WF外=△E机可知:更广义的机械能守恒条件应是系统外的力所做的功为零。
当系统不受外力或所受外力做功之和为零,这个系统的总动量保持不变,叫动量守恒定律。
当只有动能和势能(包括重力势能和弹性势能)相互转换时,机械能才守恒。
机械能守恒定律的三种表达式1.从能量守恒的角度选取某一平面为零势能面,系统末状态的机械能和初状态的机械能相等。
2.从能量转化的角度系统的动能和势能发生相互转化时,若系统势能的减少量等于系统。
3 动能定理 功能原理 机械能守恒定理

注意 功和动能都与 参考系有关;动能定理仅适用于惯性系 .
动能 能量守恒定律
质点系统动能定理
每一个质点都满足动能定理,则有
A1 12 m 1v12 12m1v120
Ai
1 2
mi vi2
1 2
mi vi20
以上各式左右分别相加
对称性与守恒定律
F1
m2
都有这一特点
A
B
C
保守力作的功,是位置的单值函数;
D
那么,我们就可以引入仅是位置的单
B
值函数的能量,叫作保守力的势能,
也叫作位能。
动能 能量守恒定律
对称性与守恒定律
五 势能
势能 与物体间相互作用及相对位置有关的能量 .
重力功
重力势能
A (mgzB mgzA )
引力功
A
(G
械能的改变。
动能 能量守恒定律
九 机械能守恒定律 功能原理
对称性与守恒定律
A外 A非 保 内 E
当 A外 A非 保内 0 时,有 E1 E2
机械能守恒定律: 只有保守内力作功的情况下,质 点系的机械能保持不变 .
注意: 1、机械能守恒是有条件的。从初态到末态的每一个微元 过程中,外力和非保守内力所做的元功的代数和均为零, 则机械能守恒。
9/4
4dy 9.125J
1
动能 能量守恒定律
对称性与守恒定律
例:质量为 m 的物体放在水平桌面上,物体和桌面的摩 擦系数为 ,物体在外力作用下沿半径为R圆由a运动 到b,移动了半个圆周,求在这一过程中摩擦力的功。
这是力的大小不变,物 体沿曲线运动的例子
动能定理与机械能守恒

动能定理和机械能及其守恒定律1.动能定理:(合外力的功等于物体动能的变化量)(1)“221mv ”是一个新的物理量(2)2221mv 是物体末状态的一个物理量,2121mv 是物体初状态的一个物理量。
其差值正好等于合力对物体做的功。
(3)物理量221mv 定为动能,其符号用E K表示,即当物体质量为m ,速度为V 时,其动能:E K=221mv (4)动能是标量,单位焦耳(J )(5)含义:动能是标量,同时也是一个状态量(6)动能具有瞬时性,是个状态量:对应一个物体的质量和速度就有一个动能的值。
①当合力做正功时,物体动能增加。
②当合力做负功时,物体动能减小。
③当物体受变力作用,可把过程分解成许多小段每一段按照恒力运动是直线分段求解。
④当物体做曲线运动时,可把过程分解成许多小段每一段按照恒力运动是直线分段求解。
2. 机械能及其守恒定律(关键是把握什么能转化为什么能,在不守恒情况下一般都是有摩擦力做功即产生热能)1、机械能(1)定义:物体的动能和势能之和称为物体的机械能。
机械能包括动能、重力势能、弹性势能。
(2)表达式:E=EK+EP这些不同形式的能是可以相互转化的,那么在相互转化的过程中,他们的总量是否发生变化?这节课我们就来探究这方面的问题。
2、机械能守恒定律推导:质量为m 的物体自由下落过程中,经过高度h 1的A 点时速度为v 1,下落至高度h 2的B 点处速度为v 2,不计空气阻力,取地面为参考平面,试写出物体在A 点时的机械能和B 点时的机械能,并找到这两个机械能之间的数量关系。
A 点 12121mgh mv E E E PA kA A+=+= B 点 22221mgh mv E E E PB kB B +=+=根据动能定理,有21222121mv mv W G -=重力做功在数值上等于物体重力势能的减少量。
21mgh mgh W G -=由以上两式可以得到121222mgh mv 21mgh mv 21+=+ 即 1122p k p k E E E E +=+即 12E E =可见:在只有重力做功的物体系统内,动能和重力势能可以相互转化,而总的机械能保持不变。
动能定理,机械能守恒定律,能量守恒定律,动量定理,动量守恒定理的内容,表达式,适用条件。

动能定理,机械能守恒定律,能量守恒定律,动量定理,动量守恒定理的内容,表达式,适用条件。
动能定理指的是物体受到力的加速,物体的动能就会增加,其表达
式为:
µv2 =W,其中µ为物体的质量,v为物体的速度,W为物体受力的势能。
只要施加力,物体的动能就会改变,当物体处于静止状态时,动
能为零。
机械能守恒定律认为物体的机械能是不变的,总的机械能等于其动能
与势能的总和,表达式为:K0+U0=K+U,其中K0是物体的初始动能,U0为物体初始势能,K是物体的最终动能,U为物体的最终势能,表
示物体的动能和势能之和均不变、守恒。
能量守恒定律认为,物质运动时,能量不会被创建或消失,也就是说
能量是守恒的,它们只能以同样的形式互相转变,表达式为:Ε=Ε0,
其中Ε表示物体最终的能量,Ε0代表物体的初始能量,Ε等于Ε0,表
示能量守恒。
动量定理指的是物体受到力时,其动量就会改变,表达式为:p = mv,其中p为物体的冲量,m为物体的质量,v是物体的速度,物体的冲量
与其质量和速度成正比。
动量守恒定律认为物体的总冲量是守恒的,不会改变,表达式为:
∆p=0,虽然物体加力后,它的总冲量会改变,但是这个变化是可以由
其他物体抵消的,总的冲量是守恒的。
所有这些定律和定理都适用于物体受到力而加速或减速运动时,其运动规律是相同的,即动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定理的适用。
只要物体的势能发生变化,就可以使用这些定律和定理来描述物体的运动特性。
大学物理(3.4.2)--功能原理机械能守恒定律能量守恒定律

第四讲功能原理 机械能守恒定律 能量守恒定律k k k i i i i ii e E E E v m v m W W ∆=-=-=+∑122122)2121(系统的外力和内力作功的总和等于系统动能的增量。
回顾前面学过的知识点:1. 质点系动能定理P1p 2p )(E E E W ∆-=--=2. 保守力作功等于势能的减少3. 成对力的功只与作用力和相对位移有关:r d F dW '⋅= 22/16※ 质点系功能原理1、系统的机械能: 动能与势能的总和称为机械能3、由势能的定义,保守内力的功总等于系统势能的减少pin c E W ∆-= 2、内力的功可分为: 保守内力的功和非保守内力功pk E E E +=(保守内力的功由势能代替)第四讲 功能原理 机械能守恒定律 能量守恒定律 in ncin c in in W W W W i i+==∑非保守内力的功将导致机械能与其他形式的能量转换。
inncex p k W W E E E +=∆+∆=∆k in ncp ex in nc in c ex in ex E W E W W W W W W ∆=+∆-=++=+ 4、系统的功能原理 (由质点系动能定理)在选定的质点系内,在任一过程中,质点系总机械能的增量等于所有外力的功与非保守内力的功的代数和。
4/16※ 机械能守恒定律问题1:有非保守内力作功,系统的机械能不守恒 ?例如:摩擦力作功,机械能转变成热能。
0=+in nc ex W W 0=∆+∆=∆p k E E E 常量=+p k E E 由功能原理:则:或:如果: 如果系统内只有保守内力作功,其他内力和一切外力都不作功,或元功之和恒为零,则系统内各物体的动能和势能可以相互转换,但总机械能保持不变。
问题2:有摩擦力作功:机械能守恒?in nc ex p k W W E E E +=∆+∆=∆力 f 作正功,f ' 作负功,总和为零,机械能守恒。
力学量守恒的条件

力学量守恒的条件
力学中的三大能量守恒定律包括动能定理、机械能守恒定律及功能原理,它们各自有不同的条件。
1. 动能定理的条件是外力对物体所做的合功,等于物体的动能增长量。
这个定理研究的对象是单位物体或者物体系,使用的条件是在同一个惯性参照系中有速度和位移变化。
2. 机械能守恒定律的条件是在只有重力和弹力做功的物体系内,动能和势能可以相互转化,而总的机械能则保持不变。
这个定律研究的对象是物体系统,使用条件是物体重力和弹力做功。
3. 功能原理的条件是除了重力和弹力之外,其他外力做的功和内力做的代数和等于系统机械能增加量。
这个原理研究的对象是单个物体或物体系,使用条件是不计重力和弹力做的功,只计系统内其他外力和内力做的功。
以上内容仅供参考,如需更专业的解释,可查阅相关力学书籍或咨询专业物理学家。
(机械能守恒定律、能量守恒定律、动能定理的区别)

-μmgL-mgR=-E,
解得 CD 圆弧半径至少为 R=3mEg.
答案
2E (1)3mgL
E (2)3mg
解析 (1)设小车在轨道 CD 上加速的距离为 s,由动能定理得
Fs-μMgs2=12Mv2①
设小车在轨道 CD 上做加速运动时的加速度为 a,由牛顿运动定律得
F-μMg=Ma②
7
s=12at2③ 联立①②③式,代入数据得 t=1 s.④ (2)设小车在轨道 CD 上做加速运动的末速度为 v′,撤去力 F 后小车做减速运动时的加速度为 a′, 减速时间为 t′,由牛顿运动定律得 v′=at⑤ -μMg=Ma′⑥ v=v′+a′t′⑦ 设滑块的质量为 m,运动到 A 点的速度为 vA,由动能定理得 mgR=12mvA2 ⑧ 设滑块由 A 点运动到 B 点的时间为 t1,由运动学公式得 s1=vAt1⑨ 设滑块做平抛运动的时间为 t1′,则 t1′=t+t′-t1⑩ 由平抛规律得 h=12gt1t2⑪ 联立②④⑤⑥⑦⑧⑨⑩⑪式,代入数据得 h=0.8 m.
A.mgLcos θ
B.FLsin θ
C.mgL(1-cos θ)
D.FL(1-cos θ)
图 5-2-9 图 5-2-10 4.如图 5-2-10 所示,质量为 M 的木块放在光滑的水平面上,质量为 m 的子弹以速度 v0 沿水平 方向射中木块,并最终留在木块中与木块一起以速度 v 运动.已知当子弹相对木块静止时,木块前 进距离 L,子弹进入木块的深度为 s,若木块对子弹的阻力 F 视为恒定,则下列关系式中正确的是 A.FL=12Mv2 B.-Fs=12mv2-12mv20 C.-F(L+s)=12mv2-12mv20 D.F(L+s)=12Mv2 5.一质量为 m 的物体在水平恒力 F 的作用下沿水平面运动,在 t0 时刻撤去力 F, 其 v-t 图象如图 5-2-11 所示.已知物体与水平面间的动摩擦因数为 μ,则下列关于力 F 的大小和 力 F 做的功 W 的大小关系式,正确的是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不做功;α > 90°,做负功;α < 90°,做正功。
——适用判断恒力做功问题
③由力和物体速度的夹角α 的大小进行判断:
α =90°,不做功; α >90°,做负功;α <90°,
做正功。
——适用判断曲线运动做功问题
④由物体间的能量转化进行判断:能量不变化,不
速度变化的关系
力与速度不在一条直线的问题,
3.重力势能、重力做功 不定量讨论机车以恒定功率起
与重力势能改变的关
动与匀加速起动的问题 3、不要求掌握弹簧弹性势能的表
系
达式
4.探究弹性势能
4、运用机械能守恒定律计算时,
5.机械能守恒定律
不涉及弹性势能的表达式,不 求解多个物体的问题。
6.能量守恒定律与能源 5、不要求用能量守恒定律进行教
A.若斜面向左匀速移动距离s,斜面对物块没有做功 B.若斜面向上匀速移动距离s,斜面对物块做功mgs C.若斜面向左以加速度a移动距离s,斜面对物块做功 mas D.若斜面向下以加速度a移动距离s,斜面对物块做功 m(g+a)s
变化2 、图示,小物块位于光滑的斜面上, 斜面置于光滑水平面上,从地面上看, 在小物块沿斜面下滑的过程中,斜面对 小物块的作用力( B )
做功;能量减少,做负功;能量增加,做正功。
——适用判断两个相互作用且做曲线运动的物体的做功问题
下面列举的哪几种情况下所做的功是零 ( ACD )
A.卫星做匀速圆周运动,地球引力对卫星 做的功
B.平抛运动中,重力对物体做的功 C.举重运动员,扛着杠铃在头上的上方停 留10s,运动员对杠铃做的功 D.木块在粗糙水平面上滑动,支持力对木 块做的功
本章精髓提炼
重点 难点
功、功率的概念 动能定理
机械能守恒定律 能量转化守恒定律
动能定理 机械能守恒定律
能力点
运动过程分析能力 及思维能力
分析解决问题的综合能力
教学指导意见与能力要求
主要内容
说明
1.功、功率
1.不要求用功的定义式、平均力、
2.动能、探究功与物体
或利用F—L图象计算变力的功。 2、不要求用功率、力和速度解决
θ
θ
F
F
小球质量为m,用水平力 小球质量为m,用水平恒 F缓慢拉至θ,细线长为l, 力F拉至θ,细线长为l,
一人站在浮于水中的船上,船和人的总质量
m1=400kg, 此人以100N的水平力拉绳索,此
绳索的另一端一次拴在岸边的树上,另一次
拴在另一只浮在静水中质量为m2=500kg的船 上,则人在头4s内所做的功分别是 200 J
机械能
动能 Ek=mv2/2
势能 重力势能 Ep=mgh 弹性势能 Ep=kx2/2
机械能守恒定律 Ek1+Ep1=Ek2+Ep2
问题 功知识点精讲
磁场 1、如何理解功的概念?
①功是力的空对比间:积①累力的效瞬应时—效应——— 能量变化。 产生加速度;②力的时间积
②功等于恒力累效和应沿—该—动恒量力变方化。向上的 位移的乘积。(W=FLcosα )
如图所示,线拴小球在光滑水平面上做匀速 圆周运动,圆的半径是1m,球的质量是0.1kg, 线速度v=1m/s,小球由A点运动到B点恰好是半 个圆周。那么在这段运动中线的拉力做的功是 () A
A.0 C.0.314J
B.0.1J D.无法确定
反思:圆周运动中向心力永远不做功。
• 试求下列两种情况下拉力F所作的功 • 并比较拉力F与重力G做功的大小
③功的物理含义:功是能量转化的 量度。
④功是标量,但有正功和负功之分。
⑤功的单位是焦耳(J)。
图示为一质量m的物体静止在倾角为θ的斜 面上,物体与斜面的动摩擦因素为μ,现在 使斜面体向右水平匀速移动距离L,求物体 所受各力对物体所做的功?
变化1:如图所示,质量为m的物块,始终固定在倾
角为α的斜面上,下面说法中正确的是( ABC)
A垂直于接触面,做功为零
B垂直于接触面,做功不为零
C不垂直于接触面,做功为零
D不垂直于接触面,做功不为零
问题 功知识点精讲
磁场 2、如何计算力的做功多少?
(1)恒力做功等于恒力和沿该恒力方向上的位移的乘 积:W=FScosα
反思:注意上式中的位移确切地说是力的作用点发 生的位移,求解时必须明确求哪一个力所做的功。
A
小结:若一个力 f 大小不变,方向总与物体运动方 向相同或相反,则W f = f × 路程。
问题 功知识点精讲
磁场 3、如何计算合力的做功多少?
(1)求合力和沿该合力方向上发生 的位移:W总=F合Lcosα (合力为恒力)
(2)求各分力做的功,再求各个功 的代数和:W总=W1+W2+W3+···
复杂的定量计算。
高考预测
1、主要内容:功、功率、动能、动 能定理、机械能守恒定律和能量守 恒定律。
2、重点考查:动能定理、机械能守 恒定律和能量守恒定律。
3、考查特点:灵活性强,综合性大,能
力要求高。
◆知识结构
功和能
功 W=FLcosα 平均功率 P=W/t 瞬时功率 P=Fvt
动能定理 W合=Ek末-Ek初
(2)变力做功: ①化变为恒: a.变力→平均作用力→恒力(W=—FLcosα )
特例:与变量的关系呈线性变化的变力F=(F1+F2)/—2 b.分段处理,化曲为直:变力→恒力(试W举=F例S相说对路明程) ②利用功率:W=Pt(P为恒定功率)
③利用动能定理:W=△Ek ④利用功能转化:W=△Ep
物体A质量为m,与地面的动摩擦因数为μ, 当物体A在地面上沿半径为R的圆运动一周, 滑动摩擦力所所做的功。
如图所示,以恒力F沿与水平成θ 的方向拉绳 子的一端,使物体发生位移L,则此过程中恒
力F对物体做了多少功?
W FL(1 cos ) 2FL cos2
2
O
Fα
θ
BF
S
Aθ
这是力F发 生的位移吗?
L
问题 功知识点精讲
磁场 4、如何判断一个力是否做功?做正功还
是负功?
①根据功的两个必要因素:力和力的方向上发生 的位移进行判断是否做功。
和 360 J。 在4s末发挥的功率分别是100 w和180 w,
(2000全国理综)如图所示,DO是水平面,AB是斜
面,初速为v0的物体从D点出发沿DBA滑动到顶点A时 速度刚好为零,如果斜面改为AC,让该物体从D点
出发沿DCA滑动到A点且速度刚好为零,则物体具有