正弦波振荡器实验

合集下载

正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。

4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。

二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。

正弦波振荡器在电子技术领域中有着广泛的应用。

在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。

在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。

振荡器的种类很多。

从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。

此实验只讨论反馈式振荡器。

根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。

此实验只介绍正弦波振荡器。

常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。

按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。

(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。

b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。

当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。

模拟电子实验报告四-正弦波振荡器

模拟电子实验报告四-正弦波振荡器

姓名:学号:班级:成绩:实验名称: 正弦波振荡器一、实验目的(1)掌握静态工作点的设定方法。

(2)了解反馈的概念和反馈放大电路的方框图。

(3)掌握放大电路的放大倍数的一般表达式。

(4)验证产生正弦波激荡放大反馈电路1=AF 以及信号的频率。

二、实验原理(1)反馈放大电路方框图如图1所示图1(2)静态工作点的确定观察输入波与输出波,判断输出波有无失真情况,若没有失真则表示此时即为静态工作点,反之不是。

(3)基本放大电路的放大倍数AioX X A =其中o X 为输出,i X 为输入,由于本实验室两级放大电路,所以A 的相位应为0,即0=A ϕ(4)反馈系数Fof X X F =其中f X 为反馈,o X 为输出。

由于本实验引入正反馈所以F 的相位应为0,即0=F ϕ(5)产生正弦波激荡放大电路1=AF要使1=AF 成立必须满足连个条件:1、n A F πϕϕ2=+,2、1=AF三、实验仪器与元器件(1)正弦波振荡器 1台 (2)模拟电路实验台 1台 (3)万用表(电压表、电流表、毫伏表) 1个 (4)示波器 1台 (5)信号发生器 1台 (6)导线 若干四、实验内容(1)调整放大电路静态工作点,观察示波器,使输出波形不失真。

(2)连接电路,观察输出波形,反馈波形,输入波形的相位关系,判断是否满足理论情况。

由上图可得出0=A ϕ,0=F ϕ。

(3)测试频率大小,判断是否满足理论值。

理论值:HZ RC f 1000001.0*01.0*16*2121≈*==ππ实际值如上图频率计所示为1006HZ 所以符合理论情况,幅值关系为3倍。

五、实验数据分析(1)静态工作点为直流负载线与输入特性曲线的交点,不宜偏高或偏低,可选择选择中间的Q 为合适的静态工作点,对应的V U CEQ 6=,也可通过观察输出波形和输入波形,判断输出波形是否失真,来确定静态工作点。

(2)正弦波振荡器满足1=AF ,即满足1、n A F πϕϕ2=+,2、1=AF 。

实验2--正弦波振荡器(LC振

实验2--正弦波振荡器(LC振

实验2 正弦波振荡器(LC振荡器和晶体振荡器)一.实验目的1.把握电容三点式LC振荡电路和晶体振荡器的大体工作原理,熟悉其各元件的功能;2.把握LC振荡器幅频特性的测量方式;3.熟悉电源电压转变对振荡器振荡幅度和频率的阻碍;4.了解静态工作点对晶体振荡器工作的阻碍,感受晶体振荡器频率稳固度高的特点。

二.实验内容1.用示波器观看LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压转变对振荡器的阻碍;4.观看并测量静态工作点转变对晶体振荡器工作的阻碍。

三.实验步骤1.实验预备插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,现在模块上电源指示灯点亮。

2.LC 振荡实验(为避免晶体振荡器对LC振荡器的阻碍,应使晶振停振,即将3W03顺时针调到底。

)(1)西勒振荡电路幅频特性的测量3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。

调整电位器3W02,使输出最大。

开关3K05拨至“P”,现在振荡电路为西勒电路。

四位拨动开关3SW01别离操纵3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是不是接入电路,开关往上拨为接通,往下拨为断开。

四个开关接通的不同组合,能够操纵电容的转变。

例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。

依照表2-1电容的转变测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。

表2-1依照所测数据,分析振荡频率与电容转变有何关系,输出幅度与振荡频率有何关系,并画出振荡频率与输出幅度的关系曲线。

注:若是在开关转换进程中使振荡器停振无输出,可调整3W01,使之恢复振荡。

(2)克拉泼振荡电路幅频特性的测量将开关3K05拨至“S”,振荡电路转换为克拉泼电路。

依照上述(1)的方式,测出振荡频率和输出电压,并将测量结果记于表2-1中。

电子电路综合实验-LC正弦波振荡器报告

电子电路综合实验-LC正弦波振荡器报告

LC 正弦波振荡(虚拟实验)1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格: (C1, C2, L1) (C 1,C 2,L 1) O U •i U •增益A 相位差 谐振频率f 0 测量值 理论值 测量值 理论值 (100nF,400nF,10mH )5.972V1.486V44.0191806.025kHz5.627(100nF,400nF,5mH ) 4.698V 1.161V 4 4.047 180 7.995 kHz 7.958 (100nF,1uF,5mH )7.116V711.458mV1010.0021807.897 kHz7.465实验数据与理论值间的差异分析:增益差别不大但谐振频率差别较大, 主要是由于读数是的精度有限造成的。

由于游标以格为单位, 因此读数时选取的幅值最大的点可能与实际有差, 因而谐振频率的测量也有误差。

2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:(L1, L2, C2)(L1,L2,C2)OU•(V)iU•(mV)增益A 相位差谐振频率f0测量值理论值测量值(kHz)理论值(kHz)(5mH,100uH,200nF) 4.497V 89.938mV 50.001 50 180 5.039kHz 4.983 (5mH,100uH,100nF) 4.504V 90.070 mV 50.005 50 180 7.010kHz7.047(2mH,100uH,100nF) 4.483V 224.150mV 20.000 20 180 10.951kHz10.983实验数据与理论值间的差异分析:误差均较小, 主要由于电路不够稳定以及读数精度造成。

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器实验目的:1.熟悉仿真软件MULTISIM的使用,掌握基于软件的电路设计和仿真分析方法。

2.熟悉POCKETLAB硬件实验平台,掌握基于功能的使用方法。

3.掌握RC正弦波振荡器的设计和分析方法。

4.掌握RC正弦波振荡器的安装与调试方法。

实验内容:一.仿真实验1.RC相移振荡电路如图8-1所示,在MULTISIM中搭建其开环分析电路,理解起振和稳定的相位条件与振幅条件。

图8-1 RC相移振荡电路所以f=649.7HZ所以放大器的增益绝对值大于29.图8-3 RC相移振荡电路开环仿真图图8-4 RC相移振荡电路开环仿真幅频图和相频图由幅频特性曲线图可知,该电路的振荡频率为640.4004HZ。

2.在MULTISIM中搭建8-1电路,进行瞬态仿真。

所以=19.89*10^-5意向网络增益为1/3,所以为满足起振条件,基本放大器增益应大于3.表8-1 RC相移振荡电路振荡频率计算值仿真值实测值振荡频率649.7HZ 628.099HZ 633HZ3.将8-1电路振荡频率增加或减小10倍,重新设计电路参数。

表8-2 RC相移振荡电路振荡频率改动原件改动前频率减小10倍频率增加10倍R R=10k R=100k;R20=3000kC C=10nF C=100nF60.84HZ C=1nF 6.08kHZC=1nF C=100nFR=100K4.调试修改文氏电桥振荡器,进行瞬态仿真。

表8-3 文氏电桥振荡电路振荡频率C1(uF) R1(K) R2(K) R3(K) R4(K) 0.01 20 10 4.7 16.8表8-4 文氏电桥振荡电路振荡频率设计值仿真值实测值振荡频率800HZ 791.76HZ 830HZ图8-5 文氏电桥振荡器瞬态波形图图8-6 文氏电桥振荡器频谱图一.硬件实验1.电路连接2.瞬态波形观测3.频谱测量图8-7 RC电路瞬态波形图图8-8 RC电路频谱图4.按以上步骤对文氏电桥电路进行相应硬件实验图8-9 文氏电桥振荡器瞬态波形图图8-10 文氏电桥振荡器频谱图实验思考:1.将8-1所示电路中的C从10nF改为0.1nF后,进行仿真,结果如何?请解释原因。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告
实验目的:验证正弦波振荡器的工作原理,并探究其参数对振荡频率的影响。

实验原理:
正弦波振荡器是一种能够产生稳定振荡信号的电路。

其基本原理是通过反馈回路将一部分输出信号重新引入到输入端,形成自激振荡。

常见的正弦波振荡器电路有震荡放大器电路和LC 震荡电路等。

实验器材:
- 正弦波振荡器电路板
- 函数发生器
- 示波器
- 电阻、电容等元器件
实验步骤:
1. 将正弦波振荡器电路与函数发生器、示波器连接起来。

2. 调节函数发生器产生一个适当的输入信号,通过示波器观察输出信号的波形。

3. 根据需要,可以调节电阻、电容等元器件的数值,观察输出信号波形的变化。

4. 记录各个参数对输出信号频率的影响。

实验结果:
根据实验步骤进行操作后,记录输出信号的波形和频率,以及各个参数的数值。

根据实验数据绘制实验曲线。

实验讨论:
根据实验结果分析各个参数对输出信号频率的影响,并探究为什么正弦波振荡器能够产生稳定振荡信号。

结论:
正弦波振荡器能够产生稳定振荡信号,并且其频率可以通过控制元器件的数值来调节。

实验结果与原理相符合,说明正弦波振荡器的工作原理有效。

RC正弦波振荡器

RC正弦波振荡器

模拟电子技术 RC 正弦波振荡器实验报告内容包含:实验目的、实验仪器、实验原理,实验内容、实验步骤、实验数据整理与归纳(数据、 图表、计算等)、实验结果分析、实验思考题、实验心得。

【实验目的】(1)进一步学习RC 正弦波振荡器的组成及其振荡条件。

(2)学会测量、调试振荡器。

【实验仪器】 (1)+12V 直流电源;(3) DS1062E-EDU 双踪示波器; (5) MS8200D 直流电压表; (7)电阻、电容、电位器等若干支。

【实验原理】从结构上看,正弦波振荡器是没有输入信号的,是一种带选频网络的正反馈 放大器。

若用R 、C 元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz 〜 1MHz 的低频信号。

1. RC 移相振荡器RC 移相振荡器电路形式如图9-1所示,选择R>>G 。

图9-1 RC 移相振荡器原理图(2) AS101E 函数信号发生器; (4)频率计;(6) 3DG12X2 或 9013X2 支;振荡频率 f D =——2n46RC起振条件 放大器A 的电压放大倍数1 A I >29电路特点 简便,但选频作用差,振幅不稳,频率调节不便,一般 用于频率固定且稳定性要求不高的场合。

频率范围 儿赫〜数十千赫口2. RC 串并联网络(文氏桥)振荡器3. 串并联网络振荡器电路形式如图9-2所示。

一“力RCIA >3可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到 良好的振荡波形。

图9-2 RC 串并联网络振荡器原理图注;本实验采用两级共对极分立兀件放大哥组成RC F 弦波振菊谓口【实验内容】1. RC 串并联选频网络振荡器 (1)按图9-3组接线路。

(2)断开RC 串并联网络,(不接A 、B ),测量放大器静态工作点。

记录数据,如 表9-1所示。

起振条件表9-1(3)接通RC 串并联网络(联A、B ),并使电路起振,用示波器观测输出电压%的 波形,调节学使获得满意的正弦信号,记录波形及参数(幅度)。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告正弦波振荡器实验报告引言:正弦波振荡器是电子学中常见的一种电路,它能够产生稳定的正弦波信号。

在本次实验中,我们将通过搭建一个简单的正弦波振荡器电路,来探索正弦波振荡器的工作原理以及其在电子学中的应用。

一、实验目的本实验的主要目的有以下几点:1. 了解正弦波振荡器的基本原理;2. 学习如何搭建一个简单的正弦波振荡器电路;3. 观察并测量正弦波振荡器输出的波形特性;4. 分析正弦波振荡器的频率稳定性和幅度稳定性。

二、实验器材和原理1. 实验器材:- 信号发生器- 电容- 电感- 晶体管- 电阻- 示波器- 电压表- 电流表2. 实验原理:正弦波振荡器的基本原理是利用反馈回路中的放大器和RC(电阻-电容)网络来实现自激振荡。

在本次实验中,我们将使用一个简单的放大器电路和RC网络来构建正弦波振荡器。

三、实验步骤1. 搭建电路:根据实验原理,我们将放大器电路和RC网络按照图中的连接方式搭建起来。

确保电路连接正确且稳定。

2. 调节电路参数:通过调节电容、电感和电阻的数值,使得电路能够产生稳定的正弦波信号。

调节电路参数时,可以使用示波器来观察输出波形,并通过电压表和电流表来测量电路中的电压和电流数值。

3. 观察和测量输出波形:连接示波器,并调节示波器的设置,使其能够显示电路输出的正弦波信号。

观察输出波形的频率、幅度以及波形的稳定性。

4. 分析波形特性:通过改变电路参数,观察和测量不同条件下的输出波形特性。

分析正弦波振荡器的频率稳定性和幅度稳定性,并记录实验数据。

四、实验结果和数据分析在本次实验中,我们成功搭建了一个正弦波振荡器电路,并通过示波器观察到了稳定的正弦波输出。

通过测量电路中的电压和电流数值,我们得到了一系列实验数据。

根据实验数据,我们可以分析正弦波振荡器的频率稳定性和幅度稳定性。

频率稳定性是指正弦波振荡器输出信号的频率是否能够保持在一个稳定的数值范围内。

幅度稳定性是指输出信号的振幅是否能够保持稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


功能

三极管: 偏置电路设置合适的静态工作点,保证起振时工作 在放大区,提供足够的增益,满足振幅起振条件: T(ωosc)= A 0F>1。 起振后,振荡振幅增长,直到三极管开始呈现非线 性放大特性时,放大器的增益随振荡振幅增大而减 小,振幅稳定在平衡条件:T(ωosc)= A 0F =1 相移网络: 三点式振荡电路组成法则:(正反馈φ T(ωosc)=1) 与发射极相连的为二个同性质电抗;接在集电极与 基极间的为异性质电抗。

电容三端式振荡器

振荡频率: ωosc =1/(LC)1/2
L:回路电感; C:回路总电容;

反馈系数: F = C56 / (C56+C57| |C58| |C59| |Cbe)
频率稳定度

减少外界因素(温度、湿度、电源、电压变化) 对ωosc 的影响程度; 振荡回路主要部、元件: 采用稳定性好、高Q值的L、C; 采用正负温度系数的L、C实现温度补偿 采用部分接入减少不稳定的晶体管极间电容和 分布电容对ωosc 的影响
二、实验内容

测量振荡器的频率变化范围; 观察反馈系数对起振和输出波形的影响;


ห้องสมุดไป่ตู้
观察温度变化对振荡器频率稳定度的影响;
三、实验仪器

GDS数字示波器 万用表 调试工具
四、实验基本原理

正弦波振荡器: 在不加输入信号时能稳定地产生特定频率或 特定频率范围的正弦波振荡信号。
组成: 可变增益器件(三极管),相移网络(并联 谐振回路)


晶体振荡器频率稳定度高于LC振荡器
正弦波振荡器实验原理图
五、实验步骤
六、注意事项

由于万用表输出电容的影响,将万用表接在 变容二极管D1两侧和不接在D1两侧时,Q2发 射极信号的频率会不一样,本步骤实验万用 表在测量直流电压后应取下,再用示波器在 Q2发射极测信号频率。
相关文档
最新文档