带电粒子在匀强磁场中运动的多解和临界问题

合集下载

带电粒子在强磁场中运动的多解和临界问题

带电粒子在强磁场中运动的多解和临界问题

带电粒子在强磁场中运动的多解和临界问

引言
带电粒子在强磁场中的运动问题一直是物理学中的重要研究方
向之一。

在强磁场中,带电粒子在受到洛伦兹力的作用下呈现出多
解和临界现象,这在某些情况下对粒子的运动轨迹和性质产生重要
影响。

多解现象
在强磁场中,由于洛伦兹力的作用,带电粒子的运动方程出现
多解的情况。

这是由于洛伦兹力与粒子运动速度与磁场方向夹角的
正弦函数关系所导致的。

当速度与磁场方向夹角为不同值时,洛伦
兹力的大小和方向也会有所变化,从而使得粒子的运动轨迹不唯一。

临界现象
在某些情况下,带电粒子在强磁场中的运动可能会出现临界现象。

临界现象是指当带电粒子的运动速度与磁场强度达到一定比例
关系时,粒子的运动状态出现急剧变化,其轨迹和动力学性质发生
显著变化。

临界现象在物理学中具有重要的理论和实际意义,在磁共振成像、粒子加速器等领域的研究中得到了广泛应用。

结论
带电粒子在强磁场中运动的多解和临界问题是一个复杂而有趣的研究领域。

多解现象使得粒子的运动轨迹不唯一,而临界现象则带来了粒子运动状态的突变。

对这些问题的深入研究和理解将有助于推动物理学和应用科学的发展,为实际应用提供更多的可能性。

带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。

② 则粒子做匀速直线运动。

(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。

(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。

二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。

速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。

2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。

)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。

或者说两圆心连线OO ′与两个交点的连线AB 垂直。

(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。

18.4带电粒子在磁场中运动的临界及多解问题(原卷版)

18.4带电粒子在磁场中运动的临界及多解问题(原卷版)

18.4.带电粒子在磁场中运动的临界、多解问题要点一. 带电粒子在磁场中运动的临界问题1.临界问题的特点带电粒子在磁场中运动,由于速度或大小的变化,往往会存在临界问题,如下所示为常见的三种临界草图。

临界特点:(1)粒子刚好穿出磁场的条件:在磁场中运动的轨迹与边界相切.(2)根据半径判断速度的极值:轨迹圆的半径越大,对应的速度越大.(3)根据圆心角判断时间的极值:粒子运动转过的圆心角越大,时间越长.(4)根据弧长(或弦长)判断时间的极值:当速率一定时,粒子运动弧长(或弦长)越长,时间越长.2.解题思路分析思路:以临界问题的关键词“恰好”“最大”“至少”“要使......”等为突破口,寻找临界点,确定临界状态,画出临界状态下的运动轨迹,建立几何关系求解.往往采用数学方法和物理方法的结合:1.利用“矢量图”“边界条件”结合“临界特点”画出“临界轨迹”。

2.利用“三角函数”“不等式的性质”“二次方程的判别式”等求临界极值。

一般解题流程:3.探究“临界轨迹”的方法1. “伸缩圆”动态放缩法定点粒子源发射速度大小不同、方向相同的同种带电粒子时,其轨迹半径不同,相当于定点圆在“伸缩”。

特点:1.速度越大,轨迹半径越大。

2.各轨迹圆心都在垂直于初速度方向的直线上。

应用:结合具体情境根据伸缩法,可以分析出射的临界点,求解临界半径。

2. “旋转圆”旋转平移法定点粒子源发射速度大小相同、方向不同的同种带电粒子时,其轨迹半径相同,相当于定点圆在“旋转”特点:1.半径相同,方向不同。

2.各轨迹圆心在半径为R的同心圆轨迹上。

旋转圆的应用:结合具体情境,可以分析圆心角、速度偏向角、弦切角、弧长、弦长的大小;求解带电粒子的运动时间.应用情景1.(所有的弦长中直径最长)速度大小相同、方向不同的同种带电粒子,从直线磁场边界上P点入射。

M点是粒子打到直线边界上的最远点(所有的弦长中直径最长).应用情景2.(所有的弦长中直径最长)速度大小相同方向不同的同种带电粒子,从圆形磁场边界上的P射入磁场;①若轨迹半径>磁场半径当PM距离为磁场直径时,粒子出射点与入射点之间的距离最远、共有弦最长、时间最长。

带电粒子在磁场中的多解问题

带电粒子在磁场中的多解问题

应旳圆心角为 或 3
B
22
设圆弧旳半径为R,则有2R2=x2,可得:
R L 2n
v2 qvB m
R
v qBL 2m n
n=1、2、3、……(
n取奇数
⑶当n取奇数时,微粒从P到Q过程中圆心角旳总和为
1
n
2
n 3
2
2n
t1
2n
m qB
2 m
qB
n
其中n=1、3、5、……
当n取偶数时,微粒从P到Q过程中圆心角旳总和为
mv0 a 2mv0 L<b。试求磁场旳左边界距坐标原点 旳e可B能距离.(eB成果可用反三角函数表达)
解: 设电子在磁场中作圆周运动旳轨道半径为r, 则
解得
eBv0 r
m mv 0
v02 r


eB
y P v0
x
0
Q
⑴当r>L时,磁场区域及电子运动轨迹如图1所示,
由几何关系有 sin L eBL③
v0
c
(2)当v0最大时:
R1
R1
cos 60
L 2
得R1 = L

vmax
qBR1 m
qBL m
当v0最小时: R2 R2 sin 30
L 2
得R2 = L/3

vmin
qBR2 m
qBL 3m
a
600
O
qBL
qBL
b B
3m v0 m
300
d
v0
c
带电粒子从ab边射出磁场,当速度为 vmax 时,
运动时间最短,
150 5m
t min
T 360

带电粒子在匀强磁场中的运动-临界、极值及多解问题

带电粒子在匀强磁场中的运动-临界、极值及多解问题
• 关键点:1.分成正电荷和负电荷讨论,画图是关 键.2.注意正负电荷受洛伦兹力方向不同,偏转方向 不同.3.最大速度都是轨迹和右边界相切时的速度.

例题
有些题目只告诉了磁感应的大小,而未具体 指出磁感应强度的方向,此时必须要考虑磁
感应强度方向不确定而形成多解
电场力方向一定指向圆心,而洛伦兹力方向可能指向圆心,也可能背离圆心, 从而形成两种情况.
• 2.方法界定将一半径为 的圆绕着入射点旋转, 从而探索出临界条件,这种方法称为“旋转法”.

旋转法”模型示例
带电粒子在磁场中运动的多解问题
• 带电粒子电性不确定形成多解 • 受洛伦兹力作用的带电粒子,可能带正电荷,也可
能带负电荷,在相同的初速度的条件下,正、负粒 子在磁场中运动轨迹不同,导致形成多解.

“放缩圆”模型示例
“旋转法”解决有界磁场中的临界问题
• 1.适用条件(1)速度大小一定,方向不同带电粒子 进入匀强磁场时,他们在磁场中做匀速圆周运动的 半径相同,若射入初速度为v0,则圆周半径为 . 如图所示.(2)轨迹圆圆心——共圆带电粒子在磁 场中做匀速圆周运动的圆心在以入射点P为圆心、 半径 的圆上.
临界状态不唯一形成多解
• 带电粒子在洛伦兹力作用下飞越有界磁场 时,由于粒子运动轨迹是圆弧状,因此, 他可能直接穿过去了,也可能转过180°从 入射界面反向飞出,于是形成了多解.如图 所示.

Байду номын сангаас
带电粒子在匀强磁场中的运动临界、极值及多解问题
• 1.有界磁场中临界问题的处 理方法
• 2.带电粒子在磁场中运动的 多解问题
1.有界磁场中临界问题的处理方法
• “放缩法”解决有界磁场中的临界问题 • 1.适用条件 • (1)速度方向一定,大小不同粒子源发射速度方向一定、大小

带电粒子在磁场中运动之多解及周期运动问题

带电粒子在磁场中运动之多解及周期运动问题

适用标准考点周期性与多解问题1.带电粒子电性不确立形成多解:受洛伦兹力作用的带电粒子,因为电性不一样,当速度同样时,正、负粒子在磁场中运动轨迹不一样,形成多解.如图 6 甲所示,带电粒子以速度v 垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为 b .2.磁场方向不确立形成多解:有些题目只磁感觉强度的大小,而不知其方向,此时一定要考虑磁感觉强度方向不确立而形成的多解.如图乙所示,带正电粒子以速度 v 垂直进入匀强磁场,如 B 垂直纸面向里,其轨迹为 a,如 B 垂直纸面向外,其轨迹为 b .3.临界状态不独一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,因为粒子运动轨迹是圆弧状,所以,它可能穿过去,也可能转过180 °从入射界面这边反向飞出,进而形成多解,如图丙所示.4.运动的周期性形成多解:带电粒子在局部是电场、局部是磁场的空间运动时,运动常常拥有来去性,进而形成多解,如图丁所示.一圆筒的横截面以下列图,其圆心为O.筒内有垂直于纸面向里的匀强磁场,磁感觉强度为B.圆筒下边有相距为 d 的平行金属板M 、N ,此中 M 板带正电荷, N 板带等量负电荷.质量为m、电荷量为q 的带正电粒子自M 板边沿的P 处由静止开释,经N 板的小孔S 以速度 v 沿半径 SO 方向射入磁场中.粒子与圆筒发生两次碰撞后仍从S 孔射出.设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的状况下,求:(1)M 、 N 间电场强度 E 的大小;(2)圆筒的半径 R.(3)保持M、N间电场强度 E 不变,仅将M 板向上平移,粒子仍从M 板边沿的P处由静止开释粒子自进入圆筒至从S 孔射出时期,与圆筒的碰撞次数n 。

1.以下列图,在纸面内有磁感觉强度大小均为B,方向相反的匀强磁场,虚线等边三角形ABC 为两磁场的理想界限。

三角形ABC 边长为 L,虚线三角形内为方向垂直纸面向外的匀强磁场,三角形外面的足够大空间为方向垂直纸面向里的匀强磁场。

(超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题-课件

(超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题-课件
高考调研
高三物理(新课标版)
第4节 带电粒子在有界 磁场中运动的临界极值问题和多解问题
第八章 第4节
高考调研
高三物理(新课标版)
一、带电粒子在有界磁场中运动的临界极值问题 1.刚好穿出磁场边界的条件是带电粒子在磁场中运 动的轨迹与边界①__相__切____. 2.当速度 v 一定时,弧长(或弦长)越长,圆周角越大, 则带电粒子在有界磁场中运动的时间②___越__长___.
高考调研
高三物理(新课标版)
例 1 如图所示,S 为一个电子源,它可以在纸面内 360°范围内发射速率相同的质量为 m、电量为 e 的电子, MN 是一块足够大的挡板,与 S 的距离 OS=L,挡板在 靠近电子源一侧有垂直纸面向里的匀强磁场,磁感应强 度为 B,问:
(1)若使电子源发射的电子能到达挡 板,则发射速度最小为多大?
第八章 第4节
高考调研
高三物理(新课标版)
(1)轨迹圆的缩放:当粒子的入射方向不变而速度大 小可变时,粒子做圆周运动的轨迹圆心一定在入射点所 受洛伦兹力所表示的射线上,但位置(半径 R)不确定,用 圆规作出一系列大小不同的轨迹圆,从圆的动态变化中 即可发现“临界点”.
(2)轨迹圆的旋转:当粒子的入射速度大小确定而方 向不确定时,所有不同方向入射的粒子的轨迹圆是一样 大的,只是位置绕入射点发生了旋转,从定圆的动态旋 转(作图)中,也容易发现“临界点”.
圆心在
过入射
点跟速
d
c 度方向
垂直的
直线上
B
θv
a
b
①速度较小时粒子做部分圆周运动
后从原边界飞出;②速度在某一范
围内从上侧面边界飞;③速度较大
时粒子做部分圆周运动从右侧面边

粒子在磁场中多解和临界问题

粒子在磁场中多解和临界问题

带电粒子在磁场中的多解和临界问题1、如图14所示,边长为L 的等边三角形ABC 为两个有界匀强磁场的理想边界,三角形内的磁场方向垂直纸面向外,磁感应强度大小为B,三角形外的磁场(足够大)方向垂直纸面向里,磁感应强度大小也为B.把粒子源放在顶点A 处,它将沿∠A 的角平分线发射质量为m 、电荷量为q 、初速度为v= 的负电粒子(粒子重力不计). 求:1)从A 射出的粒子第一次到达C 点所用时间为多少?(2)带电粒子在题设的两个有界磁场中运动的周期.2、一匀强磁场,磁场方向垂直于xy 平面,在xy 平面上,磁场分布在以O 为中心的一个圆形区域内。

一个质量为m 、电荷量为q 的带电粒子,由原点O 开始运动,初速度为v ,方向沿x 正方向。

后来,粒子经过y 上的P 点,此时速度方向与y 轴的夹角为30°,P 到O 的距离为L ,如图所示。

不计 重力影响。

求:磁场的磁感应强度B 的大小和 xy 平面上磁场区域的半径R 。

4、如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60 T ,磁场内有一块平面感光板ab ,板面与磁场方向平行,在距ab 距离l =16 cm 处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是v =3.0×106 m/s ,已知α粒子的比荷=5.0×107 C/kg ,现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度.mqBL 3.如图所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里.P 为屏上的一小孔.PC 与MN 垂直.一束质量为m 、电荷量为-q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场的方向射入磁场区域.粒子入射方向在与磁场B 垂直的平面内,且散开在与PC 的夹角为θ的范围内.则在屏MN 上被粒子打中的区域的长度为( D ) A.2mv qB B.2mvcos θqBC.2mv (1-sin θ)qBD.2mv (1-cos θ)qB5、(2010年宿州模拟)一质量为m、电荷量为q的带负电的粒子,从A点射入宽度为d、磁感应强度为B的匀强磁场中,MN、PQ为该磁场的边界线,磁感线垂直于纸面向里,如图所示.带电粒子射入时的初速度与PQ成45°角,且粒子恰好没有从MN射出.(不计粒子所受重力)(1)求该带电粒子的初速度大小;(2)求该带电粒子从PQ边界射出的出射点到A点的距离.7、如图所示,在坐标系xOy中,第一象限内充满着两个匀强磁场a和b,OP为分界线,在区域a中,磁感应强度为2B,方向垂直纸面向里;在区域b中,磁感应强度为B,方向垂直纸面向外,P点坐标为(4l,3l).一质量为m,电荷量为q的带正电的粒子从P点沿y轴负方向射入区域b,经过一段时间后,粒子恰能经过原点O,不计粒子重力.(sin 37°=0.6,cos 37°=0.8).求:(1)粒子从P点运动到O点的时间最少是多少?(2)粒子运动的速度可能是多少?6.(2010年淄博模拟)如图所示,在真空中坐标系xOy平面的x>0区域内,有磁感应强度B=1.0×10-2 T的匀强磁场,方向与xOy平面垂直.在x轴上的P(10,0)点,有一放射源,在xOy平面内向各个方向发射速率v=1.0×104 m/s的带正电的粒子,粒子的质量为m =1.6×10-25 kg,电荷量为q=1.6×10-18 C,求带电粒子能打到y轴上的范围.答案 1、(1) (2)2、4、答案:20 cm5、qBmπ6qB m 3πqLm vB 3=LR 33=答案:(1)(2+2)dqB m 或(2-2)dqBm(2)2(2+1)d 或2(2-1)d6、7、解析:(1)设粒子的入射速度为v ,用R a 、R b 、T a 、T b 分别表示粒子在磁场a 区和b 区运动的轨道半径和周期,则:R a =mv 2qB,R b =mv qB ,T a =2πm 2qB =πm qB ,T b =2πm qB 粒子先从b 区运动,后进入a 区运动,然后从O 点射出时,粒子从P 运动到O 点所用时间最短.如图所示. tan α=3l 4l =34,得α=37° 粒子在b 区和a 区运动的时间分别为:t b =2(90°-α)360°T b, t a =2(90°-α)360°T a故从P 到O 时间为:t =t a +t b =53πm 60qB . 如图所示,当带电粒子打到y 轴上方的A 点与P 连线正好为其圆轨迹的直径时,A 点即为粒子能打到y 轴上方的最高点.因OP =R =10 cm ,AP =2R =20 cm ,则OA =AP 2-OP 2=10 3 cm当带电粒子的圆轨迹正好与y 轴下方相切于B 点时,B 点即为粒子能打到y 轴下方的最低点,易得OB =R =10 cm. 综上,带电粒子能打到y 轴上的范围为-10 cm ≤y ≤10 3 cm.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.(多选)一质量为m,电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()
A.ﻩB.
C. ﻩD.
(三)带电粒子速度不确定形成多解
3.(多选)如图所示,两方向相反、磁感应强度大小均为B的匀强磁场被边长为L的等边三角形ABC理想分开,三角形内磁场垂直纸面向里,三角形顶点A处有一质子源,能沿∠BAC的角平分线发射速度不同的质子(质子重力不计),所有质子均能通过C点,质子比荷 =k,则质子的速度可能为
图8218
3.如图2所示,一带电质点质量为m,电量为q,以平行于x轴的速度v从y轴上的a点射入图中第一象限所示的区域。为了使该质点能从x轴上的b点以垂直于x轴的速度v射出,可在适当的地方加一个垂直于xOy平面、磁感应强度为B的匀强磁场。若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。(重力忽略不计)
图6
A.B.
C. ﻩD.
(四)带电粒子运动的往复性形成多解
4.某装置用磁场控制带电粒子的运动,工作原理如图8 2 12所示。装置的长为L,上下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B、方向与纸面垂直且相反,两磁场的间距为d。装置右端有一收集板,M、N、P为板上的三点,M位于轴线OO′上,N、P分别位于下方磁场的上、下边界上。在纸面内,质量为m、电荷量为-q的粒子以某一速度从装置左端的中点射入,方向与轴线成30°角,经过上方的磁场区域一次,恰好到达P点。改变粒子入射速度的大小,可以控制粒子到达收集板上的位置。不计粒子的重力。
图8 2 16
A.v1∶v2=1∶2B.v1∶v2=Байду номын сангаас4
C.t1∶t2=2∶1D.t1∶t2=3∶1
(五)三角形磁场
[典例5]如图8 2 17所示,△ABC为与匀强磁场垂直的边长为a的等边三角形,比荷为 的电子以速度v0从A点沿AB边入射,欲使电子经过BC边,磁感应强度B的取值为()
图8 2 17
A.B>ﻩB.B<
图82 15
A. B.
C.D.
(四)正方形磁场
[典例4](多选)如图8216所示,在正方形abcd内充满方向垂直纸面向里、磁感应强度为B的匀强磁场。a处有比荷相等的甲、乙两种粒子,甲粒子以速度v1沿ab方向垂直射入磁场,经时间t1从d点射出磁场,乙粒子沿与ab成30°角的方向以速度v2垂直射入磁场,经时间t2垂直cd射出磁场,不计粒子重力和粒子间的相互作用力,则下列说法中正确的是()
图8213
A.θ=90°时,l=9.1cm
B.θ=60°时,l=9.1cm
C.θ=45°时,l=4.55cm
D.θ=30°时,l=4.55cm
(二)四分之一平面磁场
[典例2]如图8 214所示,一个质量为m、电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x轴正方向成60°角的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。求匀强磁场的磁感应强度B和射出点的坐标。
2.如图1所示,第一象限范围内有垂直于xOy平面的匀强磁场,磁感应强度为B。质量为m,电量大小为q的带电粒子在xOy平面里经原点O射入磁场中,初速度v0与x轴夹角θ=60°,试分析计算:
图1
(1)带电粒子从何处离开磁场?穿越磁场时运动方向发生的偏转角是多大?
(2)带电粒子在磁场中运动时间有多长?
(二)磁场方向不确定形成多解
图8212
(1)求磁场区域的宽度h;
(2)欲使粒子到达收集板的位置从P点移到N点,求粒子入射速度的最小变化量Δv;
(3)欲使粒子到达M点,求粒子入射速度大小的可能值。
二、临界值问题
(一)半无界磁场
[典例1](多选)(2015·四川高考)如图8213所示,S处有一电子源,可向纸面内任意方向发射电子,平板MN垂直于纸面,在纸面内的长度L=9.1cm,中点O与S间的距离d=4.55cm,MN与SO直线的夹盘角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B=2.0×10-4T,电子质量m=9.1×10-31kg,电量e=-1.6×10-19C,不计电子重力,电子源发射速度v=1.6×106m/s的一个电子,该电子打在板上可能位置的区域的长度为l,则()
A.2BkLB.
C.ﻩD.
1.(多选)如图6所示,直线MN与水平方向成60°角,MN的右上方存在垂直纸面向外的匀强磁场,左下方存在垂直纸面向里的匀强磁场,两磁场的磁感应强度大小均为B。一粒子源位于MN上的a点,能水平向右发射不同速率、质量为m(重力不计)、电荷量为q(q>0)的同种粒子,所有粒子均能通过MN上的b点,已知ab=L,则粒子的速度可能是()
带电粒子在匀强磁场中运动的多解和临界问题
———————————————————————————————— 作者:
———————————————————————————————— 日期:
带电粒子在匀强磁场中运动的多解和临界问题
一、多解问题
(一)带电粒子电性不确定形成多解
1.如图所示,宽度为d的有界匀强磁场,磁感应强度为B,MM′和NN′是它的两条边界。现有质量为m,电荷量为q的带电粒子沿图示方向垂直磁场射入。要使粒子不能从边界NN′射出,则粒子入射速率v的最大值可能是多少。
图8 214
(三)矩形磁场
[典例3]
如图82 15所示,竖直线MN∥PQ,MN与PQ间距离为a,其间存在垂直纸面向里的匀强磁场,磁感应强度为B,O是MN上一点,O处有一粒子源,某时刻放出大量速率均为v(方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN成θ=60°角射出的粒子恰好垂直PQ射出磁场,则粒子在磁场中运动的最长时间为()
C.B>D.B<
(六)圆形磁场
[典例6]如图82 18所示,一半径为R的圆表示一柱形区域的横截面(纸面)。在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直。圆心O到直线的距离为R。现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域。若磁感应强度大小为B,不计重力,求电场强度的大小。
相关文档
最新文档