RC正弦波振荡器设计

合集下载

9RC正弦波振荡器

9RC正弦波振荡器

测量值f= 计算值:
fO
1 2πRC
四、实验内容
2、振荡器频率测量和波形调试 2)测量振荡频率
四、实验内容
3、振荡器频率调节 1)改变电阻R
两个R旁分别并联一个16kΩ电阻,改变RC的电阻值,观察频率变 换。记录接线图,记录此时振荡频率,说明频率变化的原因。
四、实验内容
3、振荡器频率调节 1)改变电阻R
四、实验内容
1、振荡器静态工作点及放大倍数的测量
1) 测量静态工作点 切断开关,测量放大器静态工作点。
四、实验内容
1、振荡器静态工作点及放大倍数的测量
1) 测量静态工作点
UE(V)
UB(V)
UC(V)
T1
T2
四、实验内容
1、振荡器静态工作点及放大倍数的测量
1) 测量放大倍数
输和输入入信u号i,为计正算弦电波压:放f=大1K倍H数z,。调节Rf=2kΩ,测量不失真输出电压uo
四、实验内容
3、振荡器频率调节 2)改变电容C
两个C旁分别并联相同电容,改变RC的电容值,观察频率变换。 记录接线图,记录此时振荡频率,说明频率变化的原因。
四、实验内容
3、振荡器频率调节 1)改变电阻R
五、实验总结
1、 由给定电路参数计算振荡频率与实测值比较分析误差产生 的原因。(只分析原因)。
2、改变R或C值,观察振荡频率变化情况,并做文字说明。
测量值
ui(mV) uo(mV)
A
放大电路
四、实验内容
2、振荡器频率测量和波形调试
1) 观察波形 将虚线部分连接(将开关切换至下侧),调节滑动变阻器Rf使电 路起振,调节Rf使获得满意的正弦信号,使uo波形不失真

rc正弦波振荡电路设计

rc正弦波振荡电路设计

rc正弦波振荡电路设计
RC正弦波振荡电路的设计过程可以按照以下步骤进行:
1.确定振荡频率:根据需要,选择合适的振荡频率。

2.确定电路参数:根据振荡频率,计算RC电路的参数,即电阻R和电容C 的值。

对于正弦波振荡电路,振荡频率f与R和C的关系为f=1/2πRC。

因此,已知振荡频率f,可以求出R和C的值。

3.设计电路:根据计算出的R和C的值,设计RC正弦波振荡电路。

电路一般由放大器、RC电路和正反馈网络组成。

放大器可以选择合适的运放或比较器等器件,RC电路选择相应的电阻和电容器件,正反馈网络可以选择相应的电阻或电容元件。

4.调整电路:在实际应用中,可能需要根据实际情况对电路进行调整,以获得更好的性能。

例如,可以通过调整放大器的反馈系数、RC电路的元件值等来调整振荡频率和幅度。

5.测试电路:在调整完成后,对电路进行测试,观察是否能够正常工作并产生稳定的正弦波输出。

总之,RC正弦波振荡电路的设计需要综合考虑电路参数、元件选择、电路结构等因素,并经过调整和测试来获得最佳性能。

RC桥式正弦波振荡器产生正弦波

RC桥式正弦波振荡器产生正弦波

实验三 RC 桥式正弦波振荡器一、实验目的1、学会测量频率和测试振器;2、验证RC 桥式振荡器的起振条件 二、实验实验仪器综合实验台;双踪示波器;交流毫伏表;频率计;万用电表。

三 实验原理RC 桥式振荡器是采用RC 串并联选频网络的一种正弦波振荡器。

它具有较好的正弦波形且频率调节范围宽,广泛应用于产生几百千赫兹以下的正弦信号。

1、实验线路图测试电路如图5-1所示。

.............+-v F .......图5-1由两部分组成:R 1、R 2、C 1、C 2 组成具有选频作用的正反馈网络;Q1、Q2组成两级共射极放大器,并接成电压串联反馈,具有输入电阻高,输出电阻低的特点,其输入、输出阻抗对正反馈影响较小。

2、起振条件在图5-1电路中,其选频网络的正反馈系数为图5-1 RC 桥式振荡器实验电路)1(1112211221C R C R j C C R R V V F oF ωω-+++== (5-1)当R 1 = R 2 = R ,C 1= C 2 = C 时则)/1(31RC RC j Fωω-+= (5-2)当频率RC f π2/1=时,3/1=F ,根据幅度平衡条件1=•F A ,只有 3=A 电路才能维持振荡。

要使电路自行起振 1≥•F A ,因 3/1=A ,所以A 必须大于3,但不能过大.如果太大,振荡幅度值将受到晶体管非线性的限制,波形将产生严重失真.四、实验内容1、按照图5-1所示的实验电路连接电路; 2测量RC 选频网络的幅频特性从电路的A 、B 两点处断开,不加直流电压V CC ,在RC 串并联网络两端加3V (有效值)的低频信号,改变信号的频率,在RC 并联端(A 断处)测选频网络的幅频特性。

注意:改变信号频率时,应保证加在RC 串并联网络两端的电压值不变。

3 调节电压串联负反馈放大器的放大倍,仍断开RC 选频网络,加电源V CC ,调整两级放大电路的静态工作点,使两个三极管均处于放大状态,在放大器的输入端加上适当大小的电压V i (输出波形不产生失真),频率约为1KH Z ,调节负反馈电阻R f ,使放大倍数A V 稍大于3。

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器实验目的:1.熟悉仿真软件MULTISIM的使用,掌握基于软件的电路设计和仿真分析方法。

2.熟悉POCKETLAB硬件实验平台,掌握基于功能的使用方法。

3.掌握RC正弦波振荡器的设计和分析方法。

4.掌握RC正弦波振荡器的安装与调试方法。

实验内容:一.仿真实验1.RC相移振荡电路如图8-1所示,在MULTISIM中搭建其开环分析电路,理解起振和稳定的相位条件与振幅条件。

图8-1 RC相移振荡电路所以f=649.7HZ所以放大器的增益绝对值大于29.图8-3 RC相移振荡电路开环仿真图图8-4 RC相移振荡电路开环仿真幅频图和相频图由幅频特性曲线图可知,该电路的振荡频率为640.4004HZ。

2.在MULTISIM中搭建8-1电路,进行瞬态仿真。

所以=19.89*10^-5意向网络增益为1/3,所以为满足起振条件,基本放大器增益应大于3.表8-1 RC相移振荡电路振荡频率计算值仿真值实测值振荡频率649.7HZ 628.099HZ 633HZ3.将8-1电路振荡频率增加或减小10倍,重新设计电路参数。

表8-2 RC相移振荡电路振荡频率改动原件改动前频率减小10倍频率增加10倍R R=10k R=100k;R20=3000kC C=10nF C=100nF60.84HZ C=1nF 6.08kHZC=1nF C=100nFR=100K4.调试修改文氏电桥振荡器,进行瞬态仿真。

表8-3 文氏电桥振荡电路振荡频率C1(uF) R1(K) R2(K) R3(K) R4(K) 0.01 20 10 4.7 16.8表8-4 文氏电桥振荡电路振荡频率设计值仿真值实测值振荡频率800HZ 791.76HZ 830HZ图8-5 文氏电桥振荡器瞬态波形图图8-6 文氏电桥振荡器频谱图一.硬件实验1.电路连接2.瞬态波形观测3.频谱测量图8-7 RC电路瞬态波形图图8-8 RC电路频谱图4.按以上步骤对文氏电桥电路进行相应硬件实验图8-9 文氏电桥振荡器瞬态波形图图8-10 文氏电桥振荡器频谱图实验思考:1.将8-1所示电路中的C从10nF改为0.1nF后,进行仿真,结果如何?请解释原因。

rc正弦波振荡实验报告

rc正弦波振荡实验报告

竭诚为您提供优质文档/双击可除rc正弦波振荡实验报告篇一:电子实验报告三Rc正弦波振荡器电路实验报告三《Rc正弦波振荡器》实验内容一:1.1、关闭系统电源。

按图1-1连接实验电路,输出端uo接示波器。

1.2打开直流开关,调节电位器Rw,使输出波形从无到有,从正弦波到出现失真。

描绘uo的波形,记下临界起振、正弦波输出及失真情况下的Rw值,分析负反馈强弱对起振条件及输出波形的影响。

1.3.电位器Rw,使输出电压uo幅值最大且不失真,用交流毫伏表分(:rc正弦波振荡实验报告)别测量输出电压uo、反馈电压u+(运放③脚电压)和u-(运放②脚电压),分析研究振荡的幅值条件。

1.4.器振荡频率fo,并与理论值进行比较。

图1-1实验结果:负反馈强弱对起振条件及输出波形的影响:解:Rc桥式振荡器要求放大器的放大倍数等于3,如果负反馈较弱,放大倍数就过大使波形失真;负反馈太强使放大倍数小于或等于3,则起振困难或工作不稳定。

图1-2图1-3图1-41.3输出电压uo幅值最大且不失真时输出波波形图见图1-5 图1-51.4思考题1、正弦波振荡电路中有几个反馈支路?各有什么作用?运放工作在什么状态?2、电路中二极管为什么能其稳幅作用?断开二极管,波形会怎样变化?解:1.正弦波振荡电路中有一个正反馈支路,一(三?)个负反馈支路。

2.(1)二极管控制电路增益,实现稳幅。

二极管决定稳幅控制电路的控制力度,即决定了控制电压每变化1个单位引起的Io变化量,直接影响反馈电路的增益。

稳幅环节是利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现的,二极管要求采用温度稳定性好且特性匹配的硅管,以保证输出正、负半周波形对称;R4的作用是削弱二极管非线性的影响,以改善波形失真。

负反馈电路中有两个二极管,它们的作用是稳定输出信号的幅度。

也可以采用其他的非线形元件来自动调节反馈的强度,以稳定振幅,如:热敏电阻、场效应管等。

(2)若断开二极管,波形会变得极不稳定。

RC正弦波振荡器

RC正弦波振荡器

实验十四 RC 正弦波振荡器一、实验目的1、掌握RC 正弦波振荡器的电路结构及其工作原理。

2、熟悉正弦波振荡器的测试方法。

3、观察RC 参数对振荡频率的影响,学习振荡频率的测定方法。

二、实验仪器1、双踪示波器2、低频信号发生器3、频率计4、交流毫伏表5、直流电源。

三、实验原理及测量方法正弦振荡电路一般包括两部分,放大电路A 和反馈网络F ,如图1所示。

图1 正弦振荡电路原理框图由于振荡电路不需要外界输入信号,因此,通过反馈网络输出的反馈信号X f 就是基本放大电路的输入信号X id 。

该信号经基本放大电路放大后,输出为X o ,若能使X f 与X id 大小相等,极性相同,构成正反馈电路,那么这个电路就能维持稳定的输出。

因而,X f =X id 可引出正弦振荡条件。

由方框图1可知:o id X AX =而X f =FX o 当X f =X id 时,则有:AF =1上述条件可写成|AF|=1,称幅值平衡条件。

即放大倍数A 与反馈系数F 乘积的模为1,表明振荡电路已达到稳幅振荡,但若要求电路能够自行振荡,开始时必须满足|AF|>1的起振条件。

由X f 与X id 极性相同,可得:2A F n φφπ+= 称相位平衡条件即放大电路的相角和反馈网络的相角之和为2n π,其中n 为整数。

要使振荡电路输出确定频率的正弦信号,电路还应包含选频网络和稳幅电路两部分。

选频电路的作用使单一频率的信号满足振荡条件,稳幅电路能保证电路的输出幅度是稳定不失真的,这两部分电路通常可以是反馈网络,或放大电路的一部分。

RC 正弦振荡电路也称为文氏桥振荡电路。

它的主要特点是利用RC 串并联网络作为选频和反馈网络。

如图2所示R123.5kΩ(a )电路图(b )串并联网络频率特性 图2 RC 串并联正弦振荡电路由串并联网络的幅频特性,可知当信号频率为12o f RCπ=时,选频网络的相角为0度,传递系数为1/3。

所以,要满足正弦振荡条件,要求放大电路的相角为0度,传递系数稍大于3。

rc正弦波振荡器电路设计及仿真

rc正弦波振荡器电路设计及仿真

rc正弦波振荡器电路设计及仿真

正弦波振荡器电路的设计和仿真是电子技术的一个重要课题,对电子技术的研究有重
要的意义。

正弦波振荡器是一种典型的振荡电路,它可以用来产生正弦波和方波。

因其电
路简单,性能稳定,用途广泛,在电子电路技术中被广泛应用。

正弦波振荡器的基本原理是把正弦波加以无穷次平均,用此组成两极结构,即动态输
入和动态输出端口,把正弦波作为输入量,由输入端口输送到输出端口,通过反馈回路在
输入端口进一步处理,使其可以不断循环。

根据正弦波振荡器的工作原理,结合实际的应用需求,可以设计出一种满足要求的正
弦波振荡器电路。

其核心电路为双极复放机构,由输入阻抗器连接在振荡管的基极,另一
极连接地;反馈分支由调节圈提供反馈能量,当振荡管的基极的电压超过一定的值得时候,参考管会调节输出端口的电压,而正弦波振荡器就是通过这种反应机制实现正弦波振荡的。

在正弦波振荡器的设计与仿真中,可以采用SPICE模拟工具,运用电路技术与分析技术,对正弦波振荡器电路进行仿真,加以验证电路设计的可行性,并评估其性能参数,致
力于达到设计规定的要求。

总之,正弦波振荡器电路的设计与仿真是一个相当重要的课题,可以通过SPICE模拟
工具与电路技术来实现,并有效地验证仿真结果,为电子技术提供参考,提高电子产品的
质量。

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告实验目的:本实验的目的是通过搭建一个RC正弦波振荡器电路,研究RC电路的振荡特性,并分析RC电路中电流和电压的变化规律。

实验设备:- 信号发生器- 电压表- 电流表- 电阻- 电容- 电源- 连接线- 示波器实验原理:RC正弦波振荡器电路由电容C和电阻R组成。

根据基尔霍夫定律,电路中的电压满足以下方程:V = VR + VC,其中VR为电阻上的电压,VC为电容上的电压。

在电容未充电时,电流通过电阻,而电容不导电。

当电压施加到电路上时,电容开始充电,电流开始减小。

随着时间的流逝,电容上的电压也在增加。

当电容经过一段时间充电后,电压达到最大值,电流达到最小值。

此时电容开始放电,电流再次增大。

随着电容的放电,电压逐渐减小。

电容和电阻的相互作用导致电流和电压的周期性变化,形成正弦波。

实验步骤:1. 将信号发生器的正负极分别连接到电阻R和电容C的一个端口。

2. 将电容的另一个端口连接到电阻的另一端,形成一个闭合的回路。

3. 将电流表连接到电阻上,以测量通过电阻的电流。

4. 将电压表连接到电容上,以测量电容上的电压。

实验结果:通过实验观察,我们可以看到电流和电压随着时间的变化呈现正弦波形。

当电流为最大值时,电压达到最小值,当电流为最小时,电压达到最大值。

电流和电压的变化是周期性的,证明了电路中存在振荡现象。

实验讨论:1. 实验中,我们可以通过调节信号发生器的频率来改变振荡的频率。

2. 通过改变电阻R和电容C的数值,我们可以观察到振荡的幅度和频率的变化。

3. RC振荡器电路还可以应用于实际电路中,例如通信信号源的产生、交流电源的输出等。

实验总结:通过本次实验,我们成功搭建了一个RC正弦波振荡器电路,并观察到了电流和电压的周期性变化。

实验结果验证了RC电路的振荡特性,并加深了对振荡器电路的理解。

实验中我们还发现,通过调节信号发生器的频率、改变电阻和电容的数值,可以对振荡的频率和幅度进行调节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、RC 正弦波振荡器设计
(一)设计目的
1、 进一步理解用集成运放构成的正弦波发生器的工作原理。

2、 学习振荡器的调整和主要性能指标的测试方法。

(二)基础知识与能力层次要求
1、课程涉及课程
模拟电路
2、能力层次要求(四项中之一)
(1)电子电路基础应用能力(基础)(第一级):√
(2)电类专业综合实践能力(综合)(第二级):
(3)电类专业工程设计能力(设计)(第三级):
(4)研究与创新设计能力(创新)(第四级):
3、指导教师
周妮、向腊
(三)设计技术指标与要求
1、设计要求
可以产生正弦波,频率范围为10Hz~100kHz ,输出电压可调,带载能力强,波形尽量不失真。

设计完成后可以利用示波器测量出其输出频率的上限和下限,还可以进一步测出其输出电压的范围。

2、项目仪器、设备
信号发生器,双踪示波器,直流稳压电源,万用表,交流毫伏表,焊接工具,设计电 路所需的元器件,电路仿真软件等
(四)项目原理
1、基本原理
RC 桥式正弦波振荡器(文氏电桥振荡器)
图4.1为RC 桥式正弦波振荡器。

其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W 及二极管等元件构成负反馈和稳幅环节。

调节电位器R W ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。

利用两个反向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。

D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。

R 3的接入是为了削弱二极管非线性的影响,以改善波形失真。

电路的振荡频率 2πRC
1f O =
起振的幅值条件 1f R R +=1A f ≥3 式中R f =R W +R 2+(R 3 / r D ),r D — 二极管正向导通电阻。

调整反馈电阻R f (调R W ),使电路起振,且波形失真最小。

如不能起振,则说明负反馈太强,应适当加大R f 。

如波形失真严重,则应适当减小R f 。

改变选频网络的参数C 或 R ,即可调节振荡频率。

一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。

图4.1 RC桥式正弦波振荡器
2、项目步骤
(1)分析设计要求,选择总体方案
分析系统的输入和输出信号,将输入信号的波形、幅度、频率等参数以及输出的要求准确地弄清楚。

方案选择就是按照系统总的要求,把电路划分成若干个功能块,得出能表示单元功能的整机原理框图。

(2)单元电路的设计
确定对各单元电路的设计要求,拟定好各单元电路的要求后,按信号流程顺序分别设计各单元电路。

(3)参数的计算
利用模电中的分析方法,估算元器件的各项参数,才能选择元器件。

(4)计算机的模拟仿真
常用电子仿真软件:Multisim(或EWB), Protel等
(5)实验的验证
由于元器件的参数和模型与实际的差异,模拟正确的电路还是要经过实验的验证。

(6)编写设计说明书并进行简单答辩,指导教师给出答辩成绩。

3、项目注意事项
1.注意电路的组装、布局合理、美观。

2.整个调试过程最好也分层次进行,先单元电路,再模块电路,最后系统联调。

按照分配的指标、分解的模块,一部分一部分调试,然后将各模块连接起来总调。

3. 注意故障诊断与排除方法。

(五)项目预习要求
1、复习RC振荡器的有关内容,特别是RC并联选频网络振荡器的结构与工作原理。

2、掌握振荡器起振的条件,学习利用实验的方法调试振荡器,测量振荡电路的振荡频率。

(六)项目报告要求
模拟电子技术课程设计报告书正文包含:
1)设计题目
2)设计要求
3)题目分析
4)整体构思
5)具体实现:画出总体方框图和原理图,并给出说明。

原理图可以电脑画,也可以手画,但必须规整。

6)各部分定性说明以及定量计算;
7)在实验过程中遇到的问题及排除措施;
8)设计心得体会。

9)参考文献
(七)评分标准。

相关文档
最新文档