静电场中的导体习题

合集下载

13 静电场中的导体和电介质习题

13 静电场中的导体和电介质习题

习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。

设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ;(B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。

答案:2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。

设地的电势为零,则球上的感应电荷q '为[ ](A)0; (B )2q ; (C )2q-; (D )q -。

答案:3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r rεε==ππ。

答案:4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。

当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。

此后,若把电介质抽去 ,则该质点[ ](A )保持不动; (B )向上运动; (C )向下运动; (D )是否运动不能确定。

答案:5.1C 和2C 两空气电容器并联以后接电源充电,在电源保持联接的情况下,在1C 中插入一电介质板,如图所示, 则[ ](A )1C 极板上电荷增加,2C 极板上电荷减少; (B )1C 极板上电荷减少,2C 极板上电荷增加; (C )1C 极板上电荷增加,2C 极板上电荷不变; (D )1C 极板上电荷减少,2C 极板上电荷不变。

大学物理第六章静电场中的导体习题课

大学物理第六章静电场中的导体习题课
第6章习题课
.
1
一、静电场中的导体
1.静电平衡条件: 导体内部场强为0。
2.静电平衡时导体为等势体,导体表面为 等势面。
3.静电平衡时导体内无净电荷,所有电荷分 布于导体表面。
4.孤立导体电荷面密度与导体表面的曲率 有关,曲率越大,面密度越大.
5.静电平衡时,场强方向与导体表面垂直。
.
2
本章小结与习题课
6.静电平衡时,导体表面的场强大小为
E 0
7. 空腔内无电荷:空腔内表面无电荷全部
电荷分布于外表面,空腔内场强 E = 0。空腔
导体具有静电屏蔽的作用。
8. 空腔原带有电荷 Q:将 q 电荷放入空腔
内,内表面带有 -q 电荷,外表面带有 Q + q
电荷。接地可屏蔽内部电场变化对外部电
场的影响。
.
S
.
x 14
5(08)、一平行板电容器,两板相距d,对它充电后断开,然 后把两板间距增大到2d,如果电容器内电场边缘效应忽略不计, 则 (A)电容器的电容增大一倍 (B)电容器所带的电量增大一倍 (C)电容器两极间的电场强度增大一倍 (D)储存在电容器中的电场能量增大一倍
we1 2E2或 we1 20E2
(1)球壳内外表面上的电荷 (2)球心O处,由球壳内表面上电荷产生的电势 (3)球心O处的总电势
qO a r
Q
b
.
11
解: (1)由静电感应,金属球壳内表面有感应电荷-q,外 表面上带电荷q+Q
(2)无论球壳内表面上的感应电荷-q是如何分布的,因
为任一电荷元离O点距离都是a,所以由这些电荷在O
点产生的电势为:
3
本章小结与习题课
二、电介质中的场强 1.介质中的场强 EE0E'

华南师范大学电磁学习题课-静电场中的导体

华南师范大学电磁学习题课-静电场中的导体

15
由电荷守恒定律可得 对A、C板: 1 2 5 6 0 (4) 对B 板: 3 4 (5)
A
1 2
B C
3 4
5.0cm
5 6
8.0cm
由于A、C板用导线相连,故它们电势相等,所以有
AB CB 即 E23 d 23 E54 d 54
Qq ; 4 0 r
Qq E 4 0 r 2
3
4.4 一个接地的导体球,半径为R,原来不带电. 今将一 点电荷q放在球外距球心的距离为r的地方,求球上的 感生电荷总量. r
解:因为导体球接地,故其电 势为零,即 0 设导体球上的感应电量为Q 由导体是个等势体知: o点的电势也为0 由电势叠加 原理有关系式:
荷在P1和P2点处产生的场强分别为 E 21和 E 22 由于P1和P2点非常靠近,因此可认为
P2E 22S E12 • P1 • E11 导体内 又设导体上其它地方以及导体外的电 导体外 E 21
E11 2 0
, E12
2 0
ห้องสมุดไป่ตู้E21 E22
Q外
Q内
QA B k k +k 4.5 103 (V ) R3 R3 R3
6
(2) 当球壳B接地时,A球所带电荷的电量 不变,分布也不变.
8 QA=QA 3 10 (C)
Q外 B Q 内 Q A R A 1 R2 R3
由高斯定理可得球壳B内表面上带有的电量为
8 = Q Q内 - 3 10 (C) A
• E 21
2 ˆn f E e 2 0 显然,此力方向与电荷的符号无关,总指向导体外 14 部.

大学物理习题答案 19 静电场中的导体(1)

大学物理习题答案 19 静电场中的导体(1)

与球外点电荷 + q 的作用力: F1
=
1 4πε 0
− q′ ⋅ q (r − b)2

由于 1 (r − b)2
>
1 r2

F1
=
1 4πε 0
− q′⋅ q (r − b)2
<
1 4πε 0
− q′⋅q r2

左侧电荷 Q
+
q′ 与点电荷 +
q 的作用力: F2
=
1 4πε 0
(Q + q′)⋅ q (r + a)2
50
大学物理习题解答
σ′ =
Q+q 4π R22
= 1.274 ×10−5 C
m2
,金属球外表面场强大小: E
σ′ =
ε0
= 1.44 ×106 V
m.
6. 题目有误!
7. 点电荷 − Q 位于空腔导体内,静电平衡后,空腔导体内表面感应电荷的电量为 + Q ,空腔导体原来电中性,
不带电,则空腔导体外表面感应电荷的电量为 − Q ;所以空腔导体外表面的净余电荷总量是 − Q ,空腔导体内表
− VC
=
E2
⋅d
=
σ2 ε0
d2 ;
B
A
C
σ1 σ2
−σ1 −σ2
由于 B 和 C 板用导线相连,电势相等,即VB = VC ⇒ VA −VB = VA −VC

σ1 ε0
d1
=
σ2 ε0
d2
⇒ σ1 = d2 . σ 2 d1
(第 10 题图)
11. (1)金属平板静电平衡后,金属平板 A 和 B 相邻两表面电荷电量等量异号,设电荷面密度分别为 σ 和 − σ ;

浙江农林大学静电场中的导体和电介质有介质时的高斯定理习题

浙江农林大学静电场中的导体和电介质有介质时的高斯定理习题

四解答题1、如图所示,一导体球半径为&,外罩一半径为冬的同心薄导体球壳,外球壳所带总电荷 为0,而内球的电势为匕,求导体球和球壳之间的电势差 ___________ (填写A 、B. C 或D. 从下而的选项中选取)°答案:A 解设导体球所带电荷为因静电平衡,电荷q 分布在导体球的外表面。

这样一来,就可以把体系看成是两个半径分别为&和电荷分别为q 和Q 的带电球壳。

由电势叠加原理,导体球的电势为一^―+ — = %解出4亦°7?] 4亦()尺2q = 4亦店岭)因此 导体球和球壳之间的电势差为久,=%-仝0=(1-色||匕——0-4码)忌 R?人 4亦。

/?2丿2、如图所示,在一半径为/?i=6.0cm 的金属球A 外而套有一个同心的金属球壳B 。

已知球 壳内,夕卜半径分别为/?2=8.0cnn /?3=10.0cnio 设A 球带有总电^Q A =3x\0^C 9球壳B带有总电量0〃=2xlO*C 。

(1)求球壳B 内表而上带有的电量 ___________ 外表而上带有的 电屋 ________ 以及球A 的电势 _______ 球壳B 的电势 _______A. 5xlO 」CB. -3xlO^C C 、5.6xlO 3VD 、4.5xlO 3V 答案:B, A, C, D(2)将球壳B 接地然后断开,再把球A 接地。

求球A 带有的电量 _______ 球壳B 内表而上带有的电量 ________ 外表面上带有的电量 ________ 以及球A 的电势和球壳B 的电势 ______ o1 / 21 A 、B 、A —Q 1 <心丿1 4碣鸟丿R 2L 4矶尼丿 C. V oQ D 、 岭Q 4矶R? < 4碣尼丿A. -3xlO^C B 、2.1xlO^C C 、—2・lxlO*CD 、-0.9xl0^CE 、8.1xlO 2VF 、0答案:B, C, D, F, E解(l )由高斯泄理可知,B 球壳内表而带的电量等于金属球A 带的电量Qi 的负值,即 缢=-2=-3"0弋因电荷守恒,则B 球壳外表面所带电量为Q Bcxt =Q R + Q A =5xlO-8C= 9.0X 10^X (^ + ^122 + ^)=5.6X 10V 0.06 0.08 0.10球壳B 的电势为^=_L^L = 9.0X 1094亦o 尺3 (2)球壳B 接地后电势(p B =0 ,因此Q^{ = 0 o B 接地断开后总电量变为 Q B =Q B :M =-3xlO-8Co 然后球A 接地,则吩=°。

静电场中的导体和介质习题

静电场中的导体和介质习题

.该定理表明,静电场是 有势(或保守力) 场.
9.一空气平行板电容器,两极板间距为d,充电后板间电压
为U.然后将电源断开,在两板间平行地插入一厚度为d/3的 金属板,则板间电压变成U' =_2_U__/3__.
10.带有电荷q、半径为rA的金属球A,与一原先
不带电、内外半径分别为rB和rC的金属球壳B同心
静电场中的导体与电介质
一 选择题
1.一带正电荷的物体M,靠近一原不带电的金属导体N,N
的左端感生出负电荷,右端感生出正电荷.若将N的左端
接地,如图所示,则 (A)N上有负电荷入地.
M
N
(B) N上有正电荷入地.
(C) N上的电荷不动.
(D) N上所有电荷都入地. [ B ]
2.如图所示,一带负电荷的金属球,外面同心地罩一
A 点与外筒 : 间的电势差
U 'R 2E dr U R 2d r U lnR 21.5 2 V
R
lnR 2(/R 1)R r lnR 2(/R 1) R
ቤተ መጻሕፍቲ ባይዱ
四 理论推导与证明题 16.一导体A,带电荷Q1,其外包一导体壳B,带电荷Q2,且 不与导体A接触.试证在静电平衡时,B的外表面带电荷为Q1 + Q2.
4Q 1 0R 14 Q 01 R 4Q 0 2R 24 Q 02 R
代入数 : Q 据 1/Q 2得 1/7
两导体表面上的场强最强,其最大场强之比为
E E1 2m ma a x x4Q 01R 12/4Q 02 R22Q Q 1 2R R 2 12 27 4
分别为R1 = 2 cm,R2 = 5 cm,其间充满相对介电常量为εr的各 向同性、均匀电介质.电容器接在电压U = 32 V的电源上,(如

大学物理练习题 静电场中的导体(续)

大学物理练习题  静电场中的导体(续)
练习七 静电场中的导体(续)
一、选择题
1. 一“无限大”均匀带电平面 A,其附近放一与它平行的有一定厚度 的“无限大”平面导体板 B,如图所示。已知 A 上的电荷面密度为σ, 则在导体板 B 的两个表面 1 和 2 上的感应电荷面密度为: (A) σ1 = −σ,σ2 = +σ。 (B) σ1 = −σ/2,σ2 = +σ/2。 (C) σ1 = −σ,σ2 = 0。 (D) σ1 = −σ/2,σ2 = −σ/2。
(C) q 。 4πε 0R
(D)
q 4πε 0
⎜⎛ ⎝
1 d

1 R
⎟⎞ 。 ⎠
10. 一正电荷 M,靠近一不带电的导体 N,N 的左端感应出负电荷,右端感应出正电荷,若 将 N 的左端接地,如图所示,则 (A) N 上的负电荷入地。 (B) N 上的正电荷入地。 (C) N 上的电荷不动。 (D) N 上的所有电荷都入地。
电场分布不因带电平板的引入而改变,则板的附近左、右两侧的电荷
面密度为:σ左=
;σ右=

σ
v E0
2. 如左下图所示,A、B 为两块平行放置的导体大平板,面积均为 S,A 板带+Q1,B 板带
+Q2。将 B 板接地,则 AB 间电场强度的大小 E =

AB
ABCD
Q1
Q1
+Q1 +Q2
3. 如右上图所示,两块很大的导体平板平行放置,面积都是 S,有一定厚度,带电量分别为
3. 如图所示,一厚度为 d 的“无限大”均匀带电导体板,电荷面密度
d
为σ,则板的两侧离板面距离均为 h 的两点 a、b 之间的电势差为: (A) 零。 (B) σ/2ε 0。 (C) σ h/ε 0。

《大学物理学》习题解答(第12章 静电场中的导体和电介质)(1)

《大学物理学》习题解答(第12章 静电场中的导体和电介质)(1)
d R
(2)两输电线的电势差为 U
xR

E dl

R
Ed x
d R ln 0 R
(3)输电线单位长度的电容 C

U
0 / ln
d R d 0 / ln 4.86 1012 F R R
【12.9】半径为 R1 的导体球被围在内半径为 R2 、外半径为 R3 、相对电容率为 r 的介质球壳内,它们是同 球心的。若导体带电为 Q ,则导体内球表面上的电势为多少? 【12.9 解】先求各区域电场 (1)
Q 4 0 R3
( R3 r )
B 球壳为等势体,其电势为
V
R3
E dr
Q 4 0
R3
r
dr
2
【12.2】一导体球半径为 R1,外罩一半径为 R2 的同心薄导体球壳,外球壳所带总电荷为 Q,而内球的电势为 V0.求此系统的电势和电场分布。 【12.2 解】已知内球电势为 V0 ,外球壳带电 Q 。 (1)先求各区域的电场强度:设内球带电荷 q 。由高斯定理,有

E
U

z
2R
( 1 )一根带电 的输电线在两线之间、距其轴心 x 处 p 点的场强为
x
dx
p
E i 2 0 x
另一根带电 的输电线在 p 点产生的电场强度为
x
E

2 0 ( d x )
i
p 点的总电场强度为
E E E
d R
1 1 ( )i 2 0 x d x
E1 0
(r R1 ) ( R1 r R2 ) 4 r 2 D Q , D 0 r E3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

, R2 q R1 O R3
.
dQ
(1) 球壳内表面感应电荷为-q, 球壳外表面感应电荷设为 q 外 表 面
球心处的电势:
UO
q
40R1
+ -q
40R2
+ q外表面
40R3
+Q
40d
= 1 (q-q+q外表面+Q)
40R1 2 3 4
Q U O R R 1 2 E r d l r R R 1 2 4 q 0 r 2 d r 4 q 0 R 1 4 q 0 R 2 4 1 0 R 1 ( q q 2 )
.
.
7. 一个导体球,半径为R,原来不带电。今将一点 电荷q放在球外距球心的距离为r0处,求导体球处 于静电平衡时:
(1)球内P点的总场强和总电势; (2)若将球接地,球内P点的总场强和总电势; (3)接地导体球表面上感应电荷总量。
R
q O
r0
.
(1)感应电荷和点电荷在P点产生的总场强为0,
r E
1. 一空心导体球壳,其内外半径分别为R1和R2,带电量为 q,当球壳中心处再放一电量为q的点电荷时,则导体球壳
的电势为(设无穷远处为电势零点)
q

, R1 q O
2 0R2 R2
2. 一带电量q,半径为r的金属球A,放在内外半径分别为
R1和R2的不带电金属球壳B内任意位置,A与B之间及B外
均为真空,若用导线把A、B连接,则A球电势为(设无穷
(C)无论q是正是负金属球都C的平行板电容器,两极板的面积S, 相距为d,当两极板加上电压U时(忽略边缘效
应),两极板间的作用力为 CU2 /2d 。
6. 一空气平行板电容器,极板间距为d,电容为C, 若则在 其两 电板 容中值间变平为行地插入一C块dd厚-d0度。为d0的金属板,
p
=
0
因为导体是等势体,P点总电势等于球心O处的总电势,
U p U O U 感 应 电 荷 在 O 点 U 点 电 荷 在 O 点
因为球上总感应电量为0, U感应电荷在O点q 0 q
U p U O U 感 应 电 荷 在 O 点 U 点 电 荷 在 O 点 = 0 + 40 r 0 40 r 0
远处为电势零点) q 。
4 0R2
, R1 q
AO
R2
.
B
3. 一厚度为d的“无限大”均匀带电导体板,电荷
面密度为σ,则板两侧的电场强度的大小


0
d
4. 有一接地的金属球,用一弹簧吊起,金属球原
来不带电,若在它的下方放置一电量为q的点电荷,
则:
[D ]
(A)只有当q﹥0时,金属球才下移;
(B)只有当q﹤0时,金属球才下移;
3 q外表面 4Q
球壳总感应电荷= 3 Q q 4
.
(2)用导线将壳内导体球与壳相连后,电荷只分布在 球壳外表面上
球心处的电势分析:
U O 4 q 外 表 0 R 面 3+ 4Q 0 d= 41 0 R 1(q 外 3 表 面 + Q 4) 0
q外表面
3 4
Q
球壳总感应电荷= 3 Q 4
(2)接地后,导体球仍然处于静电平衡,P点总场强为0,
接地后,导体球电势为0,
(3)接地后,导体球电势为0, Up UO 0
U O U 感 应 电 荷 在 O 点 U 点 电 荷 在 O 点 q 4 感 应 电 0 R 荷 4q 0 r 0 0
q感应电荷
.
R r0
q
8.一半径为R1的导体球带有电量q,球外有一内、 外半径分别为R2和R3的同心金属球壳,已知 R2=2R1 , R3=3R1 ,今在距球心为d=4R1处放一电 荷为Q的点电荷,并将球壳接地。试求: (1)球壳带的总电量; (2)如用导线将壳内导体球与壳相连,球壳所带 电量。
相关文档
最新文档