七年级上册数学整式化简求值专题练习

合集下载

专题 整式的化简求值解答题(50题)(解析版)-七年级数学上册

专题 整式的化简求值解答题(50题)(解析版)-七年级数学上册

七年级上册数学《第二章整式的加减》专题整式的化简求值(50题)整式的加减—化简求值给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.1.先化简,再求值:11a2﹣[a2﹣3(2a﹣5a2)﹣4(a2﹣2a)],其中a=﹣4.【分析】先化简整式,再代入求值.【解答】解:原式=11a2﹣(a2﹣6a+15a2﹣4a2+8a)=11a2﹣a2+6a﹣15a2+4a2﹣8a=(11a2+4a2﹣15a2)﹣a2﹣8a+6a=﹣a2﹣2a.当a=﹣4时,原式=﹣(﹣4)2﹣2×(﹣4)=﹣16+8=﹣8.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.2.(2022秋•香洲区期末)先化简,再求值:2(x2+xy−32y)﹣(x2+2xy﹣1),其中x=﹣4,y=5.【分析】先去括号,然后合并同类项,最后将x=﹣4,y=5代入化简结果进行计算即可求解.【解答】解:原式=2x2+2xy﹣3y﹣x2﹣2xy+1=x2﹣3y+1,当x=﹣4,y=5时,原式=(﹣4)2﹣3×5+1=16﹣15+1=2.【点评】本题考查了整式的加减与化简求值,正确的去括号与合并同类项是解题的关键.3.(2022秋•亭湖区期末)先化简,再求值:a2﹣(3a2﹣2b2)+3(a2﹣b2),其中a=﹣2,b=3.【分析】原式去括号,合并同类项进行化简,然后代入求值.【解答】原式=a2﹣3a2+2b2+3a2﹣3b2=a2﹣b2;当a=﹣2;b=3时,原式=(﹣2)2﹣32=4﹣9=﹣5.【点评】本题考查整式的加减和化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.4.(2022秋•南昌县期中)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=16.【分析】先去括号,再合并同类项得到原式=﹣4x2y,然后把x、y的值代入计算即可.【解答】解:原式=3x2y﹣6xy﹣2x2y+6xy﹣5x2y=﹣4x2y,当x=﹣1,y=16时,原式=﹣4×(﹣1)2×16=−23.【点评】本题考查了整式的加减﹣化简求值:先把整式去括号,合并,再把给定字母的值代入计算,得出整式的值.5.(2022秋•江岸区期末)先化简,再求值:5a2+4b﹣(5+3a2)+3b+4﹣a2,其中a=3,b=﹣2.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:5a2+4b﹣(5+3a2)+3b+4﹣a2=5a2+4b﹣5﹣3a2+3b+4﹣a2=a2+7b﹣1.当a=3,b=﹣2时,原式=32+7×(﹣2)﹣1=9﹣14﹣1=﹣6.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.6.(2022秋•辽阳期末)先化简,再求值:x2y﹣(3xy2﹣x2y)﹣2(xy2+x2y),其中x=1,y=﹣2.【分析】先去括号,再合并同类项,然后把x=1,y=﹣2代入化简后的结果,即可求解.【解答】解:原式=x2y﹣3xy2+x2y﹣2xy2﹣2x2y=﹣5xy2,当x=1,y=﹣2时,原式=﹣5×1×(﹣2)2=﹣20.【点评】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.7.(2022秋•盘山县期末)先化简再求值:﹣(3a2﹣2ab)+[3a2﹣(ab+2)],其中a=−12,b=4.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=﹣3a2+2ab+3a2﹣ab﹣2=ab﹣2,当a=−12,b=4时,原式=﹣2﹣2=﹣4.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2022秋•邻水县期末)先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.【分析】去括号,合并同类项,将x,y的值代入计算即可.【解答】解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2,当x=﹣1,y=2时,原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.【点评】本题主要考查了整式的加减与求值,正确利用去括号的法则运算是解题的关键.9.(2022秋•秀屿区期末)先化简,再求值:4x2y﹣3xy2+3(xy﹣2x2y)﹣2(3xy﹣3xy2)其中x=34,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x2y﹣3xy2+3xy﹣6x2y﹣6xy+6xy2=﹣2x2y+3xy2﹣3xy,当x=34,y=﹣1时,原式=98+94+94=458.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.10.(2022秋•黔江区期末)先化简,再求值:3(2+122−B)−(2B+32−122),其中x=1,y=2.【分析】先去括号,合并同类项,化简整式,然后将x,y的值代入求值.【解答】解:3(2+122−B)−(2B+32−122),=3x2+32y2﹣3xy﹣2xy﹣3x2+12y2=2y2﹣5xy,当x=1,y=2时,原式=2y2﹣5xy=2×22﹣5×1×2=﹣2.【点评】本题考查了整式的化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.11.(2022秋•高新区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=1,b=﹣2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=1,b=﹣2时,原式=﹣6﹣4=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.12.(2022秋•嘉峪关校级期末)先化简,再求值.2(3a﹣4b)﹣3(3a+2b)+4(3a﹣2b),其中=−13,=12.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=6a﹣8b﹣9a﹣6b+12a﹣8b=9a﹣22b,当a=−13,b=12时,原式=9×(−13)﹣22×12=−3﹣11=﹣14.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.13.(2022秋•皇姑区期末)先化简,再求值:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3],其中a=2,b=﹣1.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3]=3a2b﹣6b3+6ab﹣(6ab+2a2b﹣4b3)=3a2b﹣6b3+6ab﹣6ab﹣2a2b+4b3=a2b﹣2b3.当a=2,b=﹣1时,原式=22×(﹣1)﹣2×(﹣1)3=﹣4+2=﹣2.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.14.(2022秋•寻乌县期末)先化简,再求值:﹣3(x2﹣2x)+2(32x2﹣2x−12),其中x=﹣4.【分析】直接去括号进而合并同类项进而得出答案.【解答】解:原式=﹣3x2+6x+3x2﹣4x﹣1=2x﹣1,把x=﹣4代入得:原式=2×(﹣4)﹣1=﹣9.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.15.(2022秋•市南区校级期末)先化简,再求值:12−2(−132)+(−12+132),其中=−2,=23.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:原式=12x﹣2x+232−12+132=﹣2x+y2;当x=﹣2,y=23时,原式=﹣2×(﹣2)+(23)2=4+49=409.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.16.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.17.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.【分析】化简整理代数式,整体代入求值.【解答】解:∵m+4n=﹣1.∴(6mn+7n)+[8m﹣(6mn+7m+3n)]=6mn+7n+(8m﹣6mn﹣7m﹣3n)=6mn+7n+8m﹣6mn﹣7m﹣3n=4n+m=﹣1.【点评】本题考查了整式的化简求值,解题的关键是掌握整体代入求值.18.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.【分析】先去括号,合并同类项,再将x+y=6,xy=﹣4,整体代入进行计算即可.【解答】解:原式=5x+2y﹣3xy﹣2x+y﹣2xy=3x+3y﹣5xy=3(x+y)﹣5xy,当x+y=6,xy=﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(2022秋•芙蓉区校级月考)已知xy=2,x+y=3,求(3xy+10y)+[5x﹣(2xy+2y﹣3x)]的值.【分析】先去括号合并同类项,然后将xy=2,x+y=3整体代入即可.【解答】解:原式=3xy+10y+5x﹣2xy﹣2y+3x=xy+8y+8x=8(x+y)+xy,当xy=2,x+y=3时,原式=8×3+2=26.【点评】本题考查了整式的加减﹣﹣化简求值,熟悉合并同类项是解题的关键.20.已知a2+b2=20,a2b﹣ab2=﹣3,求(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)的值.【分析】去括号、合并同类项,再把已知条件代入即可得到整式的值.【解答】解:(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)=b2﹣a2+a2b﹣3ab2﹣2b2+2ab2=﹣b2﹣a2+a2b﹣ab2=﹣(b2+a2)+(a2b﹣ab2)把a2+b2=20,a2b﹣ab2=﹣3代入,原式=﹣20+(﹣3)=﹣23.【点评】本题主要考查了整式的加减—化简求值,掌握整式的加减运算法则,整体思想是解题的关键.21.(2023春•大荔县期末)已知3a﹣b=﹣2,求代数式3(2B2−163+p−2(3B2−2p+的值.【分析】直接去括号,再合并同类项,再把已知数据代入得出答案.【解答】解:原式=6ab2﹣16a+3b﹣6ab2+4a+b=﹣12a+4b,∵3a﹣b=﹣2,∴原式=﹣4(3a﹣b)=﹣4×(﹣2)=8.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.22.已知b=2a+2,求整式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵b=2a+2,∴﹣2a+b=2,∴原式=4(﹣2a+b)=4×2=8.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.23.(2021秋•浉河区期末)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+7(a﹣b)2的结果是;(2)拓广探索:已知x2+2y=−13,求﹣6y﹣3x2+2021的值.【分析】(1)把(a﹣b)2看成一个整体,利用合并同类项运算法则进行计算;(2)将原式进行变形,然后利用整体思想代入求值.【解答】解:(1)原式=(3﹣6+7)(a﹣b)2=4(a﹣b)2,故答案为:4(a﹣b)2;(2)原式=﹣3(x2+2y)+2021,当x2+2y=−13时,原式=﹣3×(−13)+2021=1+2021=2022,即原式的值为2022.【点评】本题考查整式的加减运算,理解整体思想解题的应用,掌握合并同类项(系数相加,字母及其指数不变)的运算法则是解题关键.24.(2022秋•黔西南州期中)“整体思想”是中学数学解题中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:3(a+b)+2(a+b)=(3+2)(a+b)=5(a+b).请应用整体思想解答下列问题:(1)化简:3(x+y)2﹣5(x+y)2+7(x+y)2;(2)已知a2+2a+1=0,求2a2+4a﹣3的值.【分析】(1)直接利用合并同类项法则计算得出答案;(2)所求式子变形后,将已知等式代入计算即可求出值.【解答】解:(1)3(x+y)2﹣5(x+y)2+7(x+y)2=(3﹣5+7)(x+y)2=5(x+y)2;(2)∵a2+2a+1=0,∴2a2+4a﹣3=2(a2+2a+1)﹣5=0﹣5=﹣5.【点评】此题主要考查了代数式求值,利用了整体代入的思想.25.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是一种重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣(a﹣b)2+7(a﹣b)2,其结果是;(2)已知x2﹣2y=1,求﹣3x2+6y+5的值.【分析】(1)把(a﹣b)2看成一个整体,根据合并同类项的法则化简即可;(2)把x2﹣2y=1看成一个整体,整体代入求值即可.【解答】解:(1)原式=(3﹣1+7)(a﹣b)2=9(a﹣b)2,故答案为:9(a﹣b)2;(2)∵x2﹣2y=1,∴原式=﹣3(x2﹣2y)+5=﹣3+5=2.【点评】本题考查了合并同类项,代数式求值,考查整体思想,把x2﹣2y=1看成一个整体,整体代入求值是解题的关键.26.(2022秋•沁县期末)我们知道:4x+2x﹣x=(4+2﹣1)x=5x,类似地,若我们把(a+b)看成一个整体,则有4(a+b)+2(a+b)﹣(a+b)=(4+2﹣1)(a+b)=5(a+b).这种解决问题的方法渗透了数学中的“整体思想”.“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请运用“整体思想”解答下面的问题:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2;(2)已知:x2+2y=5,求代数式﹣3x2﹣6y+21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)利用“整体思想”和合并同类项法则进行计算即可;(2)先把﹣3x2﹣6y+21化成﹣3(x2+2y)+21,再把x2+2y=5整体代入,计算即可;(3)由a﹣2b=3,2b﹣c=﹣5,c﹣d=10,得出a﹣c=﹣2,2b﹣d=5,再代入计算即可.【解答】解:(1)3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2=﹣2(a﹣b)2;(2)﹣3x2﹣6y+21=﹣3(x2+2y)+21,当x2+2y=5时,原式=﹣3×5+21=6;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=3+(﹣5)=﹣2,2b﹣d=﹣5+10=5,∴(a﹣c)+(2b﹣d)﹣(2b﹣c)=﹣2+5﹣(﹣5)=8.【点评】本题考查了整式的加减—化简求值,会把整式正确化简及运用“整体思想”是解决问题的关键.27.(2022秋•铜梁区期末)先化简,再求值:6a2﹣[2(a2+ab)﹣4ab]﹣ab,其中a,b满足|a+1|+(b﹣2)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:∵6a2﹣[2(a2+ab)﹣4ab]﹣ab=6a2﹣(2a2+2ab﹣4ab)﹣ab=6a2﹣2a2+2ab﹣ab=4a2+ab,∵a,b满足|a+1|+(b﹣2)2=0,∴a+1=0,a=﹣1.b﹣2=0,b=2.则原式=4×(﹣1)2+(﹣1)×2=4﹣2=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2022秋•汝阳县期末)已知|a+1|+(b﹣2)2=0,求5ab2﹣[3ab﹣2(﹣2ab2+ab)]的值.【分析】直接利用非负数的性质得出a,b的值,再利用整式的加减运算法则计算,进而得出答案.【解答】解:∵|a+1|+(b﹣2)2=0,∴a+1=0,b﹣2=0,解得:a=﹣1,b=2,∵5ab2﹣[3ab﹣2(﹣2ab2+ab)]=5ab2﹣(3ab+4ab2﹣2ab)=5ab2﹣(ab+4ab2)=ab2﹣ab,将a=﹣1,b=2代入原式=ab2﹣ab=﹣1×22﹣(﹣1)×2=﹣4+2=﹣2.【点评】此题主要考查了整式的加减—化简求值,正确掌握相关运算法则是解题关键.29.(2022秋•沙坪坝区期末)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣(2x2﹣15xy+6x2﹣xy)=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.30.(2022秋•利州区校级期末)先化简,再求值:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2),其中x、y满足(x﹣3)2+|+13|=0.【分析】先化简整式,再根据非负数的和为0求出x、y的值,最后代入求值.【解答】解:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2)=3x2+2xy﹣3y2﹣2x2﹣2xy+2y2=x2﹣y2.∵(x﹣3)2+|+13|=0.又∵(x﹣3)2≥0,|+13|≥0.∴x=3,y=−13.∴原式=32﹣(−13)2=9−19=889.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则,根据非负数的和求出x、y的值是解决本题的关键.31.(2022秋•招远市期末)先化简,再求值;4B−[(2−2)−3(2+3B−132)],其中x、y满足(−2)2+ |+12|=0.【分析】先化简整式,再根据非负数的意义确定x、y的值,最后代入化简后的整式求值.【解答】解:4B−[(2−2)−3(2+3B−132)]=4xy﹣(x2﹣y2﹣3x2﹣9xy+y2)=4xy﹣x2+y2+3x2+9xy﹣y2=13xy+2x2.∵(−2)2+|+12|=0,又∵(x﹣2)2≥0,|y+12|≥0,∴x=2,y=−12.当x=2,y=−12时,原式=13×2×(−12)+2×22=﹣13+2×4=﹣13+8=﹣5.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及非负数的意义是解决本题的关键.32.(2022秋•万州区期末)化简求322b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.【分析】利用去括号的法则和合并同类项的法则化简运算,利用非负数的性质求得a,b的值,将a,b 的值代入运算即可.【解答】解:原式=322b﹣2ab2﹣2−32a2b+12ab2﹣2=−32B2−4.∵2(−3)2022+|+23|=0,(a﹣3)2022≥0,|b+23|≥0,∴a﹣3=0,+23=0,∴a=3,=−23.∴原式=−32×3×(−23)2−4=−92×49−4=﹣2﹣4=﹣6.【点评】本题主要考查了求代数式的值,整式的加减与化简求值,非负数的应用,正确利用去括号的法则和合并同类项的法则运算是解题的关键.33.(2022秋•潼南区期末)先化简,再求值:已知x,y满足|x﹣1|+(y+5)2=0,求代数式3(2−B+162)−2(2B+2−142)的值.【分析】利用非负数的性质求出x,y的值,去括号合并同类项可得结论.【解答】解:3(2−B+162)−2(2B+2−142)=3x2﹣3xy+12y2﹣4xy﹣2x2+12y2=x2﹣7xy+y2,∵|x﹣1|+(y+5)2=0,∴x=1,y=﹣5,∴原式=12﹣7×1×(﹣5)+(﹣5)2=61.【点评】本题考查整式的加减,非负数的性质等知识,解题的关键是掌握整式的混合运算的法则,属于中考常考题型.34.(2022秋•沙坪坝区校级期中)先化简,再求值:2(2−2B2)−[(−22+42p−13(6B2−322)],其中x是最大的负整数,y是绝对值最小的正整数.【分析】去括号,合并同类项,代入数据求值.【解答】解:∵x是最大的负整数,y是绝对值最小的正整数,∴x=﹣1,y=1,∴2(2−2B2)−[(−22+42p−13(6B2−322)]=2x2y﹣4xy2﹣(﹣x2y2+4x2y﹣2xy2+x2y2)=2x2y﹣4xy2+x2y2﹣4x2y+2xy2﹣x2y2=﹣2x2y﹣2xy2=﹣2×(﹣1)2×1﹣2×(﹣1)×12=﹣2+2=0.∴化简后结果为:﹣2x2y﹣2xy2,值为:0.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.35.(2022秋•松滋市期末)已知关于x,y的单项式7x a y与﹣4x2y b是同类项.(1)求a、b的值;(2)化简求值:5(2a2b﹣ab2)﹣6(−32ab2+2a2b).【分析】(1)根据同类项的定义可得结论;(2)先去括号,再合并同类项.【解答】解:(1)∵单项式7x a y与﹣4x2y b是同类项,∴a=2,b=1.(2)5(2a2b﹣ab2)﹣6(−32ab2+2a2b)=10a2b﹣5ab2+9ab2﹣12a2b=4ab2﹣2a2b.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则、有理数的混合运算是解决本题的关键.36.已知2a3m b和﹣2a6b n+2是同类项,化简并求值:2(m2﹣mn)﹣3(2m2﹣3mn)﹣2[m2﹣(2m2﹣mn+m2)]﹣1.【分析】原式去括号合并得到最简结果,利用同类项定义求出m与n的值,代入计算即可求出值.【解答】解:原式=2m2﹣2mn﹣6m2+9mn﹣2m2+4m2﹣2mn+2m2﹣1=5mn﹣1,∵2a3m b和﹣2a6b n+2是同类项,∴3m=6,n+2=1,即m=2,n=﹣1,则原式=﹣10﹣1=﹣11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.37.已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.【分析】将A与B代入A+2B中,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:∵A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,∴A+2B=3a2﹣6ab+b2+2(﹣2a2+3ab﹣5b2)=3a2﹣6ab+b2﹣4a2+6ab﹣10b2=﹣a2﹣9b2,当a=1,b=﹣1时原式=﹣12﹣9×(﹣1)2=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.38.先化简,再求值:已知=−12+2,=34−−1.若3b﹣a的值为﹣8,求A﹣2B的值.【分析】此题需要先去括号,再合并同类项,将原整式化简,然后再将3b﹣a=﹣8代入求解即可.【解答】解:∵A=a−12b+2,B=34−b﹣1,∴A﹣2B=(−12+2)−2(34−−1)=−12+2−32+2+2=−12+32+4把3b﹣a=﹣8代入,原式=−r32+4=−82+4=−4+4=0.【点评】此题考查了整式的混合运算,主要考查了整式的加减法、去括号、合并同类项的知识点.注意运算顺序以及符号的处理.39.(2022秋•和平区校级期中)已知A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2.(1)化简:2A﹣3B;(2)当a=﹣1,b=2时,求2A﹣3B的值.【分析】(1)将A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2代入2A﹣3B中,再进行化简即可求解;(2)将a=﹣1,b=2代入(1)中化简的式子即可求解.【解答】解:(1)∵A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2,∴2A﹣3B=2(3b2﹣2a4+5ab)﹣3(4ab+2b2﹣a2)=6b2﹣4a4+10ab﹣12ab﹣6b2+3a2=﹣4a4+3a2﹣2ab;(2)当a=﹣1,b=2时,2A﹣3B=﹣4a4+3a2﹣2ab=﹣4×(﹣1)4+3×(﹣1)2﹣2×(﹣1)×2=﹣4+3+4=3.【点评】本题主要考查了整式的化简,掌握合并同类法则是解题的关键.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B ﹣2A的值.【分析】先把A、B表示的代数式代入并化简整式,再利用非负数的性质求出x、y的值,最后代入计算.【解答】解:B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣2x﹣4y=﹣5x﹣5y.∵|x﹣2|+(y−15)2=0,|x﹣2|≥0,(y−15)2≥0,∴|x﹣2|=0,(y−15)2=0.∴x=2,y=15.当x=2,y=15时,原式=﹣5×2﹣5×15=﹣10﹣1=﹣11.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则,非负数的性质是解决本题的关键.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.【分析】(1)先去括号,合并同类项,然后把A,B的值代入化简后的式子,进行计算即可解答;(2)把a,b的值代入(1)中的结论,进行计算即可解答.【解答】解:(1)∵A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab,∴A﹣2(A﹣B)=A﹣2A+2B=﹣A+2B=﹣(2a2b﹣ab﹣2a)+2(a2b﹣a+3ab)=﹣2a2b+ab+2a+2a2b﹣2a+6ab=7ab;(2)当a=−27,b=3时,A﹣2(A﹣B)=7×(−27)×3=﹣6.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.【分析】(1)将A=3ab+a﹣2b,B=2ab﹣b代入2A﹣3B,再进行化简即可求解;(2)由(1)可得2A﹣3B+4,再把b=2a代入可求解.【解答】解:(1)∵A=3ab+a﹣2b,B=2ab﹣b,∴2A﹣3B=2(3ab+a﹣2b)﹣3(2ab﹣b)=6ab+2a﹣4b﹣6ab+3b=2a﹣b;(2)由(1)知,2A﹣3B=2a﹣b,∴2A﹣3B+4=2a﹣b+4,∴当b=2a时,原式=2a﹣2a+4=4.【点评】本题主要考查了整式的加减运算,掌握去括号法则和合并同类项法则是解题的关键.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.【分析】(1)把A、B代入2A﹣(A+3B)计算即可;(2)当a,b互为倒数时,ab=1,根据(1)的计算结果,求出2A﹣(A+3B)的值即可.【解答】解:(1)∵A=6a2+2ab+7,B=2a2﹣3ab﹣1,∴2A﹣(A+3B)=2A﹣A﹣3B=A﹣3B=(6a2+2ab+7)﹣3(2a2﹣3ab﹣1)=6a2+2ab+7﹣6a2+9ab+3=11ab+10.(2)当a,b互为倒数时,ab=1,2A﹣(A+3B)=11ab+10=11×1+10=11+10=21.【点评】此题主要考查了整式的加减﹣化简求值问题,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.44.(2022秋•兴城市期末)已知多项式A=3x2﹣bx+6,B=2ax2﹣4x﹣1;(1)若(a﹣3)2+|b﹣2|=0,求代数式2A﹣B的值;(2)若代数式2A+B的值与x无关,求5a+2b的值.【分析】(1)根据两个非负数的和为0,两个非负数分别为0,再进行化简求值即可求解;(2)根据2A+B的值与x的取值无关,即为含x的式子为0即可求解.【解答】解:(1)由题意得,a﹣3=0,b﹣2=0,∴a=3,b=2,∴A=3x2﹣2x+6,B=6x2﹣4x﹣1,∴2A﹣B=2(3x2﹣2x+6)﹣(6x2﹣4x﹣1)=6x2﹣4x+12﹣6x2+4x+1=13;(2)由题意得,2A+B=2(3x2﹣bx+6)+2ax2﹣4x﹣1,=6x2﹣2bx+12+2ax2﹣4x﹣1=(6+2a)x2﹣(2b+4)x+11∵代数式2A+B的值与x无关,∴6+2a=0,2b+4=0,∴a=﹣3,b=﹣2,∴5a+2b=5×(﹣3)+2×(﹣2)=﹣19.【点评】本题考查了整式的化简求值、非负数的性质,解决本题的关键是与x的值无关即是含x的式子为0.45.(2022秋•韩城市期末)已知关于x的多项式A,B,其中A=mx2+2x﹣1,B=x2﹣nx+2(m,n为有理数).(1)化简2B﹣A;(2)若2B﹣A的结果不含x项和x2项,求m、n的值.【分析】(1)根据整式的减法法则计算即可;(2)根据结果不含x项和x2项可知其系数为0,然后列式计算即可.【解答】解:(1)2B﹣A=2(x2﹣nx+2)﹣(mx2+2x﹣1)=2x2﹣2nx+4﹣mx2﹣2x+1=2x2﹣mx2﹣2nx﹣2x+5;(2)2B﹣A=2x2﹣mx2﹣2nx﹣2x+5=(2﹣m)x2﹣(2n+2)x+5,∵2B﹣A的结果不含x项和x2项,∴2﹣m=0,2n+2=0,解得m=2,n=﹣1.【点评】本题考查了整式的加减运算,关键是注意去括号时符号的变化情况.46.(2022秋•北碚区校级期末)已知A=32B2−2x﹣1,B=3x2−13mx+4,(1)当4A−3B的值与x的取值无关,求m、n的值;(2)在(1)的条件下,求多项式(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)的值.【分析】(1)化简整理整式,令含有x的项的系数为0,求出m、n的值;(2)把m、n的数据代入代数式求值.【解答】解:(1)∵A=32B2−2x﹣1,B=3x2−13mx+4,∴4A−3B=4(32B2−2x﹣1)﹣3(3x2−13mx+4)=6nx2﹣8x﹣4﹣9x2+mx﹣12=(6n﹣9)x2+(m﹣8)x﹣16,∵4A−3B的值与x的取值无关,∴6n﹣9=0,m﹣8=0,∴n=32,m=8;(2)由(1)得n=32,m=8,∴(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)=m2﹣3mn+3n2﹣2nm+mn+4n2=m2﹣4mn+7n2=82﹣4×8×32+7×(32)2=64﹣48+634=16+15.75=31.75.【点评】本题考查了整式的混合运算化简求值,解题的关键是掌握整式的混合运算.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式32−[2B2−4(B−342p]+2B2的值.【分析】首先求出a,b的值,再化简求值即可.【解答】解:A﹣B=(x2+ax﹣y)﹣(bx2﹣x﹣2y)=(1﹣b)x2+(a+1)x+y,∵A与B的差与x的取值无关,∴a=﹣1,b=1,∴原式=3a2b﹣2ab2+4ab﹣3a2b+2ab2=4ab=﹣4.【点评】本题考查整式的加减,解题关键是理解题意,掌握整式是加减法则,属于中考常考题型.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.【分析】(1)直接将A=2x2+3xy﹣2x,B=x2﹣xy+y2代入计算即可;(2)先根据非负性求出x、y的值,再代入(1)中结果计算即可;(3)直接将10xy﹣4x﹣4y2转化为(10y﹣4)x﹣4y2计算y即可.【解答】解:(1)2A﹣4B=2(2x2+3xy﹣2x)﹣4(x2﹣xy+y2)=4x2+6xy﹣4x﹣4x2+4xy﹣4y2=10xy﹣4x﹣4y2.(2)由题意可知:x﹣1=0,y+2=0,所以x=1,y=﹣2,原式=10×1×(﹣2)﹣4×1﹣4×(﹣2)2=﹣20﹣4﹣16=﹣40.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣4x﹣4y2=2x(5y﹣2)﹣4y2,所以5y﹣2=0,所以=25.【点评】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.【分析】(1)去括号,合并同类项将原式化为(3+6b)x2+(a+4)x﹣6y+7,再令x项的系数为0即可;(2)根据去括号、合并同类项将原式化简后,再代入求值即可.【解答】解:(1)原式=3x2+ax﹣y+6+6bx2+4x﹣5y+1=(3+6b)x2+(a+4)x﹣6y+7,∵该多项式的值与字母x的取值无关,∴3+6b=0,a+4=0,∴a=﹣4,b=−12;(2)原式=3ab2﹣(5a2b+2ab2﹣1+ab2)+6a2b=3ab2﹣5a2b﹣2ab2+1﹣ab2+6a2b=a2b+1,当a=﹣4,b=−12时,原式=(﹣4)2×(−12)+1=﹣8+1=﹣7.【点评】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B=3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2−12bx2﹣y+6=(2−12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2−12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减的运算法则是解题的关键.。

初一上册整式化简求值60题(含答案)

初一上册整式化简求值60题(含答案)

整式化简求值:先化简再求值2 3 2 31. (3a -8a) (2a -13a 2a)-2(a -3),其中a =-42 3 32. (—x 5—4x)—2(—x 5x—4),其中x=_21 123 1 2 23. 求一x -2(x y ) ( x y )的值,其中x = -2 目二一2 3 2 3 34. -2a2b - 3a2b-3(abc -〔a2c)-4a2c -3abc 其中a =-1 b =-3 c = 12 123 」5. 化简求值:若a=- 3, b=4, c= - 1,求7a2bc - 'BaWb -|bca2 ®b -2 be )] / 的值23 2 16. 先化简后求值:3x y -[2xy -2(xy x y) xy],其中x=3 , y=--37•化简求代数式:(2a2-5a)-2(3a-5 • a2)的值,其中a=- 1.1 1& 先化简,再求值:5(a2b「ab2)「(ab2• 3a2b),其中a 二一,b=-2 319. 求代数式的值:2(3xy 4x2) -3(xy • 4x2),其中x - -3,y =310. 先化简,再求值:2 (3a- 1)- 3 ( 2- 5a),其中a=- 2.1 2 2 211 .先化简,再求值:-2(xy x ) -[x -3(xy y ) 2xy],其中x=2 , y= - 1.12. 先化简,再求值:2x(3x2-4x 7) -3X2(2X-3) -1,其中x= - 5.2 213. 先化简,再求值:3x - [7x -( 4x- 3)- 2x ];其中x=2.2 214. 先化简,再求值: (-x +5x+4 ) + ( 5x - 4+2 x ),其中x= - 2.15. 先化简,再求值:3 (x- 1)-( x- 5),其中x=2 .16. 先化简,再求值: 3 (2x+1 ) +2 ( 3-x),其中x= - 1.2 2 117 .先化简,再求值:(3a - ab+7)-( 5ab- 4a +7),其中a=2, b=—.31 1 118. 化简求值:一(-4x2• 2x-8)-( x-1),其中x =--4 2 22 2 2 119. 先化简,再求值: (1) (5a +2a+1)- 4 (3- 8a+2a ) + (3a - a),其中a =-3320. 先化简再求值:2x2(3x2• 3)-(-5x2• 3),其中x3 52 2 2 221 .先化简再求值:2 ( x y+x y )- 2 ( x y-x)- 2x y - 2y 的值,其中x= - 2, y=2.2 2 21 1 先化简,再求值.4xy - [2( x +xy -2 y ) - 3( x - 2xy+y2 )],其中 x ,、二2 22 2 2 2 21先化简,再求值:2x + (- x +3xy+2 y )- ( x - xy+2 y ),其中 x= , y=3.22 2 2 215 (3x y - x y ) -( x y +3 x y ),其中 x=- — , y=2 . 2a 2b -ab ab 2 j :2a 2 -3ab -5ab 2,其中 a =1 ,22. 23.24. 25.26.27.28. 29. 30.31 .32. 33.34.35.36.37.38.39.40.41 .42.先化简后求值: 先化简,再求值:X 2 2x 3(X 2_|X ),其中 x=-l (5 x 2 - 3 y 2) 2y ),其中 x=5 , y= - 3.先化简再求值: 2 2 2 2 2 , (2x - 5xy )- 3 ( x - y ) + x - 3 y ,其中x= - 3,先化简再求值: 2 (—x +5x ) -( x - 3) - 4x ,其中 x= - 1 先化简,再求值: 2 22x -2(x -y) 3(y -2x),其中,x = 3,2 213(x -2xy)「[3x -2y 2(xy y)],其中 x , y = -3。

七年级上册数学 整式加减法 先化简再求值100题

七年级上册数学 整式加减法 先化简再求值100题

1.先化简,再求值:5(a²-2b)+3(a²-2b)–4( a²-2b),其中|a+12|+(b−1)2=02.先化简,再求值:当x=-1时,求代数式:2x-2[x-(2x²-3x+2)]-3x²的值.3.先化简再求值:5(3x²y-xy²)-(xy²+3x²y²),其中x=12,y=−1.4.先化简12x−2(x+13y2)+(−32x−13y2)再求值,其中x−2,y=23.5.已知A=2x²+3xy-2x,B=x²-xy+1,(1)求3A-6B;(2)若34-6B的值与x的取值无关,求y的值.6.先化简,再求值:4(x2y+12xy2)−3(x2y−x)−2xy2+1,其中x=-2,y=3.7.(1) 3x−y2+x+y2(2) 4( 3x²y-x¹²) -3( -x¹²+4x²y) ;(3)先化简,再求值:35(75a2b−29ab2−1)−2(35a2b−92ab2)+53,其中a=2,b=-1.8.先化简,再求值:3x²y-[6xy-(6xy-2x²y)],其中x=-1,y=2022.9.设A=3a²b-ab²,B=-ab²+2a²b.(1)化简2A-3B;(2)若|a-2|+( b+3)²=0,求A-B的值.10.先化简,再求值:13x3−2x2+23x3+3x2+5x−4x+7,其中x=0.111.已知: A=3a²+b²-5ab,(1)化简:-B+2A;(2)当a=−12,b=2时,求-B+2A的值12.先化简,再求值(1)(3a²-7a)+2(a²-3a+2),其中a=1(2)3xy²+(3x²y-2xy²)-4(xy²-x²y²),其中x=-4,y=113.先化简,再求值:2(x²y-2xy) -3(x²y-3xy)+x²,其中x=−1,y=1514.先化简,再求值(1)-( x² -3)-( 7-5x²),其中x=-2..(2)(3a2b-ab²)-2(-ab²+3a²b),其中a=−2,b=−1215.先化简,再求值:5(3a²b-ab²)-4(-ab²+3a²) ,|=0其中a,b满足|b−2)2+|b−1216.先化简,再求值:x²+(2xy-3y²)-2(x²+xy-2y²)-2y²,其中x=-1,y=2.17.已知· A=4x²-4xy+5y²,B=x²-xy+y².(1)化简:A-3B;(2)当x=-3,y=-2时,求A-3B的值..18.化简求值: 3a²b-[2ab²-2(-a2b+4ab²)]-5ab², 其中a=−2,b=1219.先化简下式,再求值:5(3a2b-ab²) -(ab²+3a²b),其中a=-1,b=120.先化简,再求值:3xy-7y+[-5x²-3(xy+y-2x²)],其中x=-2,y=3.(9ab2−3)+a2b+3−2(ab2+1),其中a=-2,b=3.21.先化简,再求值:1322.先化简,再求值:4x²y-[6xy-3(4xy-2)-x²y]+6,其中x=−1,y=2.2x−3)+2x2],其中x=-2.23.先化简,再求值:3x2−[5x−(1224.(1)化简:2x²-5x-x²+3x(2)求值: (6a²-2ab)-2(3a²+ab) ,其中a=-2,b=1.25.先化简,再求值(1)2x²-5x+x2+4x-3x²-2,其中x=12.(2)若2a²-3a-5=1,求2(3a²-7a)-2(a²-4a+2)的值.26.先化简,后求值.(1)a+(5a-3b)-( a-2b)(2)-3(2x²-xy)+4(x²+xy-6),其中x=1,y=227.先化简,再求值:(5x-3y-2xy) -2(6x+5y-xy) ,其中x=-2,y=1.28.先化简,再求值:-2x²- [3y²-3(x²-y²)+6],其中x、y满足 |x+1|+(y-1)²=0 .29.先化简,再求值:5(3m²n-nm²)-4(-mn²+3m²n) ,其中m=13,n=−2. 30.先化简,再求值:[(x-2y)²+(x-2y)(2y+x)-2x( 2x-y)]÷2x,其中x=−1,y=112.31.(1)化简:x+(5x-3y)-(x-2y) ;(2)先化简,再求值:13a−(12a−4b−6c)+3(2b−2c),其中a=6,b=12.32.化简:(1)−4ab+23b2−9ab−12b2;(2)2a+(3a-b)-(a+2b) ;(3)先化简,再求值:ab²+5(3a²b-ab²)-4(-ab²+3a²b) ,其中a=-3,b=3.33.化简求值:2x³+4x-2x²-(x+3x²-2x³) ,其中x=-234.先化简,再求值:5x²-2(3y²+2x²)+3(2y²-xy),其中x=−12,y=−1.35.先化简,再求值:12x2−2(x2−13y)+(−32x2+13y),其中x=−2,y=23.36.先化简,再求值:12x−2(x−13y2)+(−12x+13y2),其中x=−2,y=23.37.化简求值:(1)已知: a²-2a-1=0,求(4a²+a-5)-3( a+a²)的值;(2)已知:求3a²b-[2a²-(ab²-3a²b)-4ab²] .38.先化简,再求值.(1)已知|a-2|+( b-3)²-0,求多项式 3[2(a+b)-ab]-[2(a+b)-ab] 的值;(2)已知A=32nx2−2x−1,B=2x2−13mx+4,当2A-3B的值与x的取值无关时,求多项式(m²-3mn+2n²)-(2m²+mm-4n²)的值.39.先化简,再求值:(3a2b-ab²) -2(ab²-3a²b) ,其中a=13,b=−3.40.(1)化简,再求值[4x²y-[6xy-2(4xy-2-x²y)]+1,其中x=-2,y= 1.(2)已知|a|=1,|b|=2,|c| = 4,且a>b>c,求a-b+c的值.41.先化简,再求值(1)4x²y+6xy-2(4xy-2)-x²y,其中x=−12,y=1.(2)已知:x²+3x-2=0,求4x2−y2−2(x2−3x−12y2)的值.42.先化简,再求值:5x2y−2xy+2(x2y−12xy),其中x=-1,y⁻².43.先化简,再求值:5x²-2(y²+4xy)+(2y²-5x²) ,其中x=−18,y−1.44.(1)先化简,再求值: 2(a2+ab)−3(23a2−ab),其中a=2,b=-3.(2)已知2x+y=3,求代数式3(x-2y)+5(x+2y-1)-2的值.45.先化简,再求值:2(x²y+xy)-3(x²y-xy)-4x²y,x=2,y=-2.46.先化简,再求值:(x-2y)-2(x³-y)+(3x³-4y²-x) ,x=-1,y=-2.47.先化简,再求值:(2a2−3a+1)+3(a−2a2−13),其中a=-148.先化简,再求值:12x+(−32x+13y2)−(2x−23y2),其中x=−2,y=2349.先化简,再求值:(3a²b-ab²)-2(ab²-3a²b) ,其中a=−13,b=−3.50.先化简,再求值: (3x²y-7xy)-2(x²y-3xy),其中x=−2,y=1251.先化简,再求值:4xy-[(x²+5xy-y²)-(x²+3xy-2y²)],其中x=−14,y=1252.先化简,再求值:(2a²b-ab²)-3(a²b-1)+(ab²+1),其中a=-1,b=253.先化简,再求值:−3(x2−2x)+2(32x2−2x−12),其中x=4.54.先化简,再求值:其中x=2,y=-1.55.先化简,再求值:3( a³-3a²+5b)-( a²+7b) ,其中a=-1,b=-2.56.计算(1)(2a-3b)+(2b-3a)(2)先化简再求值:2(x²y-2xy)-3(x²y-3xy)+x²y,其中x=−1,y=15 57.先化简,后求值.求2(a2b+ab²)-5(2ab²-1+a²b)-2的值,其中a=1,b=-258.先化简,再求值: x²- (6x²-5y)+4(x²-y) ,其中x=-1,y=2.59.先化简,再求值:2(ab²-a2b)-(1-2a²b-ab²),其中a=4,b=−12.60.先化简,后求值:(1)已知:-2(mn-3m²)-[m²-5(mn-m²)+2min,其中m=1,n=-2;(2)已知|a-2|+(b+1)²=0,求5ab²-[2a²b-(4ab²-2a²b)] 的值.61.先化简,再求值(5x2y+5xy−7x)−12(4x2y+10xy−14x),其中x=13,y=−262.先化简,再求值:3(4a²+2a)-(2a²+3a-5) ,其中a=-263.化简求值:求多项式3(x²-x+1) -2( 3x²-x-3) 的值,其中x=-1.64.先化简,后求值:x²y+2(2xy²-3x²y)-3(xy²-2x²y+1) ,其中x=-2,y=1.65.先化简,再求值:(−2x2+x−4y)−2(−32x2+2x−12y),其中x=-2,y=1.66.先化简,再求值:3a²-2(2a²+a)+2(a²-3a),其中a=-2.67.先化简,再求值:2(a²b+ab²)-2(a²b-1)-ab²-2,其中a=−2,b=12.68.先化简再求值:(1) ab-2a²-2b²-5ab+3a²+4ab,其中a=2,b=-1;(2)4x2y−(2x2+3x2y−xy2)+12(4x2−2x2y),其中x=1,y=-2.69.先化简再求值:( -4a²-2ab+7)-2(5ab-4a²+7),其中a=2,b=1.70.已知A=b²-a²+5ab,B=3ab+2b²-a².(1)化简:2A-B;(2)当a=1,b=2时,求2A-B的值.71.先化简,再求值.(1)5(3a²b-ab²) -( ab²+3a²b) ,其中a=12,b=13.(2)3(2x2+xy+13)−(3x2+4xy−y2),其中x=-2,y=-1.72.先化简,再求值:x²+( 2xy-3y²) -2(x²+xy-2y²) ,其中x=-1,y=-2.73.先化简,再求值.(1)2a²-5a+a²+4a-3a²-2,其中a=12;(2)12x−2(x−13y2)+(−32x+13y2),其中x=−2,y=32.74.先化简,再求值:( -12x²-4xy)-2(5xy-8x²) ,其中 x= -1,y= 0.475.先化简,再求值:1 2x−2(x−13y2)+(−32x+13y2),其中x,y满足 (x+2)²+|y-3|=0.76.先化简,再求值:12a2b+5ac+2(3a2c+12a2b)−(3ac−4a2c),其中a=-1,b=2,c=-2.77.先化简,再求值:-3a2b+(4ab²-a2b)-2(2ab²-a²b) ,其中a=1,b=1.78.先化简,再求值:(1)3(x²-2x²) -[3x²-2y+2(xy+y)],其中x=−12,y=−3.(2)23y−12(−x+13y2)+6(−32x+23y2),其中 (x+1)²+|3-2y|= 0 .79.先化简,再求值2(x2y+xy)-3(x²y-xy)-5x²y,其中x=-2,y=1.80.先化简,再求值:若 (x-3)²+|y+2|=0,求代数式3x²y-[xy²-2(2xy²-3x²y)+x²y]+4xy²的值.81.先化简再求值:-a²+( -4a+3a²) -(5a²+2a-1),其中a=−23.82.先化简再求值:5(3a2b-ab²)-4( -ab²+3a²b) ,其中a=-1,b=2.83.化简(1)12a-3(4a+5b)+2(3a-4b)(2)3x2y−[2xy2−2(xy−32x2y)+xy]+3xy2.(3)先化简,再求值:x²-3(2x²-4y)+2(x²-y),其中x=−2,y=15.84.先化简再求值:2(x²y+xy²) -2(x²y-x) -2xy²-2y,其中x=-2,y=285.先化简,再求值:23(3m−9mn)−(n2−6mn),其中m=-1,n=-3.86.先化简,再求值:3x 2−4(12x 2+x)−3x, 其中x=-4.87.先化简,再求值:2(2x −y )−2(3x −12y), 其中x=-1,y=2.88.已知 A=2x ²-3xy-y ²+2x+2y ,B=4x ²+6xy-2y ²-3x+4y. (1)化简B-2A;(2)若 |x −5|+(y +15)2=0, 求B-2A 的值.89.先化简,再求值:其中 x =53,y =4390.先化简,再求值:已知A=3a ²+b ²-5ab ,B=2ab-3b ²+4a ², 当a=-1,b=2时,求-B+2A 的值.91.先化简,再求值:(4a+3a ²-3-3a ³)-( -a+4a ³) ,其中a=-1.92.先化简,再求值:(1)3(a ²-2a)-2(2a ²-3a),其中a=-3.(2)-x ²-y-[7xy-2(4xy-2)-x ²y]+1,其中x ,y 满足 |x-2015|+(y+1)²=0.93.先化简,再求值: 其中a =2,b =−12.94.先化简,再求值:2(3a2b-ab ²)-3(-ab ²+a ²b-1), 其中a 、b 满足|a-1|+( b+2)²=0.95.先化简,再求值:2(mn-4m ²-1)-(3m ²-2mn) ,其中m=1,n=-2.96.先化简,再求值:a −2(14a −13b 2)+(−32a +13b 2),其中a =32,b =−1297.先化简再求值:-7a ²+3ab-2(ab-4a ²) , 其中a=-1,b=2.98.先化简,再求值:(1)5x ²+4-3x ²-5x-2x ²-5+6x ,其中x=3(2) 12x−2(x−13y2)+(−32x+13y2),其中x=−2,y=2399.先化简,再求值:(1)(2a²b+2ab²)-[2(a²b-1)+3ab²+2],其中a=2,b=-2.(2)12a−2(a−13b2)+(−32a+13b2),其中a=-1,b=-3.100.先化简,再求值:2a²+(3ab-5b²)-3(a²+ab-2b²),其中 |a+1|+(b-2)²=0.。

部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案

部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案

专题05 整式的化简求值(30题) 专项训练1.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab éùéù----+-ëûëû,其中a =-4,14b =.2.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a =1,b =﹣2.3.(2022·陕西·七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-.【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可.【详解】解:原式=2222x xy y x xy ---+=22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.4.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b -+-=223a b ab -当a =-2,b =3时,原式=()()2232323´-´--´=34329´´+´=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.5.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.6.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.7.(2022·黑龙江牡丹江·七年级期末)先化简,再求值:3xy -12(6xy -12x 2y 2)+2(3xy -5x 2y 2),其中21||(2)02x y -++=8.(2022·河北保定·七年级期末)化简求值 222221382(33)(3)3535x x xy y x xy y -+-+++,其中1,22x y =-=9.(2022·江西赣州·七年级期末)先化简再求值:22222(3)2(3)3a b ab ab a b ab ---+,其中2a =-,3b =-.【答案】29a b ,108-.【分析】根据整式的混合运算法则将式子化简,再将a ,b 的值代入计算即可.【详解】解:原式=222223263a b ab ab a b ab --++,=29a b .当2a =-,3b =-时,29(2)(3)108´-´-=-.【点睛】本题考查整式的化简求值,解题的关键是熟练掌握整式的混合运算法则.10.(2022·四川乐山·七年级期末)先化简,再求值.已知:()()222352mn n mn m mn éù----+ëû,其中1m =,2n =-.【答案】﹣9mn++6n 2+5m 2,47【分析】首先根据整式的加减运算法则,将整式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】原式=﹣2mn +6n 2﹣5(mn ﹣m 2)﹣2mn =﹣2mn +6n 2﹣5mn +5m 2﹣2mn =﹣9mn++6n 2+5m 2当m =1,n =﹣2时,原式=()()229126251=18245=47-´´-+´-+´++.【点睛】本题考查了整式的乘法、去括号、合并同类项的知识点.解题的关键是熟练掌握整式的乘法、去括号、合并同类项法则.11.(2022·吉林松原·七年级期末)先化简,再求值:222(3)(2)()a b a b b a ---+-,其中2a =-,12b =-.【答案】22a b +,3【分析】先去括号,再合并同类项即可化简,然后把a 、b 值代入化简式计算即可.12.(2022·云南文山·七年级期末)先化简,再求值:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2),其中x =﹣1,y =2【答案】3x 2+y 2,7【分析】先去括号,然后合并同类项,即把式子进行化简,然后代入数值即可求解.【详解】解:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2)=2x 2+y 2+2y 2﹣3x 2﹣2y 2+4x 2=3x 2+y 2当x =﹣1,y =2时,原式=()223127´-+=.【点睛】本题主要考查了整式的加减的化简求值,正确去括号,合并同类项是解题的关键.13.(2022·黑龙江大庆·七年级期末)(1)化简:5(43)(92)a a b a b --+++;(2)先化简,再求值:()()323232242x y x y x ---+,其中3x =,2y =-.【答案】(1)b -;(2)3x -,27-【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项,最后将3x =代入计算即可得到答案.【详解】解:(1)()()54392a a b a b --+++54392a a b a b=---++b =-;(2)()()323232242x y x y x---+323232442x y x y x =--+-3x =-,当3x =时,原式3327=-=-.【点睛】本题考查整式的加减法则,解题的关键是熟练掌握去括号和合并同类项的法则.14.(2022·广西贵港·七年级期末)先化简,再求值:已知(2b −1)2+3|a +2|=0,求2(a 2b +ab 2)−(2ab 2−1+a 2b )−2的值.15.(2022·湖南衡阳·七年级期末)先化简,再求值:6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b ),其中a =2,b =﹣3.【答案】23ab -,-54【分析】先去括号,再合并同类项,然后把a =2,b =﹣3代入化简后的结果,即可求解.【详解】解∶ 6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b )()2222126312a b ab ab a b =---+ 2222126312a b ab ab a b =-+-23ab =-当a =2,b =﹣3时,原式()232354=-´´-=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.16.(2022·海南·七年级期末)先化简,再求值:()()222234+---x y xy x y xy x y ,其中x =1,y =−1.【答案】255x y xy -+,0【分析】先去括号,再合并同类项进行化简,然后将x 、y 的值代入即可.【详解】解:()()222234+---x y xy x y xy x y22222334x y xy x y xy x y =+-+-,255x y xy =-+.当x =1,y =−1时,原式()()2511511550=-´´-+´´-=-=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.17.(2022·河南三门峡·七年级期末)先化简,再求值:5x 2﹣(3y 2+5x 2)+(4y 2+7xy ),其中x =2,y =﹣1.(2)化简:33611106m n m n --+-+-(3)先化简,再求值:2222213242x y x y xy x y xy æöæö--+--ç÷ç÷,其中2x =-,14y =.19.(2022·河北保定·七年级期末)先化简,再求值:()()22222325x y xy xy x y ---+,其中1,33x y =-=.20.(2022·四川宜宾·七年级期末)先化简,再求值.22222(23)21,y x x y y éù+---+ëû其中22, 1.7x y ==-【答案】221y y ++,2【分析】先去括号,合并同类项对原式进行化简,再代入x 和y 的值计算即可.【详解】原式=222222321y x x y y éù+-+-+ëû=22321y y y +-+=221y y ++原式=2-1+1 =2.【点睛】本题考查整式的加减运算和化简求值,解题的关键是正确去括号和合并同类项.21.(2022·辽宁本溪·七年级期末)先化简,再求值:()()()322322232x y x y x y x -----+,其中3x =-,2y =-.【答案】2223y x y --+,8-【分析】利用去括号、合并同类项化简后,再代入求值即可.【详解】解:原式322324232x y x y x y x =--+-+-2223y x y=--+当3x =-,2y =-时,原式()()()22223328=-´--´-+´-=-.【点睛】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.22.(2022·河北石家庄·七年级期末)计算与化简(1)计算:()223232a b ab a b ab ---+ (2)先化简,再求值:()()2254542x x x x -+++-+,其中2x =-.【答案】(1)25a b ab - (2)291x x ++,-13【分析】(1)根据整式的加减运算法则进行去括号、合并同类项即可;(2)先根据整式的加减运算法则进行去括号、合并同类项,再将2x =-代入化简的结果进行计算即可.(1)解:原式22364a b ab a b ab =--++25a b ab=-(2)解:原式2254542x x x x =-+++-+291x x =++当2x =-时,原式()()2292113=-+´-+=-.【点睛】本题考查了整式的加减运算以及化简求值,熟练掌握运算法则并仔细计算是解题的关键.23.(2022·安徽芜湖·七年级期末)先化简,再求值:2﹣3(a 2﹣2a )+2(﹣3a 2+a +1),其中a =﹣2.【答案】﹣9a 2+8a +4,-48【分析】先去括号,再合并同类项,最后把a 的值代入计算即可.【详解】解:原式=2﹣3a 2+6a ﹣6a 2+2a +2=﹣9a 2+8a +4,当a =﹣2时,原式=﹣9×(﹣2)2+8×(﹣2)+4=﹣9×4﹣16+4=﹣48.【点睛】本题考查了整式的加减运算与求值,属于常考题型,熟练掌握整式的加减运算法则是解题关键.24.(2022·浙江金华·七年级期末)先化简再求值:()()226922x xy x xy --+++,其中2x =-,15y =.25.(2022·广东惠州·七年级期末)已知22(1)0a b ++-=,化简计算:()221129433a ab a ab ---()题的关键.26.(2022·湖北荆州·七年级期末)先化简,再求值:()223242xy x xy xy x æö+---+ç÷,其中4x =-,3y =.27.(2022·四川成都·七年级期末)(1)计算:﹣12022+8×(12-)3+2×|﹣6+2|;(2)先化简,再求值:2(﹣3x 2y ﹣2xy 252+)﹣5(﹣xy 2﹣2x 2y +1)﹣xy 2,其中20|1|2x y ++()﹣=.当x =-1,y =2时,原式=4×1×2=8.【点睛】本题考查了整式的加减-化简求值,有理数的混合运算,偶次方和绝对值的非负性,准确熟练地进行计算是解题的关键.28.(2022·四川成都·七年级期末)先化简,再求值:2a 212-(ab +a 2)52-ab ,其中a =2,b =﹣4.29.(2022·云南红河·七年级期末)先化简,再求值:()()22225342x x x x x ---++,其中12x =-.30.(2022·辽宁大连·七年级期末)若()22120a b -++=,试求多项式:()22212322a b a a b æö-+-+ç÷的值.。

专题4整式的化简求值 同步练习 2024—2025学年人教版数学七年级上册

专题4整式的化简求值 同步练习 2024—2025学年人教版数学七年级上册

专题4整式的化简求值类型1化繁为简再求值(1[2024 黑龙江绥化期末,中]先化简,再求值:−3a²b+(4ab²−a²b)−2(2ab²−a²b),其中a=1,b=-1.2[中]先化简,再求值:2x2−[3(−53x2+23xy)−(xy−3x²)]+2xy,其中x是最小的正整数,y是2的相反数.3[中]已知A=4ab−2b²−a²,B=3b²−2a²+5ab,当a=1.5,b=−12时,求3B-4A 的值.类型2整体代入求值4[中]阅读:小颖同学善于总结反思,她发现在代数式求值问题中整体思想的运用非常广泛.如:已知5a+3b=-4,求代数式2(a+b)+4(2a+b)的值.小颖同学提出了一种解法如下:原式=2a+2b+8a+4b=10a+6b,把式子5a+3b=-4两边同时乘2,得10a+6b=-8.仿照小颖同学的解题方法,完成下面的问题:(1)若a+b=2,则a+b+1= ;(2)已知a-b=-2,求3(a-b)-2a+2b+5的值;(3)已知a²+2ab=−2,ab−b²=−4,求4a²+7ab+b²的值.5[中]【阅读理解】若代数式x²+x+3的值为7,求代数式2x²+2x−3的值.小明采用的方法如下:由题意得x²+x+3=7,则有x²+x=4,2x²+2x−3=2(x²+x)−3=2×4-3=5.所以代数式2x²+2x−3的值为5.【方法运用】(1)若代数式x²+x+1的值为10,求代数式−2x²−2x+3的值.(2)当x=2时,代数式ax³+bx+4的值为9,当x=-2时,求代数式ax³+bx+3的值.【拓展应用】若a²−ab=26,ab−b²=−16,则代数式a²−2ab+b²的值为.类型3整式化简中的“无关”问题6[2023安徽合肥包河区期中,中]如图,长为a,宽为b的长方形被分割成7部分,除阴影图形P,Q外,其余5部分为形状和大小完全相同的小长方形O,其中小长方形O的宽为3.(1)求小长方形O 的长(用含a 的代数式表示).(2)小明发现阴影图形P 与阴影图形Q 的周长之和与a值无关,他的判断是否正确,请说明理由.7[中]已知A=2x²+mx−y,B=nx²−x+6y是关于x,y的多项式,其中m,n为常数.(1)若m=1,n=-2,化简A+B;(2)若A-2B 的值与x的取值无关,求代数式m²n²⁰²¹的值.类型4利用数形结合求值(●[中]有理数a,b,c所对应的点在数轴上的位置如图所示,化简代数式la-cl-|b|-|b-a|+|b+a|.9[2024广东广州期中,中]已知a,b,c三个数在数轴上对应点的位置如图所示.(1)在数轴上标出-a,-b,-c这三个数所对应的点,并将a,b,c,-a,-b,-c这6个数按从小到大的顺序用“<”连接;(2)化简式子|-a-bl+|b-c|-|c-a|;(3)若a+b+c=0,且表示数a的点向左运动1个单位长度后在数轴上对应的数恰好与c互为相反数,求-3(a-b)-(c+5) -2(c+4b)的值.专题4 整式的化简求值刷难关1.【解】 −3a²b +(4ab²−a²b )−2(2ab²−a²b )= −3a²b +4ab²−a²b −4ab²+2a²b =−2a²b.当 a =1, b =−1时,原式= =−2×1×(−1)=2.2.【解】因为x 是最小的正整数,y 是2 的相反数,所 以 x =1,y =−2,所 以 2x²− [3(−53x 2+23xy)−(xy −3x 2)]+2xy =2x 2− (−5x²+2xy −xy +3x²)+2xy =2x²+5x²−2xy +xy − 3x²+2xy =4x²+xy =4+(−2)=2.3.【角 4)3B −4A =3(3b²−2a²+5ab )−4(4ab −2b²− a²)=9b²−6a²+15ab −16ab +8b²+4a²=17b²− 2a²−ab.当 a =1.5,b =−12时,原式 =17×(−12)2−2× 1.52−1.5×(−12)=17×14−92+34=12.4.【解】(1)因为( a +b +1=(a +b )+1,所以当 a + b =2时,原式 =2+1=3..故答案为3.(2)因为 3(a −b )−2a +2b +5=3(a −b )−2(a − b)+5,所以当 a −b =−2时,原式 =3×(−2)−2×(−2)+5=−6+4+5=3.(3)因为 4a²+7ab +b²=(4a²+8ab )+(−ab + b²)=4(a²+2ab )−(ab −b²),所以当 a²+2ab =−2,ab −b²=−4时,原式 =4× (−2)−(−4)=−8+4=−4.5.【解】【方法运用】(1)由题意,得 x²+x +1=10,则 x²+x =9,所以 −2x²−2x +3=−2(x²+x )+3= −2×9+3=−15.(2)当 x =2时, ax³+bx +4=9,所以 8a +2b +4=9,所以 8a +2b =5.当 x =−2时, ax³+bx +3=(−2)³a −2b +3=−8a − 2b +3=−(8a +2b )+3=−5+3=−2.【拓展应用】因为 a²−ab =26,ab −b²=−16,所以 a²−2ab +b²=(a²−ab )−(ab −b²)=26− (−16)=42..故答案为42.6.【解】(1)因为小长方形O 的宽为3,所以小长方形O 的长为( a −3×3=a −9.答:小长方形O 的长为( a −9.(2)判断正确.理由如下:由题图可得阴影图形P 的长为a−9,宽为b−6,阴影图形Q的长为9,宽为b−(a−9)=b−a+9,阴影图形P和阴影图形Q 的周长之和为2(a−9+b−6)+2(9+b−a+9)=2a−18+2b−12+18+2b−2a+18 =4b+6,,所以阴影图形P与阴影图形Q的周长之和与a值无关,小明的判断正确.7.【解】(1)当m=1,n=−2时, A=2x²+x−y,B=−2x²−x+6y,所以A+B=2x²+x−y+(−2x²−x+ 6y)=2x²+x−y−2x²−x+6y=5y.(2)A−2B=2x²+mx−y−2(nx²−x+6y)=(2−2n)x²+(m+2)x−13y.由题意可得2-2n=0,m+2=0,解得m=-2,n=1,所以m²n²⁰²¹=(−2)²×1²⁰²¹=4×1=4.8.【解】由数轴可得a-c<0,b>0,b-a>0,a+b<0,所以原式=c-a-b-b+a-b-a=-a-3b+c.9.【解】(1)在数轴上标出-a,-b,-c这三个数所对应的点,如下图.将a,b,c,-a,-b,-c这6个数按从小到大的顺序用“<”连接如下:-c<a<b<-b<-a<c.(2)由题意得a<b<0<c,所以-a>0,-b>0,-c<0,所以-a-b>0,b-c<0,c-a>0,所以l-a-bl+|b-cl-|c-a|=-a-b+(c-b)-(c-a)=-a-b+c-b-c +a=-2b.(3)因为表示数a的点向左运动l个单位长度后在数轴上对应的数恰好与c互为相反数,所以a−1+c=0,所以a+c=1.因为a+b+c=0,所以b=−1.−3(a−b)−(c+5)−2(c+4b)=−3a+3b−c−5−2c−8b=−3a−5b−3c−5=−3(a十c)−5b−5=−3×1−5×(−1)−5=−3+5−5=−3.。

初中数学:七年级上册计算专项整式的化简求值专项训练50题

初中数学:七年级上册计算专项整式的化简求值专项训练50题

整式的化简求值专项训练50题1.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.2.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓展探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.3.已知:关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项.求代数式3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)的值.4.已知含字母a,b的代数式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)(1)化简代数式;(2)小红取a,b互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0,那么小红所取的字母b的值等于多少?(3)聪明的小刚从化简的代数式中发现,只要字母b取一个固定的数,无论字母a取何数,代数式的值恒为一个不变的数,那么小刚所取的字母b的值是多少呢?4.如果关于x的多项式(3x2+2mx﹣x+1)+(2x2﹣mx+5)﹣(5x2﹣4mx﹣6x)的值与x的取值无关,试确定m的值,并求m2+(4m﹣5)+m的值.5.已知:2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1的值与x的取值无关,A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,先化简3A﹣[2(3A﹣2B)﹣3(4A﹣3B)]再求值.7.(2022秋•南昌期中)已知天平左边托盘中的物体重量为x,右边托盘中的物体重量为y,其中x=30(1+a2)﹣3(a﹣a2),y=31﹣[a﹣2(a2﹣a)﹣31a2](1)化简x和y;(2)请你想一想,天平会倾斜吗?如果出现倾斜,将向哪边倾斜?请说明理由.8.(2022秋•福田区校级期中)如下1□2□3□4…□(n+1)将1到n+1(n≥1,且n为正整数)一共n+1个连续正整数按从小到大的顺序排成一排,每相邻的两个数之间放置一个方格.(1)一共需要放置个方格;(2)如果第一个方格填入加号“+”,第二个方格填入减号“﹣”,第三个方格填入加号“+”,第四个方格填入减号“﹣”,…,按此规律轮流将加、减号从左向右依次填入方格中,问最后一个方格应填入什么符号?(3)按照(2)中的方法我们用加、减号将1到n+1一共n+1个连续正整数连接成一个算式,问这个算式的值等于多少?9.如果“三角”表示3(2x+5y+4z),“方框”表示﹣4[(3a+b)﹣(c﹣d)].求的值.10.先化简,后求值(1)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1;(2)|a﹣2|+(b+3)2=0,求3a2b﹣[2ab2﹣2(ab﹣1.5a2b)+ab]+3ab2的值;(3)已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值;(4)已知ab=3,a+b=4,求3ab﹣[2a﹣(2ab﹣2b)+3]的值.11.课堂上老师给大家出了这样一道题,“当x=2010时,求代数式x+(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y+y3)的值”,小明一看,“x的值太大了,而且又没有y的值,怎么算呢?”你能帮小明解决这个问题吗?请写出过程.12.化简计算:(1)3a2﹣2a﹣a2+5a(2)14(−82+2−4)−12(−1)(3)根据下边的数值转换器,当输入的x与y满足|+1|+(−12)2=0时,请列式求出输出的结果.(4)若单项式232与﹣2x m y3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)13.化简或化简求值①3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)]②已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,先求﹣B+2A,并求当a=−12,b=2时,﹣B+2A的值.③如果代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,试求代数式133−22−(143−32)的值.④有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中=12,y=﹣1”,甲同学把=12看错成=−12;但计算结果仍正确,你说是怎么一回事?14.一个四位数m=1000a+100b+10c+d(其中1≤a,b,c,d≤9,且均为整数),若a+b=k(c﹣d),且k为整数,称m为“k型数”.例如,4675:4+6=5×(7﹣5),则4675为“5型数”;3526:3+5=﹣2×(2﹣6),则3526为“﹣2型数”.(1)判断1731与3213是否为“k型数”,若是,求出k;(2)若四位数m是“3型数”,m﹣3是“﹣3型数”,将m的百位数字与十位数字交换位置,得到一个新的四位数m′,m′也是“3型数”,求满足条件的所有四位数m.15.对于整数a,b,定义一种新的运算“⊙”:当a+b为偶数时,规定a⊙b=2|a+b|+|a﹣b|;当a+b为奇数时,规定a⊙b=2|a+b|﹣|a﹣b|.(1)当a=2,b=﹣4时,求a⊙b的值.(2)已知a>b>0,(a﹣b)⊙(a+b﹣1)=7,求式子34(a﹣b)+14(a+b﹣1)的值.(3)已知(a⊙a)⊙a=180﹣5a,求a的值.16.先化简,再求值4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1,其中|x+1|+(y﹣2)2=0.17.已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.18.已知A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y(1)当x=2,y=−15时,求B﹣2A的值.(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.19.有这样一道计算题:3x2y+[2x2y﹣(5x2y2﹣2y2)]﹣5(x2y+y2﹣x2y2)的值,其中x=12,y=﹣1.小明同学把“x=12”错看成“x=−12”,但计算结果仍正确;小华同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.20.若单项式235r2r23与−3463K2K1的和仍是单项式,求m,n的值.21.先化简,再求值:已知2(﹣3xy+y2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.22.先化简,再求值:3(2x2﹣3xy﹣5x﹣1)+6(﹣x2+xy﹣1),其中x、y满足(x+2)2+|y−23|=0.23.已知:A=ax2+x﹣1,B=3x2﹣2x+4(a为常数).(1)若A与B的和中不含x2项,求出a的值;(2)在(1)的基础上化简:B﹣2A.24.已知M=x2﹣ax﹣1,N=2x2﹣ax﹣2x﹣1.(1)求N﹣(N﹣2M)的值;(2)若多项式2M﹣N的值与字母x取值无关,求a的值.25.已知多项式(a+3)x3﹣x b+x+a是关于x的二次三项式,求a b﹣ab的值.26.已知A=x﹣2y,B=﹣x﹣4y+1(1)求2(A+B)﹣(2A﹣B)的值;(结果用x、y表示)(2)当|x+12|与y2互为相反数时,求(1)中代数式的值.26.已知﹣2a m bc2与4a3b n c2是同类项,求多项式3m2n﹣2mn2﹣m2n+mn2的值.28.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.29.先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中|m﹣1|+(n+2)2=030.已知m、n是系数,且mx2﹣2xy+y与3x2+2nxy+3y的差中不含二次项,求m+3n的值.31.阅读材料:对于任何数,我们规定符号的意义是=ad﹣bc.例如:1234=1×4﹣2×3=﹣2(1)按照这个规定,请你计算56−28的值.(2)按照这个规定,请你计算当|m+3|+(n﹣1)2=0时,23+2−12−2的值.31.如果代数式(﹣2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取得的值无关,试求代数式13a3﹣2b2﹣(14a3﹣3b2)的值.32.学习了整式的加减运算后,老师给同学们布置了一道课堂练习题“a=﹣2,b=2017时,求(3a2b﹣2ab2+4a)﹣2(2a2b﹣3a)+2(ab2+12a2b)﹣1的值”.盈盈做完后对同桌说:“张老师给的条件b=2017是多余的,这道题不给b的值,照样可以求出结果来.”同桌不相信她的话,亲爱的同学们,你相信盈盈的说法吗?说说你的理由.33.小红做一道数学题:两个多项式A,B=4x2﹣5x﹣6,试求A+B的值.小红误将A+B看成A﹣B,结果答案为﹣7x2+10x+12(计算过程正确).试求A+B的正确结果.34.有这样一道题,计算(2x4﹣4x3y﹣x2y2)﹣2(x4﹣2x3y﹣y3)+x2y2的值,其中x=2,y =﹣1,甲同学把“x=2”错抄成“x=﹣2”,但他计算的结果也是正确的,请用计算说明理由.35.有三个多项式A、B、C分别为:A=12x2+x﹣1,B=12x2+3x+1,C=12x2﹣x,请你对A﹣2B﹣C进行化简,并计算当x=﹣2时代数式A﹣2B﹣C的值.37.已知代数式A=x2+xy+2y−12,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)当x=﹣1,y=﹣2时,求2A﹣B的值;(3)若2A﹣B的值与x的取值无关,求y的值.38.化简求值:(1)当a=﹣1,b=2时,求代数式﹣2(ab﹣3b2)﹣[6b2﹣(ab﹣a2)]的值(2)先化简,再求值:4xy﹣2(32x2﹣3xy+2y2)+3(x2﹣2xy),当(x﹣3)2+|y+1|=0,求式子的值(3)若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值39.课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3﹣6a3b)﹣(﹣3a3﹣6a3b+10a3﹣3)写完后,让小红同学顺便给出一组a、b的值,老师说答案.当小红说完:“a=65,b=﹣2014”后,李老师不假思索,立刻说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”.你能说出其中的道理吗?40.化简求值:(1)(8x﹣7y)﹣3(4x﹣5y)其中:x=﹣2,y=﹣1.(2)已知多项式(﹣2x2+3)的2倍与A的差是2x2+2x﹣7,当x=﹣1时,求A的值.40.已知整式﹣5x2y﹣[2x2y﹣3(xy﹣2x2y﹣mx4)]+2xy不含x4项,化简该整式,若|x+1|+(y ﹣2x)2=0,求该整式的值.42.已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1(1)求4A﹣(3A﹣2B)的值.(2)当a取任何数值,A﹣2B的值是一个定值时,求b的值.43.莉莉在计算一个多项式A减去多项式2b2﹣3b﹣5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b﹣1.(1)据此请你求出这个多项式A;(2)求出这两个多项式运算的正确结果.44.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的第二条边、第三条边及周长,结果要化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.45.填空题:(请将结果直接写在横线上)定义新运算“⊕”,对于任意有理数a,b有a⊕b=r32,(1)4(2⊕5)=.(2)若A=x2+2xy+y2,B=﹣2xy+y2,则(A⊕B)+(B⊕A)=.46.(1)若代数式﹣4x6y与x2n y是同类项,求(4n﹣13)2015的值.(2)若2x+3y=2015,求2(3x﹣2y)﹣(x﹣y)+(﹣x+9y)的值.(3)已知A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,试说明A+B+C的值与x,y无关.47.已知A=3x﹣2y﹣3,B=﹣4x+3y+2(1)求3A+2B;(2)将英文26个字母按以下顺序排列:a、b、c、d、e、f、g、h、i、j、k、l、m、n、o、p、q、r、s、t、u、v、w、x、y、z.规定a接在z后面,使26个字母排成圈,设计一个密码:若x代表其中一个字母,则x﹣3代表“把一个字母换成字母表中从它向前3位的字母”.如x表示字母m时,则x﹣3表示字母j.若(1)中求得的式子恰好是一个密码,请直接解读下列密文“Nqtajrfymx”的意思,并翻译成中文为.48.老师在黑板上书写一个正确的演算过程,随后用手掌捂住了一个二次三项式.形式如下:(1)求所捂的二次三项式;(2)若x=−32,求所捂的二次三项式的值.49.(1)设n表示任意一个整数,则用含有n的代数式表示任意一个偶数为,用含有n的代数式表示任意一个奇数为;(答案直接填在题中横线上)(2)用举例验证的方案探索:任意两个整数的和与这两个数的差是否同时为奇数或同时为偶数?你的结论是;(填“是”或“否”,答案直接填在题中横线上)(3)设a、b是任意的两个整数,试用“用字母表示数”的方法并分情况来说明a+b和a﹣b是否“同时为奇数”或“同时为偶数”?并进一步得出一般性的结论.例:①若a、b都是偶数,设a=2m,b=2n,则a+b=2m+2n=2(m+n);a﹣b=2m﹣2n =2(m﹣n);此时a+b和a﹣b同时为偶数.请你仿照以上的方法并考虑其余所有可能的情况加以计算和说明;(4)以(3)的结论为基础进一步探索:若a、b是任意的两个整数,那么﹣a+b、﹣a ﹣b、a+b、a﹣b是否“同时为奇数”或“同时为偶数”?(5)应用第(2)、(3)、(4)的结论完成:在2016个自然数1,2,3,…,2015,2016的每一个数的前面任意添加“+”或“﹣”,则其代数和一定是.(填“奇数”或“偶数”,答案直接填在题中横线上)50.已知m、x、y满足(1)32(x﹣5)2+5|m|=0;(2)﹣a2b y+1与3a2b3是同类项,求代数式;0.375x2y+5m2x﹣{−716x2y+[−14xy2+(−316x2y﹣3.475xy2)]﹣6.275xy2}的值.。

新人教版七年级数学上册专题训练:整式的化简求值(含答案).优选

新人教版七年级数学上册专题训练:整式的化简求值(含答案).优选

专题训练整式的化简求值类型1化简后直接代入求值2221.(柳州期中)先化简,再求值:5x +4-3x -5x -2x -5+6x ,其中x =-3.2解:原式=(5-3-2)x +(-5+6)x +(4-5)=x -1.当x =-3时,原式=-3-1=-4.22222.(北流期中)先化简,再求值:(3a b -2ab )-2(ab -2a b),其中a =2,b =-1.2222解:原式=3a b -2ab -2ab +4a b22=7a b -4ab .当a =2,b =-1时,原式=-28-8=-36.223223.先化简,再求值:2(x +x y)-(3x y +x)-y ,其中x =1,y =-3.32解:原式=2x +2x y -2x y -x -y 2=x -y .当x =1,y =-3时,原式=1-9=-8.122224.(钦南期末)先化简,再求值:2x y -[2xy -2(-x y +4xy )],其中x =,y =-2.2解:原式=2x y -2xy -2x y +8xy 2=6xy .11当x =,y =-2时,原式=6××4=12.222225.(南宁四十七中月考)先化简,再求值:2(x y +xy)-3(x y -xy)-4x y ,其中x ,y 满足|x +1|+(y 12-)=0.2解:原式=2x y +2xy -3x y +3xy -4x y2=-5x y +5xy.222222222212因为|x +1|+(y -)=0,21所以x =-1,y =.255故原式=--=-5.22类型2整体代入求值2222226.若a +2b =5,求多项式(3a -2ab +b )-(a -2ab -3b )的值.2222解:原式=3a -2ab +b -a +2ab +3b 22=2a +4b .22当a +2b =5时,22原式=2(a +2b )=10.7.已知|m +n -2|+(mn +3)=0,求2(m +n)-2[mn +(m +n)]-3[2(m +n)-3mn]的值.解:由已知条件知m +n =2,mn =-3,所以原式=2(m +n)-2mn -2(m +n)-6(m +n)+9mn=-6(m +n)+7mn=-12-21=-33.2专题训练角的计算类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.解:因为∠EOD=28°46′,OD平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′.又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD是∠BOC的平分线.(1)如图1,当∠AOB与∠BOC互补时,求∠COD的度数;(2)如图2,当∠AOB与∠BOC互余时,求∠COD的度数.解:(1)因为∠AOB与∠BOC互补,所以∠AOB+∠BOC=180°.又因为∠AOB=40°,所以∠BOC=180°-40°=140°.因为OD是∠BOC的平分线,1所以∠COD=∠BOC=70°.2(2)因为∠AOB与∠BOC互余,所以∠AOB+∠BOC=90°.又因为∠AOB=40°,所以∠BOC=90°-40°=50°.因为OD是∠BOC的平分线,1所以∠COD=∠BOC=25°.2类型3利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.25.一个角的余角比它的补角的还少40°,求这个角的度数.3解:设这个角的度数为x°,根据题意,得290-x=(180-x)-40.3解得x=30.所以这个角的度数是30°.6.如图,已知∠AOE是平角,∠DOE=20°,OB平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC的度数.解:设∠COD=2x°,则∠BOC=3x°.因为OB平分∠AOC,所以∠AOB=3x°.所以2x+3x+3x+20=180.解得x=20.所以∠BOC=3×20°=60°.17.如图,已知∠AOB=∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.2解:设∠AOB=x°,则∠COD=∠AOD=3∠AOB=3x°.1因为∠AOB=∠BOC,2所以∠BOC=2x°.所以3x+3x+2x+x=360.解得x=40.所以∠AOB=40°,∠COD=120°.类型4利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.28.已知∠AOB=75°,∠AOC=∠AOB,OD平分∠AOC,求∠BOD的大小.32解:因为∠AOB=75°,∠AOC=∠AOB,32所以∠AOC=×75°=50°.3因为O D平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD=75°+25°=100°;如图2,∠BOD=75°-25°=50°.9.已知:如图,OC是∠AOB的平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,∠EOC=90°,请在图中补全图形,并求∠AOE的度数;(3)当∠AOB=α时,∠EOC=90°,直接写出∠AOE的度数.(用含α的代数式表示)解:(1)因为OC是∠AOB的平分线,1所以∠AOC=∠AOB.2因为∠AOB=60°,所以∠AOC=30°.(2)如图1,∠AOE=∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE=∠EOC-∠AOC=90°-30°=60°.αα(3)90°+或90°-.22专题训练整式的加减运算计算:222(1)(钦南期末)a b +3ab -a b ;2解:原式=3ab .(2)2(a -1)-(2a -3)+3;解:原式=4.22(3)2(2a +9b)+3(-5a -4b);2解:原式=-11a +6b.3232(4)3(x +2x -1)-(3x +4x -2);2解:原式=2x -1.1122(5)(钦南期末)(2x -+3x)-4(x -x +);22122解:原式=2x -+3x -4x +4x -2252=6x -x -.2222222(6)3(x -x y -2x y )-2(-x +2x y -3);解:原式=3x -3x y -6x y +2x -4x y +62222=5x -7x y -6x y +6.22(7)-(2x +3xy -1)+(3x -3xy +x -3);22解:原式=-2x -3xy +1+3x -3xy +x -32=x -6xy +x -2.222(8)(4ab -b )-2(a +2ab -b );222解:原式=4ab -b -2a -4ab +2b 22=-2a +b .22(9)-3(2x -xy)+4(x +xy -6);22解:原式=-6x +3xy +4x +4xy -242=-2x +7xy -24.22(10)(钦州期中)2a -[-5ab +(ab -a )]-2ab.22解:原式=2a +5ab -ab +a -2ab 2=3a +2ab.222222。

专题01整式的化简与求值(教师版) 2024-2025学年七年级数学上册考试满分全攻略同步备课备考系

专题01整式的化简与求值(教师版) 2024-2025学年七年级数学上册考试满分全攻略同步备课备考系

专题01整式的化简与求值题型01先化简在直接代入求值【典例分析】【例1-1】(23-24七年级上·山西晋城·阶段练习)当1x =-时,多项式2245413x x x x x -+---的值为( )A .2-B .2C .1-D .0【答案】D【分析】本题考查了整式加减中的化简求值,先利用整式的加减运算法则进行化简,再将1x =-代入原式即可求解,熟练掌握其运算法则是解题的关键.【详解】解:2245413x x x x x -+---2551x x x =+--21x =-,将1x =-代入原式得:()221110x -=--=,故选D .【例1-2】(22-23七年级上·上海闵行·周测)若2x =-,则多项式()()2234532x x x x -+-+-+的值是 .【答案】2【分析】根据整式加减混合运算法则进行化简,然后代入数据进行计算即可.【详解】解:()()2234532x x x x -+-+-+2234532x x x x =-+-+-+2x x =+,把2x =-代入得:原式()()2222=-+-=.【点睛】本题主要考查了整式加减的化简求值,解题的关键是熟练掌握整式加减运算法则,准确计算.【例1-3】(22-23七年级上·宁夏中卫·期末)先化简,再代入求值.()()()42224x y x y x y x éù----++-ëû,其中0,3x y ==- ;【答案】15【分析】本题考查整式加减中的化简求值,去括号,合并同类项,化简后代值计算.【详解】解:原式()422224x y x y x y x=---+++-4234x y y x =---5y =-;当0,3x y ==-时,原式()5315=-´-=.【变式演练】【变式1-1】(22-23七年级上·天津南开·期中)若12x =,则代数式22225432x x x x x -++--的值为( )A .52B .12C .12-D .52-【点睛】本题考查了整式的加减-化简求值,熟练掌握整式的加减运算法则是解本题的关键.【变式1-2】(22-23七年级上·黑龙江佳木斯·期中)若2022a =-,12022b =,则多项式2223232a ab a ab a +---= .【点睛】本题考查了整式的化简求值;熟练掌握合并同类项的法则是解题的关键【变式1-3】(23-24七年级上·福建泉州·阶段练习)先化简再求值∶ ()2222261a a a a ---+,其中 12a =-.题型02利用整体思想化简求值【典例分析】【例2-1】(23-24七年级上·河南安阳·期末)“整体思想”是数学中的一种重要的思想方法,它广泛应用于数学运算中.例如:已知2a b +=,3ab =-,则()22238a b ab +-=-´-=,利用上述思想方法计算:已知22a b -=,1ab =-,则()()2=a b ab b --- .【答案】3【分析】本题考查了整式的化简求值,熟练掌握“整体代入法求代数式的值”是解题的关键.先将()()2a b ab b ---化简,然后将22a b -=,1ab =-,代入计算即可.【详解】解:()()2a b ab b ---22a b ab b=--+2a b ab =--;∵22a b -=,1ab =-,∴()221213a b ab --=--=+=.故答案为:3.【例2-2】(23-24七年级上·甘肃兰州·期末)阅读材料:我们知道,()232314x x x x x +-=+-=,类似的,我们把()a b +看成一个整体,则()()()()()()232314a b a b a b a b a b +++-++-+=+=.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把()2x y -看成一个整体,求将()()()22224x y x y x y ---+-合并的结果.(2)已知2348m n -=-,求代数式23n m -的值.拓广探索:(3)已知22a b -=,2b c -=-,36c d +=,求()()()32a c b c b d ++++-的值.【答案】(1)()2x y --;(2)8;(3)6【分析】本题考查了整式的加减运算与化简求值,熟练掌握整体代入思想是解题的关键.(1)根据合并同类项法则合并即可.(2)将代数式变形,然后把已知条件的值代入计算即可.(3)把原式去括号整理后,变为()()()23-+-++a b b c c d ,然后整体代入求值可.【详解】(1)解:()()()22224x y x y x y ---+-()()2241x y -+-=()2x y =--(2)解:2348m n -=-Q ,【例2-3】(23-24七年级上·广西南宁·期中)探究与应用【阅读材料】“整体思想”是一种重要的数学思想,在多项式的化简求值中应用极为广泛.在()424213a a a a a -+=-+=中,字母a 是一个整体,类似的,可以把()x y +看成一个整体,则()()()()()()424213x y x y x y x y x y +-+++=-++=+.【尝试应用】(1)把2()x y +看成一个整体,化简2223()6()2()+-+++=x y x y x y ________;(2)已知222a b -=-,求23621a b --的值.【拓展探索】(3)已知3a b -=,5b c +=-,10c d +=,求()()()a c b d b c -----的值.【答案】(1)2()x y -+;(2)27-;(3)18【分析】本题主要考查代数式的值及合并同类项,熟练掌握利用整体思想进行求解是解题的关键.(1)把()2x y +看作一个整体,合并即可得到结果;(2)原式前两项提取3变形后,将已知等式代入计算即可求出值;(3)根据已知条件进行整理,然后将已知等式代入计算即可求出值.【详解】解:(1)2223()6()2()x y x y x y +-+++()2362()x y =-++2()x y =-+;(2)222a b -=-Q 23621a b \--()23221a b =--3(2)21=´--621=--27=-;(3)3a b -=Q ,5b c +=-,10c d +=()()()\-----a c b d b c =--+-+a c b d b c()()()=--+++a b b c c d 3(5)10=--+3510=++18=.【变式演练】【变式2-1】(22-23七年级上·河南南阳·期末)“整体思想”是数学中的一种重要的思想方法,它在数学运算、推理中有广泛的应用,如:已知2m n +=-,3=-mn ,则()()22234m n mn +-=--´-=.利用上述思想方法计算:已知343m n -=-,1mn =-.则()()62m n n mn ---=.【答案】8-【分析】将原式通过去括号、合并同类项化简后,再将343m n -=-,1mn =-整体代入即可.【详解】解:∵343m n -=-,1mn =-,∴()()62m n n mn ---6622m n n mn =--+682m n mn=-+()2342m n mn=-+()()2321=´-+´-8=-故答案为:8-.【点睛】本题考查整式的加减—化简求值,掌握去括号、合并同类项法则以及整体思想的体现是正确解答的前提.【变式2-2】(23-24七年级上·河南安阳·期末)阅读材料:“整体思想”是中学数学的重要思想方法,在解题中会经常用到.我们知道,合并同类项:()5325324x x x x x -+=-+=,类似地,我们把()m n +看成一个整体,则()()()()()()5325324m n m n m n m n m n +-+++=-++=+.尝试应用:()1把()2m n +看成一个整体,合并()()()222453m n m n m n +-+++的结果是______.()2已知229x y +=-,求24818x y ++的值.拓展探索:()3已知2a b -=,24b c -=,21c d -=-,求()()()22a c b c b d ---+-的值.【答案】()1()22m n +;()218-;()35.【分析】本题考查的知识点是合并同类项、整式的化简求值、根据已知式子的值求代数式的值,解题关键是结合已知条件将原式进行正确变形,采用整体代入的思想进行计算.()1将原式合并即可;()2将22x y +看成一个整体,对原式进行变形,再代入求值即可;()3将原式变形后代入已知整式值计算即可.【详解】()1解:原式()()2453m n =-++,()22m n =+.故答案为:()22m n +.()2解:229x y +=-Q ,24818x y \++,()24218x y =++,()4918=´-+,18=-.()3解:2a b -=Q ,24b c -=,21c d -=-,()()()22a c b c b d \---+-,22a c b c b d =--++-,()()()22a b b c c d =-+-+-,()241=++-,5=.【变式2-3】(23-24七年级上·内蒙古鄂尔多斯·期中)阅读材料:“整体思想”是中学数学中重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把()a b +看成一个整体,4()2()((421)()3())a b a b a b a b a b =+-+++-++=+.尝试应用:(1)把2()a b -看成一个整体,合并2227()9()3()a b a b a b ---+-的结果是__________.(2)已知222x y -=,则2482023x y --的值=__________.拓广探索:(3)若2m n -=,5mn =-,则3()(3)mn n mn m ---的值为__________.(4)已知23a b -=,6c d -=,求()(2)a c b d ---的值=_________.【答案】(1)2()a b -;(2)2015-;(3)4-;(4)3-【分析】本题考查了利用整体思想求代数式的值,将代数式进行适当变形是解题关键.(1)将各项系数加减即可求解;(2)2482023x y --()2422023x y --=,据此即可求解;(3)()3()(3)23mn n mn m mn m n ---=+-,然后整体代入求值;(4)()()2a c b d ---()()2a b c d =---,据此即可求解.【详解】解:(1)()222227)7()9()3(()(3)9a b a b a b a b a b =----+=+---故答案为:2()a b -;(2)因为222x y -=,所以2482023x y --()2422023x y --=422023=´-82023=-2015=-,故答案为:2015-;(3)3()(3)mn n mn m ---=333mn n mn m--+=()23mn m n +-,当2m n -=,5mn =-时,原式=()25321064´-+´=-+=-,故答案为:4-;(4)当23a b -=,6c d -=时,()()2a c b d ---2a c b d=--+()()2a b c d =---36=-3=-故答案为:3-题型03复合型代数式的化简求值问题【典例分析】【例3-1】(22-23七年级上·广东惠州·期中)已知多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则C 为( )A .2225x y z --B .22235x y z --C .22233x y z --D .22235x y z +-【答案】B【分析】由题意得222222=()3)24(2C x y z z A y B x +--+-+=---,进行计算即可得.【详解】解:由于多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则222222=()3)24(2C x y z z A y B x +--+-+=---=2222222432x y z x y z ++----=22235x y z --,故选:B .【点睛】本题考查了整式的加减,解题的关键是掌握整式加减的步骤【例3-2】(23-24七年级上·贵州遵义·期末)已知两个整式A 和B ,237A a ab =-+,2447B a ab =-++.(1)请化简A B -;(2)若1a =-,2b =,则A B -的值为多少?【答案】(1)275a ab-(2)17【分析】本题考查的是整式的加减运算中的化简求值;熟记去括号,合并同类项的法则是解本题的关键.(1)先去括号,再合并同类项,即可得到答案;(2)把1a =-,2b =代入化简后的代数式进行计算即可.【详解】(1)∵237A a ab =-+,2447B a ab =-++∴A B-()2244737a a b ab a -+-+-+=2244737a a a a b b =--+-+275a ab =-;(2)∵1a =-,2b =,∴()()22757151217A B a ab -=-=´--´-´=【例3-3】(22-23七年级上·云南文山·期末)已知22235A x y xy xy =+-,22234B xy xy x y =-+.(1)求2A B -;(2)当3x =,13y =-时,求2A B -的值.【答案】(1)2912xy xy -【变式演练】【变式3-1】(21-22七年级上·广东湛江·期中)已知22321A x xy x =++-,232B x xy x =++-.先化简2A B -,且当2x y ==时,求2A B -的值;【答案】243A B xy x -=-+,2A B -的值为1-;【分析】先求出243A B xy x -=-+,再将2x y ==代入求值即可;本题考查了整式的加减,熟练掌握整式的加减运算法则,并能准确计算是解题的关键.【详解】2A B-()()222321232x xy x x xy x ++=+--+-2222321264x xy x x xy x =-+--+-+43xy x =-+,当2x y ==时,原式4831=-+=-【变式3-2】(23-24七年级上·江苏苏州·阶段练习)已知,224532A x y B x y =-=--,,求2A B -的值, 其中21x y =-=,.【答案】36【分析】本题考查了整式的化简求值.熟练掌握整式的化简求值是解题的关键.先去括号,然后合并同类项可得化简结果,最后代值计算求解即可.【详解】解:由题意知,()()22224532A B x y x y -=----2281032=-++x y x y2118=-x y ,将21x y =-=,代入得,原式()21128144836=´--´=-=.【变式3-3】(21-22七年级上·河北保定·期中)化简与求值:(1)已知25A x xy =-,26B xy x =-+,求2A B -;(2)先化简,再求值:()()2222272234x y x y xy x y xy -----,其中2x =-,1y =.【答案】(1)24x xy -;(2)2277x y xy +,14.【分析】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给代数式化简.(1)去括号合并同类项即可;(2)先去括号合并同类项,再把2x =-,1y =代入计算.【详解】(1)()()222256A B x xy xy x -=---+222106x xy xy x =-+-24x xy =-.(2)()()2222272234x y x y xy x y xy -----222227464x y x y xy x y xy =-+++2277x y xy =+.当2x =-,1y =时,原式()227(2)1721281441=´-´+´--=´=题型04绝对值的化简求值【典例分析】【例4-1】(22-23七年级上·四川绵阳·期中)若23a <<时,化简32a a -+-( )A .1B .25a -C .1-D .52a-【例4-2】(21-22七年级上·广东湛江·期中)已知a a =-,||1b b=-,c c =,化简a b a c b c ++---= .【例4-3】(23-24七年级上·江苏苏州·阶段练习)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c +______0,a b -______0,b a -______0;(2)化简:b c a b b a ++---.【答案】(1),,><>(2)b c+【变式演练】【变式4-1】(23-24七年级上·甘肃庆阳·期末)若0b <,0ab <,则1b a a b ---+的值为( )A .2-B .1-C .1D .2【变式4-2】(22-23七年级上·广西贺州·期中)有理数a b 、表示的点在数轴上如图所示.化简:()||||a b a b a b -+++--= .【答案】3a b--【分析】本题考查了数轴和绝对值,整式的加减,根据数轴得出,0b <,0a >,||||b a >,去掉绝对值符号,再合并即可.【变式4-3】(23-24七年级上·江苏·周测)如图,在一条不完整的数轴上,从左到右的点A、B、C把数轴分ab<.成①②③④四部分,点A、B、C对应的数分别是a、b、c,且0(1)原点在第部分(填序号);----;(2)化简式子:a b c a a=+-a b c题型05利用“不含与无关”求值【典例分析】【例5-1】(23-24七年级上·海南海口·期中)若多项式22266x kxy y xy -++-不含xy 的项,则k 的值是( )A .0B .3-C .6D .3【答案】D【分析】本题考查了多项式的不含有项的问题,熟练掌握合并同类项,令系数为零是解题的关键.先合并同类项,令xy 的系数为零,求解即可.【详解】解:多项式()2222266626x kxy y xy x k xy y -+=+-+-+-不含xy 的项,∴620k -=,∴3k =,故选:D【例5-2】(23-24七年级上·山东日照·期末)若多项式()22331x mx x nx ++-+-的值与x 的取值无关,则2m n -+的值为 .【答案】7-【分析】本题考查了整式的加减中的无关题型、求代数式的值,将原式括号去掉、合并同类项后得到()()2132n x m x ++-+,再由其值与x 的取值无关,可求出m n 、的值,最后代入计算即可得出答案,求出m n 、的值是解此题的关键.【详解】解:()()()22222331331132x mx x nx x mx x nx n x m x ++-+-=++--+=++-+,Q 多项式()22331x mx x nx ++-+-的值与x 的取值无关,10n \+=,30m -=,解得:3m =,1n =-,()22317m n \-+=-´+-=-,故答案为:7-【例5-3】(23-24七年级上·江苏苏州·阶段练习)已知22573A x xy y =--+,21B x xy =-+.(1)求4(2)A A B -+的值;(2)若2A B -的值与y 的取值无关,求x 的值.【答案】(1)239145x xy y --+73x \=-【变式演练】【变式5-1】(22-23七年级上·广东湛江·期中)若关于x 的多项式3222673x mx x x +--+不含二次项,则m 等于( )A .2B .2-C .3D .3-【答案】C【分析】本题主要考查了整式加减中的无关项问题.先合并同类项,然后根据多项式中不含二次项,可得260m -=,即可求解.【详解】解:()3223226732673x mx x x x m x x +--+=+--+,∵多项式中不含二次项,∴260m -=,解得:3m =.故选:C【变式5-2】(23-24七年级上·江苏扬州·期末)已知M ,N 为两个整式,其中23761M a ab a =-+--,2342N a ab =-+,若+M N 的值与a 的取值无关,则b = .【答案】2【分析】本题考查整式的加减混合运算,熟练掌握运算技巧与合并同类项的方法是解题的关键,同时需注意代数式的值与a 无关,说明含a 项的系数为0.先把已知条件中的M ,N 代入+M N 进行化简,然后根据+M N的值与a 的取值无关,列出关于b 的方程,解方程即可.【详解】解:∵23761M a ab a =-+--,2342N a ab =-+,∴M N+()()223761342a ab a a ab =-+--+-+223761342a ab a a ab =-+--+-+223374621a a ab ab a =-+--+-361ab a =-+()321a b =-+,∵+M N 的值与a 的取值无关,∴20b -=,\2b =,故答案为:2.【变式5-3】(23-24七年级上·安徽六安·期末)已知代数式22573A x xy y =+--,22B x xy -=+.(1)求()323A A B -+.(2)若2A B -的值与y 的取值无关,求x 的值.【答案】(1)2879x xy y -+--(2)x =1【分析】本题考查整式的运算,熟练掌握整式的运算法则是解答本题的关键.(1)根据整式的运算法则即可求出答案;(2)根据题意将2A B -化简,然后令含y 的项的系数为0即可求出x 的值.【详解】(1)解:()3233233A A B A A B A B -+=--=-22573A x xy y =+--Q ,22B x xy =-+3A B\-()()22257332x xy y x xy =+----+222573336x xy y x xy =+---+- 2879x xy y =-+--;(2)2A B-()()22257322x xy y x xy =+----+777xy y =-- 7(1)7y x =--2A B -Q 的值与y 的取值无关,∴10x -=,1x \=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学
整式化简求值:先化简再求值
专题练习
1.)3(2)
2132()
83(3
2
3
2
a
a a
a
a a ,其中4
a 2.)45(2)
45(3
3
2
x x
x x
,其中2
x
3.求
)3
12
3(
)
3
1(22
12
2
y x
y x
x 的值,其中2
x
3
2y
4.
2
2
2
2
1313()
432
2
3
a b
a b abc
a c a c
abc 其中1a
3b 1
c
整式化简求值:先化简再求值
5.化简求值:若a=﹣3,b=4,c=﹣
17
,求2
22
2
78[(2)]a bc
a c
b bca
ab
a bc 的值
6.先化简后求值:2
2
33[22()
]2
x y xy
xy
x y xy ,其中x=3,y=﹣
13
7. 一个多项式A 加上
2532x
x 得3422
x
x ,求这个多项式A ?
8.化简求代数式:2
2
(25)2(35)a
a a a 的值,其中a=﹣1.
整式化简求值:先化简再求值
9.先化简,再求值:2
2
2
2
115()(3),,2
3
a b ab ab
a b a
b
其中10.求代数式的值:2
2
12(34)3(4)3,3
xy
x xy
x x
y
,其中.
11.先化简,再求值:2(3a ﹣1)﹣3(2﹣5a ),其中a=﹣2.
12.先化简,再求值:
22
2
12()[3()
2]2
xy
x x
xy y xy ,其中x=2, y=﹣1.
13.先化简,再求值:22
x x x x x,其中x=﹣5.
2(341)3(23)1
14.先化简,再求值:32x﹣[7x﹣(4x﹣3)﹣22x];其中x=2.
15.先化简,再求值:(﹣2x+5x+4)+(5x﹣4+22x),其中x=﹣2.
16.先化简,再求值:3(x﹣1)﹣(x﹣5),其中x=2.
18.先化简,再求值:(32a ﹣ab+7)﹣(5ab ﹣42
a +7),其中a=2,b=1
3

19.化简求值:
2
111(428)(
1),4
2
2
x
x x x
其中20.先化简,再求值:(1)(52a +2a+1)﹣4(3﹣8a+22a )+(32
a ﹣a ),其中13
a
整式化简求值:先化简再求值
21.先化简再求值:2
2
2
232(33)(53),3
5
x
x
x
x
其中22.先化简再求值:2(2x y+x 2y )﹣2(2x y ﹣x )﹣2x 2
y ﹣2y 的值,其中x=﹣2,y=2.
23.先化简,再求值.4xy ﹣[2(2x +xy ﹣22y )﹣3(2
x ﹣2xy+y2)],其中11,2
2
x
y
24.先化简,再求值:22x +(﹣2x +3xy+22y )﹣(2x ﹣xy+22
y ),其中 x=
12
,y=3.
25.先化简后求值:5(32x y ﹣x 2y )﹣(x 2y +32
x y ),其中x=-
12
,y=2.
26.先化简,再求值:2
2
223()3
x
x x
x ,其中x=-
12
27.(52x ﹣32y )﹣3(2x ﹣2y )﹣(﹣2
y ),其中x=5,y=﹣3.
28.先化简再求值:(22x ﹣5xy )﹣3(2x ﹣2y )+2x ﹣32
y ,其中x=﹣3,13
y
29.先化简再求值:(﹣2x +5x )﹣(x ﹣3)﹣4x ,其中x=﹣1
30.先化简,再求值:2
3)2(3)(222
2
y x x y y x
x
,,其中,31.2
2
3(2)[322()]x
xy x
y xy y ,其中1,32
x
y。

32.先化简再求值:
3
3
2
2
2
3
12222
a
b
ab
a b
ab
b。

已知a = 1, b = —
13
33.先化简再求值:2
2
22()3(2)32
x
x
y y x x y ,其中,,34.先化简再求值:2
2
3(2)[322()]x
xy x
y xy y ,其中1,3
2
x
y 35.先化简再求值:3()2()
2x
y x y ,其中1x
,3.
4
y
36.先化简再求值:
2
2
113122
3
2
3
x x
y
x
y
,其中x=-2,y=
23
37.先化简再求值: 22x +(-2x +3xy+22y )-(2x -xy+22
y ),其中x=
12
,y=3.
38.先化简再求值:(5a+22a -3+43a )-(-a+43a +22
a ),其中a =1。

39.先化简再求值:
2
11(428)
(1)4
2
a
a a ,其中12
a 。

40.当1,32
x
y
时,求代数式2
2
3(2)[322()]x
xy x
y xy y 的值。

41.先化简,再求值2223(21)2(3)x x x x x ,其中3
x 42.先化简,再求值221
2
216223x x x x ,其中5
3x .
43.2222532ab ab a ab ab b a ,其中1a ,2b 。

44.4b a 2+(-22ab +5b a 2)-2(3b a 2-2ab ),其中a =-1,b=-3
2
45.化简求值:2x 2+(-x 2+3xy+2y 2)-2(0.5x 2-21xy+y 2),其中x=2
1,y=3. 46.化简求值:设A=2x 3+3x 2-x, B=4x 3+8x 2-2x+6,当x=21
时,求A-21
B 的值
47.(5a 2-3b 2)+[(a 2+b 2)-(5a 2+3b 2
)],其中a =-1,b =1 48.先化简,再求值:2231
23
31
221
y x y x x ,其中x=-2,y=32。

49.先化简,再求值,求多项式3322231
2222a b ab a b ab b 的值,已知a = 1,b = —31

50.求多项式424232222ab b a ab b a 的值,其中1a ,2
b 51.求多项式4423
232222y x y x 的值,其中1x ,2
1
2y 52.求多项式342522x x x x 的值,其中2
x
53.化简求值:222232ab ab b a ab ab b a ,其中1a ,2b 。

54.先化简,再求值:a a a a a 6425445222,其中2
a 55.先化简,再求值:2222222(23)2(2)x y y x y x ,其中1,2
x y 56.先化简再求值:221
3
1
1
22233m m n m n ,其中2
2,3
m n
整式化简求值:先化简再求值
57.先化简再求值:3x -5(x -2xy 2)+8(x -3xy 2),其中x=4,y=-3
2
58.求代数式]6)(23[21
22222y x y x 的值,其中2
,1y x 59.)2(3)2(4)2(2)2(522b a b a -b a -b a +++++,其中21=a ,9=b。

相关文档
最新文档