模电实验_RC正弦波振荡器

合集下载

rc正弦波振荡器测量数据试验报告

rc正弦波振荡器测量数据试验报告

rc正弦波振荡器测量数据试验报告一、实验目的1、学习RC正弦波振荡器的组成及其振荡条件;2、学会测量、调试振荡器。

二、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。

若用R、C元件组成选频网络,就称为RC振荡器,一般用来产生1HZ~1MHz的低频信号。

1、RC移相振荡器:电路如右图1所示,选择R>>Ri。

起振条件:放大器A的电压放大倍数|A|>29电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。

频率范围:几赫~数十千赫。

2、RC串并联网络(文氏桥)振荡器:本实验电路图如下面的图2所示。

电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。

3、双T选频网络振荡器:本实验电路如下图3所示:电路特点:选频特性好,调频困难,适用于产生单-窄带频率的振荡。

三、实验器材1、+12V直流电源;2、函数信号发生器;3、双踪示波器;4、频率计;5、直流电压表;6、数字万用表;7、15K电阻2个、103电容4个、10电位器1个。

四、实验内容1、RC串并联选频网络振荡器:(1)按图2连接线路。

(2)断开RC串并联网络(即电路图A处断开),Rw调到9-10K,测量放大器静态工作点Ie1(0.86毫安)、IE2(1.1毫安)及不失真电压放大倍数Ao(9倍,信号源500-1000HZ范围内)。

(3)关闭信号源,接通RC串并联网络(即电路图A处接通),使电路起振,调小Rw,看停振现象。

再调大Rw(顺时针拧)使刚好不失真,用示波器观测输出电压uo波形,并测量此情况下的电压放大倍数A(3.2倍,要断开RC串并联网络测量)。

(4)用频率表测量振荡频率(893HZ),并与计算值进行比较。

(5)两个电容C分别并联103电容,观察和记录振荡频率变化情况(520HZ)。

2、双T选频网络振荡器:(1)按图3组接线路。

其中T2单级放大器由实验台上的“单级/负反馈两级放大器”的末级构成。

9RC正弦波振荡器

9RC正弦波振荡器

测量值f= 计算值:
fO
1 2πRC
四、实验内容
2、振荡器频率测量和波形调试 2)测量振荡频率
四、实验内容
3、振荡器频率调节 1)改变电阻R
两个R旁分别并联一个16kΩ电阻,改变RC的电阻值,观察频率变 换。记录接线图,记录此时振荡频率,说明频率变化的原因。
四、实验内容
3、振荡器频率调节 1)改变电阻R
四、实验内容
1、振荡器静态工作点及放大倍数的测量
1) 测量静态工作点 切断开关,测量放大器静态工作点。
四、实验内容
1、振荡器静态工作点及放大倍数的测量
1) 测量静态工作点
UE(V)
UB(V)
UC(V)
T1
T2
四、实验内容
1、振荡器静态工作点及放大倍数的测量
1) 测量放大倍数
输和输入入信u号i,为计正算弦电波压:放f=大1K倍H数z,。调节Rf=2kΩ,测量不失真输出电压uo
四、实验内容
3、振荡器频率调节 2)改变电容C
两个C旁分别并联相同电容,改变RC的电容值,观察频率变换。 记录接线图,记录此时振荡频率,说明频率变化的原因。
四、实验内容
3、振荡器频率调节 1)改变电阻R
五、实验总结
1、 由给定电路参数计算振荡频率与实测值比较分析误差产生 的原因。(只分析原因)。
2、改变R或C值,观察振荡频率变化情况,并做文字说明。
测量值
ui(mV) uo(mV)
A
放大电路
四、实验内容
2、振荡器频率测量和波形调试
1) 观察波形 将虚线部分连接(将开关切换至下侧),调节滑动变阻器Rf使电 路起振,调节Rf使获得满意的正弦信号,使uo波形不失真

实验三RC正弦波振荡电路

实验三RC正弦波振荡电路

RC正弦波振荡电路一、实验目的和要求1、学习RC正弦波振荡器的组成及其振荡条件。

2、学会测量、调试振荡器。

二、实验内容和原理文氏电桥振荡器是一种较好的正弦波产生电路,适用于产生频率小于1MHz,频率范围宽,波形较好的低频振荡信号。

因为没有输入信号,为了产生正弦波,必须在电路里加入正反馈。

下图是用运算放大器组成的电路,图中R3,R4构成负反馈支路,R1,R2,C1,C2的串并联选频网络构成正反馈支路并兼作选频网络,二极管构成稳幅电路。

调节电位器Rp可以改变负反馈的深度,以满足振荡的振幅条件和改善波形。

二极管D1,D2要求温度稳定性好且特性匹配,这样才能保证输出波形正负半周对称,同时接入R4以消除二极管的非线性影响。

若R1=R2,C1=C2,则振荡频率为f0=1/2πRC,正反馈的电压与输出电压同相位,且正反馈系数为1/3。

为满足电路的起振条件放大器的电压放大倍数A V > 3,其中A V = 1+R5/ =Rp+R4。

由此可得出当R5 >2R3时,可满足电路的自激振荡的振幅起振条件。

在实际应用中R5应略大于R3,这样既可以满足起振条件,又不会因其过大而引起波形严重失真。

此外,为了输出单一的正弦波,还必须进行选频。

由于振荡频率为f0=1/2πRC,故在电路中可变换电容来进行振荡频率的粗调,可用电位器代替R1,R2来进行频率的细调。

电路起振后,由于元件参数的不稳定性,如果电路增益增大,输出幅度将越来越大,最后由于二极管的非线性限幅,这必然产生非线性失真。

反之,如果增益不足,则输出幅度减小,可能停振,为此振荡电路要有一个稳幅电路。

图中两个二极管主要是利用二极管的正向电阻随所加电压而改变的特性,来自动调节负反馈深度三、实验器材1、双路直流稳压电源一台2、函数发生器一台3、示波器一台4、万用表一块5、集成运算放大器(μA741)两片6、电阻10KΩ两个,5.1KΩ一个,6.2KΩ一个,10KΩ电位器一个7、0.01μF两个8、二极管两个9、模拟电路实验箱一个四、操作方法与操作步骤1、RC正弦波振荡器(1)连接好电路后,检查无误后,接通12V直流电源;(2)用示波器观测有无正弦波输出;(3)调节可变电阻Rp,使输出波形从无到有到失真,绘制出输出波形V o,记录临界起振,正弦波输出及出现失真情况下的Rp值;(4)调节可变电阻Rp,分别测量以上三种情况下,输出电压V o和反馈电压Vf 的值并将结果记录至表,分析负反馈强弱对起振条件和输出波形的影响。

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器实验目的:1.熟悉仿真软件MULTISIM的使用,掌握基于软件的电路设计和仿真分析方法。

2.熟悉POCKETLAB硬件实验平台,掌握基于功能的使用方法。

3.掌握RC正弦波振荡器的设计和分析方法。

4.掌握RC正弦波振荡器的安装与调试方法。

实验内容:一.仿真实验1.RC相移振荡电路如图8-1所示,在MULTISIM中搭建其开环分析电路,理解起振和稳定的相位条件与振幅条件。

图8-1 RC相移振荡电路所以f=649.7HZ所以放大器的增益绝对值大于29.图8-3 RC相移振荡电路开环仿真图图8-4 RC相移振荡电路开环仿真幅频图和相频图由幅频特性曲线图可知,该电路的振荡频率为640.4004HZ。

2.在MULTISIM中搭建8-1电路,进行瞬态仿真。

所以=19.89*10^-5意向网络增益为1/3,所以为满足起振条件,基本放大器增益应大于3.表8-1 RC相移振荡电路振荡频率计算值仿真值实测值振荡频率649.7HZ 628.099HZ 633HZ3.将8-1电路振荡频率增加或减小10倍,重新设计电路参数。

表8-2 RC相移振荡电路振荡频率改动原件改动前频率减小10倍频率增加10倍R R=10k R=100k;R20=3000kC C=10nF C=100nF60.84HZ C=1nF 6.08kHZC=1nF C=100nFR=100K4.调试修改文氏电桥振荡器,进行瞬态仿真。

表8-3 文氏电桥振荡电路振荡频率C1(uF) R1(K) R2(K) R3(K) R4(K) 0.01 20 10 4.7 16.8表8-4 文氏电桥振荡电路振荡频率设计值仿真值实测值振荡频率800HZ 791.76HZ 830HZ图8-5 文氏电桥振荡器瞬态波形图图8-6 文氏电桥振荡器频谱图一.硬件实验1.电路连接2.瞬态波形观测3.频谱测量图8-7 RC电路瞬态波形图图8-8 RC电路频谱图4.按以上步骤对文氏电桥电路进行相应硬件实验图8-9 文氏电桥振荡器瞬态波形图图8-10 文氏电桥振荡器频谱图实验思考:1.将8-1所示电路中的C从10nF改为0.1nF后,进行仿真,结果如何?请解释原因。

实验六 RC正弦波振荡器的设计及调试

实验六    RC正弦波振荡器的设计及调试

实验六 RC 正弦波振荡器的设计及调试一、实验目的1、进一步学习RC 正弦波振荡器的组成及其振荡条件;2、学会测量、调试振荡器。

二、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大电路。

若用R 、C 元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz ~1MHz 的低频信号。

1、RC 移相振荡器电路型式如图8.1所示,选择R >>R i 。

振荡频率:O f =起振条件:放大电路A 的电压放大倍数|A|>29 电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。

频率范围:几Hz ~数十kHz 。

2、RC 串并联网络(文氏桥)振荡器电路型式如图8.2所示。

振荡频率:12O f RCp = 起振条件:|A |>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。

三、实验条件1、12V 直流电源2、函数信号发生器3、双踪示波器图8.1 RC 移相振荡器原理图图8.2 RC 串并联网络振荡器原理图4、频率计5、直流电压表6、3DG12×2或9013×2,电阻、电容、电位器等四、实验内容1、RC串并联选频网络振荡器2、双T选频网络振荡器3、RC移相式振荡器的组装与调试五、实验步骤1、RC串并联选频网络振荡器(1)按图8.4组接线路;(2)接通12V电源,调节电阻,使得Vce1=7-8V,Vce2=4V左右。

用示波器观察图8.4 RC串并联选频网络振荡器有无振荡输出。

若无输出或振荡器输出波形失真,则调节Rf以改变负反馈量至波形不失真。

并测量电压放大倍数及电路静态工作点。

(3)观察负反馈强弱对振荡器输出波形的影响。

逐渐改变负反馈量,观察负反馈强弱程度对输出波形的影响,并同时记录观察到的波形变化情况及相应的Rf值。

(4)改变R(10KΩ)值,观察振荡频率变化情况;(5)RC串并联网络幅频特性的观察。

实验七 RC正弦波振荡器

实验七 RC正弦波振荡器

三、实验设备
1.双踪示波器 2.现代电子技术实验台
3. 示波器
四、实验内容及步骤
1.按图3.6.1接线。 2.用示波器观察输出波形。 3. 测上述电路输出频率(示波器读取)。 4.改变振荡频率。 在实验台上使文氏桥电容C1=C2=0.1μ。 思考: (1)若元件完好,接线正确,电源电压正常,而Uo=0,原 因何在?应怎么办?
实验六
一、实验目的
RC正弦波振荡器
1.掌握桥式RC正弦波振荡电路的构成及工作原理。 2.熟悉正弦波振荡电路的调整、测试方法。 3.观察RC参数对振荡频率的影响,学习振荡频率的测 定方法。
二、 实验原理
如图3.6.1由运算放大器和文氏电桥组成RC正弦 波振荡器,其中RP1 、 C1 、R2 、 C2组成正反馈网 络选频网络。
1 1 当 0 时,正反馈系数: F 3 RC 图3.6.1中,R1、 Rf 是负反馈网络,是为了改善振荡波形 和稳定振幅而引入的。其负反馈系数为:F R1
R1 R f
1 当 f f0 时,正反馈系数: F 1 2 RC 3
电路还必须满足Rf>2R1的关系,否则,会引起波形严 重失真。 调试时,适当调整负反馈的强弱,使放大器的电压放大 倍数A略大于3,振荡器就可以起振,输出正弦波信号;若A 的值远大于3,则输出的正弦波信号易产生非线性失真;若 A的值小于3,因不满足幅度平衡条件,故振荡器不起振。
47K
RP1
10K
0.2μ 2K
A1
R2
A
0.2μ
3.6.1 集成运放构成桥式RC正弦波振荡器
10K
为了分析方便起见,选择元件时使R2=Rp1=R, C1=C2=C。正反馈网络的反馈系数为:

RC正弦波振荡器

RC正弦波振荡器

一、实验目的1、进一步学习RC正弦波振荡器的组成及其振荡条件2、学会测量、调试振荡器二、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。

若用R、C元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz~1MHz的低频信号。

1、 RC移相振荡器电路型式如图17-1所示,选择R>>R i。

图17-1 RC移相振荡器原理图振荡频率起振条件放大器A的电压放大倍数||>29电路特点简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。

频率范围几赫~数十千赫。

2、 RC串并联网络(文氏桥)振荡器电路型式如图17-2所示。

振荡频率起振条件 ||>3电路特点可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。

图17-2 RC串并联网络振荡器原理图3、双T选频网络振荡器电路型式如图17-3所示。

图17-3 双T选频网络振荡器原理图振荡频率起振条件 ||>1电路特点选频特性好,调频困难,适于产生单一频率的振荡。

注:本实验采用两级共射极分立元件放大器组成RC正弦波振荡器。

三、实验设备与器件1、模拟实验箱2、函数信号发生器3、双踪示波器4、频率计5、万用表6、实验板四、实验内容1、 RC串并联选频网络振荡器(1)按图17-4组接线路图17-4 RC串并联选频网络振荡器(2) 断开RC串并联网络,测量放大器静态工作点及电压放大倍数。

(输入交流电压10mV,调起负反馈作用的电位器R,使输出电压稍大于30mV。

(3) 接通RC串并联网络,电路处起振状态,用示波器观测输出电压u O波形,调节R f 使获得满意的正弦信号,记录波形及其参数。

(4) 测量振荡频率,并与计算值进行比较。

(5) 改变R或C值,观察振荡频率变化情况。

(6) RC串并联网络幅频特性的观察将RC串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC串并联网络,保持输入信号的幅度不变(约3V),频率由低到高变化,RC串并联网络输出幅值将随之变化,当信号源达某一频率时,RC串并联网络的输出将达最大值(约1V左右)。

模拟电子技术实验RC正弦波振荡器

模拟电子技术实验RC正弦波振荡器
模拟电子技术实验rc正弦波振荡器1实验目的2实验原理4实验内容及步骤3实验设备与器件主要内容
模拟电子技术实验 RC正弦波振荡器
主要内容
1、实验目的 2、实验原理 3、实验设备与器件 4、实验内容及步骤
1 实验目的
了解选频网络的组成及其选频特性; 掌握RC正弦波振荡器的组成及其振荡条件; 学会测量、调试选频网络和振荡器。
动画演示
Xid
Xo
A
Xf F
如何起振? AF1 如何保证输出频率?选频网络(RC/LC选频网络); 起振原因是什么?内部噪声、接通电源时的阶跃。
稳幅 当输出信号幅值增加到一定程度时,使振幅条件:
AF 1
AF 1
8
2 实验原理
RC正弦波振荡器-选频网络

f
f0
1
2RC

0
1 RC
0
1 RC
F
3
j(
2 实验原理
信号产生电路-振荡条件
Xi +
Xid
A
Xo

Xf
F
A F
A 1 AF
AF 1
AF 1
a f 180(2n )
负反馈
Xi +
Xid
A
Xo
+
Xf
F
AF
1
A AF
AF 1
AF 1
a f 0(2n )
正反馈
2 实验原理
信号产生电路-振荡条件
振荡平衡条件
AF 1
AF 1
a f 0(2n )
稳幅环节:Rf、R1。
2 实验原理
A 1 Rf
RC正弦波振荡器-稳幅原理
R1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六——正弦波振荡器发生器实验报告
一,实验目的
(1)学习运算放大器在对信号处理,变换和产生等方面的应用,为综合应用奠定基础。

(2)学习用集成运算放大器组成波形发生器的工作原理。

二,实验原理
波形的产生是集成运算放大器的非线性应用之一。

常见的波形发生器有正弦波发生器、方波发生器、三角波发生器和锯齿波发生器,每一种波形的产生方法都不是唯一的。

RC正弦波振荡器。

RC桥式震荡电路由两部分组成,即放大电路和选频网络。

电路如图所示,选频网络由R,C元件组成,一般用来产生1Hz~1MHz的低频信号,在放大电路中引入正反馈时,会产生自激,从而产生持续振荡,由直流电变为交流电。

若图中R1=R2=R,C1=C2=C,则电路的振荡频率为f0=1/2πRC。

为使电路起振要求电压放大倍数Av满足Av=1+(RP+R4)/R3>3→Rp+R4>2R3。

三,实验内容
(1)用示波器观察Vo、Vc处的波形,记录波形并比较他们之间的相位关系。

(2)用示波器测量Vo,Vc处波形的幅值和频率
(3)调节可变电阻Rp,用示波器观察输出电压Vp的变化情况。

(4)当T1=T2时,测量电阻Rp的大小,将理论值与实测值进行比较。

四,实验器材
(1)双路直流稳压电源一台
(2)函数信号发生器一台
(3)示波器一台
(4)万用表一台
(5)集成运算放大器两片
(6)电阻,电容,二极管,稳压管若干。

(7)模拟电路试验箱一台。

五,实验步骤
RC正弦波振荡器。

1)按图示连接号电路,检查无误后,接通±12V直流电源。

2)用示波器观察有无正弦波输出。

3)调节可变电阻Rp,使输出波形从无到有直至失真,绘制输出波形Vo,记录临界起振、正弦波输出及出现失真情况下的Rp值。

4)调节可变电阻Rp,分别测量以上三种情况下,输出电压vo和反馈电压vf的值并将结果记录到表3.4.2中,分析负反馈强弱对起振条件和输出波形的影响。

5)测量当R1=R2=10kΩ,C1=C2=0.01μF和R1=R2=10kΩ,C1=C2=0.02μF 两种情况下。

输出波形的幅值和频率,计入表3.4.3中,并与理论值比较。

6)断开二极管D1,D2,重复步骤3)的内容,并将结果与步骤3)的结果进行比较。

六,实验数据及结果分析
RC正弦波振荡器
1)正弦波输出如图
失真。

负反馈太强则难以起振,负反馈太弱,则输出波形非线性失真太大。

4)断开二极管后波形如图所示。

与断开之前相比,输出波形将出现非线性失真,幅值变大。

说明二极管由稳定输出波形的效果。

七,实验思考与讨论
(1)一个完整的RC正弦振荡器由放大电路和选频网络组成,核心部分是选频网络。

选频网络一般用来产生1Hz~1MHz的低频信号,放大电路中引入正反馈,以产生自激,从而产生持续振荡,由直流电变为交流电。

(2)二极管起到了稳压限幅的作用,用来稳定输出波形。

相关文档
最新文档