高中数学经典双曲线知识点

合集下载

高二双曲线知识点大全

高二双曲线知识点大全

高二双曲线知识点大全一、双曲线的定义和基本性质双曲线是一种平面曲线,它与一个对称轴相交于两个单独的点,被称为焦点。

双曲线的定义可表示为:离两个焦点的距离之差等于给定常数的点的轨迹。

1. 双曲线的方程双曲线的标准方程为:(x²/a²) - (y²/b²) = 1,其中a表示实轴半轴的长度,b表示虚轴半轴的长度。

2. 双曲线的焦点和准线双曲线的焦点是曲线上离两个焦点距离之差恒定的点,而准线是曲线上离两个焦点距离之和恒定的直线。

3. 双曲线的对称性双曲线关于x轴和y轴对称,中心对称于原点。

二、双曲线的图像特征1. 双曲线的离心率双曲线的离心率(e)定义为:e = c/a,其中c表示焦点到原点的距离,a表示实轴半轴的长度。

离心率决定了双曲线的形状。

2. 双曲线的渐近线双曲线具有两条渐近线,即离两个焦点越远的点趋近于渐近线。

渐近线的方程为: y = ±(b/a)x。

其中b表示虚轴半轴的长度。

3. 双曲线的顶点和直径双曲线没有顶点,但有两条对称的虚轴。

通常,我们会称双曲线中心处的点为顶点。

直径是由两个对称的点与中心点所确定的线段。

三、双曲线的基本图像和方程变换1. 双曲线的基本图像(插入关于双曲线的示意图,可手绘或导入图片)2. 改变双曲线的形状和位置双曲线的形状和位置可以通过改变方程中的常数来实现。

例如,改变a和b的值可以调整双曲线的大小和比例,而改变c的值可以使双曲线在平面上移动。

3. 双曲线的旋转双曲线可以通过旋转来改变其方向。

通过适当调整方程中的x和y的系数,可以使双曲线绕着原点旋转一定角度。

四、双曲线的相关公式与应用1. 双曲线的离心率与焦距的关系根据焦距f和离心率e之间的关系可得:e² = 1 + (f/a)²。

2. 双曲线的弦长公式双曲线上两焦点之间的弦长可以通过以下公式计算:2a(e² - 1)。

3. 双曲线的面积计算双曲线的面积可以通过积分计算得出,公式为:S = ∫(y√(1 + (dy/dx)²))dx。

高中双曲线知识点

高中双曲线知识点

高中双曲线知识点高中双曲线知识点包括双曲线的定义、性质、图像、方程与参数方程以及应用等方面内容。

1. 双曲线的定义:双曲线是平面上的一个曲线,其定义是一个平面上的点到两个焦点的距离差的绝对值等于常数的点的轨迹。

双曲线有两个分支,它们在两个焦点之间无限延伸,与对称轴相交于两个顶点。

2. 双曲线的性质:- 双曲线的焦点和直角双曲线的焦点一样,离中心越远,曲线越稀疏。

- 双曲线的渐近线是两条直线,它们与双曲线无穷远处的分支趋于平行。

- 双曲线的对称轴是连接两个焦点的直线,并且是曲线的中心轴。

- 双曲线的顶点是对称轴上与曲线相交的点。

- 双曲线的离心率是一个大于1的实数,用来描述焦点与顶点之间的距离关系。

3. 双曲线的图像:双曲线的图像可以分为三种情况:椭圆双曲线、双曲线、和抛物线双曲线。

椭圆双曲线的离心率小于1,双曲线的离心率大于1,而抛物线双曲线的离心率等于1。

具体的图像形态取决于双曲线的方程参数。

4. 双曲线的方程与参数方程:通常来说,双曲线的方程可以表示为Ax^2 + By^2 = C,其中A、B、C为常数。

不同的A与B的取值将决定双曲线的形态。

而双曲线的参数方程则可以表示为x = Asec(t)和y = Btan(t),其中t为参数。

5. 双曲线的应用:双曲线在数学和物理学中有广泛的应用。

它们可以用来描述光学中的折射、电磁场中的电场分布、机械振动中的弹簧系统等等。

在实际生活中,双曲线也常常被用来作为美学设计的元素,例如建筑物的外形、家具的造型等等。

总之,高中双曲线知识点包括双曲线的定义、性质、图像、方程与参数方程以及应用等方面内容。

了解这些知识点有助于学生深入理解双曲线的特性和应用,为进一步学习相关数学和物理学科打下坚实基础。

高中数学知识点总结(第九章 平面解析几何 第七节 双曲线)

高中数学知识点总结(第九章 平面解析几何 第七节 双曲线)

第七节 双曲线一、基础知识1.双曲线的定义平面内到两个定点F 1,F 2的距离的差的绝对值等于常数2a (2a <|F 1F 2|)的点P 的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.当|PF 1|-|PF 2|=2a2a <|F 1F 2|时,点P 的轨迹为靠近F 2的双曲线的一支.当|PF 1|-|PF 2|=-2a 2a <|F 1F 2|时,点P 的轨迹为靠近F 1的双曲线的一支. 若2a =2c ,则轨迹是以F 1,F 2为端点的两条射线;若2a >2c ,则轨迹不存在;若2a =0,则轨迹是线段F 1F 2的垂直平分线.2.双曲线的标准方程(1)中心在坐标原点,焦点在x 轴上的双曲线的 标准方程为x 2a 2-y 2b2=1(a >0,b >0).(2)中心在坐标原点,焦点在y 轴上的双曲线的 标准方程为y 2a 2-x 2b 2=1(a >0,b >0).3.双曲线的几何性质标准方程 x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 范围 |x |≥a ,y ∈R|y |≥a ,x ∈R对称性 对称轴:x 轴,y 轴;对称中心:原点 焦点 F 1(-c,0),F 2(c,0) F 1(0,-c ),F 2(0,c ) 顶点 A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )轴 线段A 1A 2,B 1B 2分别是双曲线的实轴和虚轴;实轴长为2a ,虚轴长为2b焦距|F 1F 2|=2c离心率e =c a= 1+b 2a2∈(1,+∞) e 是表示双曲线开口大小的 一个量,e 越大开口越大.渐近线 y =±b axy =±a bxa ,b ,c 的关系a 2=c 2-b 2二、常用结论(1)过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a,也叫通径.(2)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(3)双曲线的焦点到其渐近线的距离为b .(4)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .考点一 双曲线的标准方程[典例] (1)(2018·石家庄摸底)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是( )A.7x 216-y 212=1 B.y 23-x 22=1 C .x 2-y 23=1 D.3y 223-x 223=1 (2)(2018·天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 29=1 D.x 29-y 23=1 [解析] (1)法一:当双曲线的焦点在x 轴上时,设双曲线的标准方程是x 2a 2-y 2b2=1(a >0,b >0),由题意得⎩⎨⎧4a 2-9b 2=1,ba =3,解得⎩⎨⎧a =1,b =3,所以该双曲线的标准方程为x 2-y 23=1;当双曲线的焦点在y 轴上时,设双曲线的标准方程是y 2a 2-x 2b2=1(a >0,b >0),由题意得⎩⎨⎧9a 2-4b 2=1,a b =3,无解.故该双曲线的标准方程为x 2-y 23=1,选C. 法二:当其中的一条渐近线方程y =3x 中的x =2时,y =23>3,又点(2,3)在第一象限,所以双曲线的焦点在x 轴上,设双曲线的标准方程是x 2a 2-y 2b2=1(a >0,b >0),由题意得⎩⎨⎧4a 2-9b 2=1,b a =3,解得⎩⎨⎧a =1,b =3,所以该双曲线的标准方程为x 2-y 23=1,故选C.法三:因为双曲线的渐近线方程为y =±3x ,即y3=±x ,所以可设双曲线的方程是x 2-y 23=λ(λ≠0),将点(2,3)代入,得λ=1,所以该双曲线的标准方程为x 2-y 23=1,故选C. (2)法一:如图,不妨设A 在B 的上方,则A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b2a . 又双曲线的一条渐近线为bx -ay =0, 则d 1+d 2=bc -b 2+bc +b 2a 2+b 2=2bcc =2b=6,所以b =3.又由e =ca =2,知a 2+b 2=4a 2,所以a = 3.所以双曲线的方程为x 23-y 29=1.法二:由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线 x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以ca =2,所以a 2+b 2a 2=4,所以a 2+9a 2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1,故选C.[答案] (1)C (2)C [题组训练]1.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,若|PF 1|-|PF 2|=4b ,且双曲线的焦距为25,则该双曲线的标准方程为( )A.x 24-y 2=1 B.x 23-y 22=1 C .x 2-y 24=1 D.x 22-y 23=1 解析:选A 由题意可得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a =4b ,c 2=a 2+b 2,2c =25,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,则该双曲线的标准方程为x 24-y 2=1.2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为4,离心率为 5,则双曲线的标准方程为( )A.x 24-y 216=1 B .x 2-y 24=1C.x 22-y 23=1 D .x 2-y 26=1 解析:选A 因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为4,所以a =2,由离心率为5,可得c a =5,c =25,所以b =c 2-a 2=20-4=4,则双曲线的标准方程为x 24-y 216=1.3.经过点P (3,27),Q(-62,7)的双曲线的标准方程为____________. 解析:设双曲线方程为mx 2+ny 2=1(mn <0), 因为所求双曲线经过点P (3,27),Q(-62,7),所以⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎨⎧m =-175,n =125.故所求双曲线方程为y 225-x 275=1.答案:y 225-x 275=1考点二 双曲线定义的应用考法(一) 利用双曲线的定义求双曲线方程[典例] 已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,则动圆圆心M 的轨迹方程为( )A.x 22-y 214=1(x ≥ 2) B.x 22-y 214=1(x ≤-2) C.x 22+y 214=1(x ≥ 2) D.x 22+y 214=1(x ≤-2) [解析] 设动圆的半径为r ,由题意可得|MC 1|=r +2,|MC 2|=r -2,所以|MC 1|-|MC 2|=22=2a ,故由双曲线的定义可知动点M 在以C 1(-4,0),C 2(4,0)为焦点,实轴长为2a =22的双曲线的右支上,即a =2,c =4⇒b 2=16-2=14,故动圆圆心M 的轨迹方程为x 22-y 214=1(x ≥ 2). [答案] A[解题技法]利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.考法(二) 焦点三角形问题[典例] 已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于( )A .2B .4C .6D .8[解析] 由双曲线的方程得a =1,c =2, 由双曲线的定义得||PF 1|-|PF 2||=2. 在△PF 1F 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°, 即(22)2=|PF 1|2+|PF 2|2-|PF 1|·|PF 2| =(|PF 1|-|PF 2|)2+|PF 1|·|PF 2| =22+|PF 1|·|PF 2|, 解得|PF 1|·|PF 2|=4. [答案] B [解题技法]在双曲线中,有关焦点三角形的问题常用双曲线定义和解三角形的知识来解决,尤其是涉及|PF 1|,|PF 2|的问题,一般会用到双曲线定义.涉及焦点三角形的面积问题,若顶角θ已知,则用S △PF 1F 2=12|PF 1||PF 2|sin θ,|||PF 1|-|PF 2|=2a 及余弦定理等知识;若顶角θ未知,则用S △PF 1F 2=12·2c ·|y 0|来解决.[题组训练]1.已知点F 1(-3,0)和F 2(3,0),动点P 到F 1,F 2的距离之差为4,则点P 的轨迹方程为( )A.x 24-y 25=1(y >0) B.x 24-y 25=1(x >0) C.y 24-x 25=1(y >0) D.y 24-x 25=1(x >0) 解析:选B 由题设知点P 的轨迹方程是焦点在x 轴上的双曲线的右支,设其方程为x 2a 2-y 2b 2=1(x >0,a >0,b >0),由题设知c =3,a =2,b 2=9-4=5,所以点P 的轨迹方程为x 24-y 25=1(x >0). 2.已知双曲线x 2-y 224=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若|PF 1|=43|PF 2|,则△F 1PF 2的面积为( )A .48B .24C .12D .6解析:选B 由双曲线的定义可得 |PF 1|-|PF 2|=13|PF 2|=2a =2,解得|PF 2|=6,故|PF 1|=8,又|F 1F 2|=10, 由勾股定理可知三角形PF 1F 2为直角三角形, 因此S △F 1PF 2=12|PF 1|·|PF 2|=24.考点三 双曲线的几何性质考法(一) 求双曲线的离心率(或范围)[典例] (2018·长春二测)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则双曲线离心率的取值范围是( )A.⎝⎛⎦⎤53,2B.⎝⎛⎦⎤1,53 C .(1,2]D.⎣⎡⎭⎫53,+∞ [解析] 由双曲线的定义可知|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,所以|PF 2|=2a3,由双曲线上的点到焦点的最短距离为c -a ,可得2a 3≥c -a ,解得c a ≤53, 即e ≤53,又双曲线的离心率e >1,故该双曲线离心率的取值范围为⎝⎛⎦⎤1,53,故选B. [答案] B [解题技法]1.求双曲线的离心率或其范围的方法(1)求a ,b ,c 的值,由c 2a 2=a 2+b 2a 2=1+b 2a2直接求e .(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解.2.求离心率的口诀归纳离心率,不用愁,寻找等式消b 求; 几何图形寻迹踪,等式藏在图形中. 考法(二) 求双曲线的渐近线方程[典例] (2019·武汉部分学校调研)已知双曲线C :x 2m 2-y 2n 2=1(m >0,n >0)的离心率与椭圆x 225+y 216=1的离心率互为倒数,则双曲线C 的渐近线方程为( ) A .4x ±3y =0 B .3x ±4y =0C .4x ±3y =0或3x ±4y =0D .4x ±5y =0或5x ±4y =0[解析] 由题意知,椭圆中a =5,b =4,∴椭圆的离心率e = 1-b 2a 2=35,∴双曲线的离心率为 1+n 2m 2=53,∴n m =43,∴双曲线的渐近线方程为y =±n m x =±43x ,即4x ±3y =0.故选A.[答案] A[解题技法] 求双曲线的渐近线方程的方法求双曲线x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程的方法是令右边的常数等于0,即令x 2a 2-y 2b 2=0,得y =±b a x ;或令y 2a 2-x 2b 2=0,得y =±ab x .反之,已知渐近线方程为y =±b a x ,可设双曲线方程为x 2a 2-y 2b2=λ(a >0,b >0,λ≠0).[题组训练]1.(2019·潍坊统一考试)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到渐近线的距离为3,且离心率为2,则该双曲线的实轴的长为( )A .1 B.3 C .2D .23解析:选C 由题意知双曲线的焦点(c,0)到渐近线bx -ay =0的距离为bca 2+b 2=b =3,即c 2-a 2=3,又e =ca=2,所以a =1,该双曲线的实轴的长为2a =2.2.已知直线l 是双曲线C :x 22-y 24=1的一条渐近线,P 是直线l 上一点,F 1,F 2是双曲线C 的左、右焦点,若PF 1―→·PF 2―→=0,则点P 到x 轴的距离为( )A.233B.2 C .2D.263解析:选C 由题意知,双曲线的左、右焦点分别为F 1(-6,0),F 2(6,0),不妨设直线l 的方程为y =2x ,设P (x 0,2x 0).由PF 1―→·PF 2―→=(-6-x 0,-2x 0)·(6-x 0,-2x 0)=3x 20-6=0,得x 0=±2,故点P 到x 轴的距离为|2x 0|=2,故选C.3.(2019·成都一诊)如图,已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),长方形ABCD 的顶点A ,B 分别为双曲线E 的左、右焦点,且点C ,D 在双曲线E 上,若|AB |=6,|BC |=52,则双曲线E 的离心率为( )A. 2B.32C.52D.5解析:选B 根据|AB |=6可知c =3,又|BC |=52,所以b 2a =52,b 2=52a ,所以c 2=a 2+52a=9,解得a =2(舍负),所以e =c a =32.4.(2018·郴州二模)已知双曲线y 2m -x 29=1(m >0)的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( )A .y =±34xB .y =±43xC .y =±223xD .y =±324x解析:选B 由双曲线y 2m -x 29=1(m >0)的焦点在y 轴上,且在直线x +y =5上,直线x+y =5与y 轴的交点为(0,5),有c =5,则m +9=25,得m =16, 所以双曲线的方程为y 216-x 29=1,故双曲线的渐近线方程为y =±43x .故选B.[课时跟踪检测]A 级1.(2019·襄阳联考)直线l :4x -5y =20经过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点和虚轴的一个端点,则双曲线C 的离心率为( )A.53 B.35 C.54D.45解析:选A 由题意知直线l 与两坐标轴分别交于点(5,0),(0,-4),从而c =5,b =4,∴a =3,双曲线C 的离心率e =c a =53.2.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点,若点P 在双曲线上,且|PF 1|=6,则|PF 2|=( )A .6B .4C .8D .4或8解析:选D 由双曲线的标准方程可得a =1,则||PF 1|-|PF 2||=2a =2,即|6-|PF 2||=2,解得|PF 2|=4或8.3.(2018·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C的渐近线的距离为( )A. 2 B .2 C.322D .22解析:选D ∵e =ca=1+b 2a 2=2,∴b a=1. ∴双曲线的渐近线方程为x ±y =0. ∴点(4,0)到C 的渐近线的距离d =42=2 2. 4.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .离心率相等B .虚半轴长相等C .实半轴长相等D .焦距相等解析:选D 由0<k <9,易知两曲线均为双曲线且焦点都在x 轴上,由25+9-k =25-k +9,得两双曲线的焦距相等.5.(2018·陕西部分学校摸底)在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1,过C 1的左顶点引C 1的一条渐近线的平行直线,则该直线与另一条渐近线及x 轴所围成的三角形的面积为( )A.24B.22C.28D.216解析:选C 设双曲线C 1的左顶点为A ,则A ⎝⎛⎭⎫-22,0,双曲线的渐近线方程为y =±2x ,不妨设题中过点A 的直线与渐近线y =2x 平行,则该直线的方程为y =2⎝⎛⎭⎫x +22,即y =2x +1.联立⎩⎨⎧y =-2x ,y =2x +1,解得⎩⎨⎧x =-24,y =12.所以该直线与另一条渐近线及x 轴所围成的三角形的面积S =12·|OA |·12=12×22×12=28,故选C.6.(2019·辽宁五校协作体模考)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b 2=1(a>0,b >0)的离心率为5,从双曲线C 的右焦点F 引渐近线的垂线,垂足为A ,若△AFO 的面积为1,则双曲线C 的方程为( )A.x 22-y 28=1 B.x 24-y 2=1 C.x 24-y 216=1 D .x 2-y 24=1 解析:选D 因为双曲线C 的右焦点F 到渐近线的距离|F A |=b ,|OA |=a ,所以ab =2,又双曲线C 的离心率为5,所以 1+b 2a2=5,即b 2=4a 2,解得a 2=1,b 2=4,所以双曲线C 的方程为x 2-y 24=1,故选D. 7.(2018·北京高考)若双曲线x 2a 2-y 24=1(a >0)的离心率为52,则a =________.解析:由e =ca =a 2+b 2a 2,得a 2+4a 2=54, ∴a 2=16. ∵a >0,∴a =4. 答案:48.过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=________.解析:双曲线的右焦点为F (2,0),过F 与x 轴垂直的直线为x =2,渐近线方程为x 2-y 23=0,将x =2代入x 2-y 23=0,得y 2=12,y =±23,故|AB |=4 3. 答案:43 9.(2018·海淀期末)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =________.解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax ,由已知可得两条渐近线互相垂直,由双曲线的对称性可得b a=1.又正方形OABC 的边长为2,所以c =22,所以a 2+b 2=c 2=(22)2,解得a =2.答案:210.(2018·南昌摸底调研)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,过点F 作圆(x -a )2+y 2=c 216的切线,若该切线恰好与C 的一条渐近线垂直,则双曲线C 的离心率为________.解析:不妨取与切线垂直的渐近线方程为y =b a x ,由题意可知该切线方程为y =-a b(x -c ),即ax +by -ac =0.圆(x -a )2+y 2=c 216的圆心为(a,0),半径为c 4,则圆心到切线的距离d =|a 2-ac |a 2+b2=ac -a 2c =c 4,又e =c a ,则e 2-4e +4=0,解得e =2,所以双曲线C 的离心率e =2. 答案:211.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4, -10),点M (3,m )在双曲线上.(1)求双曲线的方程;(2)求证:MF 1―→·MF 2―→=0;(3)求△F 1MF 2的面积.解:(1)∵e =2,∴双曲线的实轴、虚轴相等.则可设双曲线方程为x 2-y 2=λ.∵双曲线过点(4,-10),∴16-10=λ,即λ=6.∴双曲线方程为x 26-y 26=1. (2)证明:不妨设F 1,F 2分别为双曲线的左、右焦点, 则MF 1―→=(-23-3,-m ),MF 2―→=(23-3,-m ).∴MF 1―→·MF 2―→=(3+23)×(3-23)+m 2=-3+m 2,∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0,∴MF 1―→·MF 2―→=0.(3)△F 1MF 2的底边长|F 1F 2|=4 3.由(2)知m =± 3.∴△F 1MF 2的高h =|m |=3,∴S △F 1MF 2=12×43×3=6. 12.中心在原点,焦点在x 轴上的椭圆与双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求椭圆和双曲线的方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解:(1)由题知c =13,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),双曲线方程为x 2m 2-y 2n 2=1(m >0,n >0),则⎩⎪⎨⎪⎧ a -m =4,7·13a =3·13m ,解得a =7,m =3.则b =6,n =2.故椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1. (2)不妨设F 1,F 2分别为椭圆与双曲线的左、右焦点,P 是第一象限的交点, 则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,所以|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,所以cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.B 级1.已知圆(x -1)2+y 2=34的一条切线y =kx 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)有两个交点,则双曲线C 的离心率的取值范围是( )A .(1,3)B .(1,2)C .(3,+∞)D .(2,+∞)解析:选D 由题意,知圆心(1,0)到直线kx -y =0的距离d =|k |k 2+1=32,∴k =±3, 由题意知b a >3,∴1+b 2a 2>4,即a 2+b 2a 2=c 2a 2>4,∴e >2. 2.(2019·吉林百校联盟联考)如图,双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线l 过点F 1且与双曲线C 的一条渐近线垂直,与两条渐近线分别交于M ,N 两点,若|NF 1|=2|MF 1|,则双曲线C 的渐近线方程为( )A .y =±33x B .y =±3x C .y =±22x D .y =±2x解析:选B ∵|NF 1|=2|MF 1|,∴M 为NF 1的中点,又OM ⊥F 1N ,∴∠F 1OM =∠NOM ,又∠F 1OM =∠F 2ON ,∴∠F 2ON =60°,∴双曲线C 的渐近线的斜率k =±tan 60°=±3,即双曲线C 的渐近线方程为y =±3x .故选B.3.设A ,B 分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM ―→+ON ―→=t OD ―→,求t 的值及点D 的坐标.解:(1)由题意知a =23,∵一条渐近线为y =b ax ,∴bx -ay =0.由焦点到渐近线的距离为3,得|bc |b 2+a 2= 3. 又∵c 2=a 2+b 2,∴b 2=3,∴双曲线的方程为x 212-y 23=1. (2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0),则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程y =33x -2代入双曲线方程x 212-y 23=1得 x 2-163x +84=0,则x 1+x 2=163,y 1+y 2=33(x 1+x 2)-4=12. ∴⎩⎨⎧ x0y 0=433,x 2012-y 203=1.解得⎩⎨⎧x 0=43,y 0=3. ∴t =4,点D 的坐标为(43,3).。

高中双曲线知识点

高中双曲线知识点

返回
5.已知双曲线中心在原点且一个焦点为F( 7 ,0)直线y=x-
1与其相交于M、N两点,MN中点的横坐标为
2 3
,则此
双曲线的方程是( D )
(A) x2 y2 1
34
(C) x2 y2 1
52
(B) x2 y2 1
43
(D) x2 y2 1
52
能力·思维·方法
1. 求与双曲线x2-2y2=2有公共渐近线,且过点M(2,-2)的双
课前热身
1.如果方程 x2 y2 1表示双曲线,则实数m的取值
m -1 2-m
范围是( D )
(A)m>2 (C)-1<m<2
(B)m<1或m>2 (D)-1<m<1或m>2
2.若椭圆
x2 a2
by22
1ab0的离心率为32,则双曲线
x2 a2
y2 b2
1的离心率是(
B)
(A) 5
(B) 5
(C) 3
返回 4. 已知双曲线x2/a2-y2/b2=1的离心率e>1+√2,左、右焦点
分别为F1,F2,左准线为l ,能否在双曲线的左支上找到
一点P,使得|PF1|是P到l 的距离d与|PF2|的等比中项?
【解题回顾】1<e≤1+√2是双曲线x2/a2-y2/b2=1 ,左支上存在
P 点 , 使 |PF1|2=|PF2|·d 成 立 的 充 要 条 件 , 例 如 双 曲 线 x2/20y2/25=1的离心率e=3/2<1+√2,则这样的P
延伸·拓展
返回
5.已知双曲线
x2 a2
y2 b2
1
(a>0,b点A(0,-b)和B(a,0)的直线与原点的距离为 3

双曲线的知识点归纳总结高中

双曲线的知识点归纳总结高中

双曲线的知识点归纳总结高中双曲线是一种重要的数学函数,广泛应用于物理、工程、经济等领域。

本文将对双曲线的基本定义、性质、图像以及常用的求解方法进行归纳总结,以帮助高中学生更好地理解和应用双曲函数。

一、基本定义双曲线是指形如y=a cosh(x/b)或y=a sinh(x/b)的函数,其中a、b均为实数,并且b≠0。

其中cosh(x)和sinh(x)分别称为双曲余弦函数和双曲正弦函数,是指数函数的一种。

二、性质1. 双曲余弦函数cosh(x)为偶函数,满足cosh(x)=cosh(-x)。

2. 双曲正弦函数sinh(x)为奇函数,满足sinh(x)=-sinh(-x)。

3. 双曲余弦函数与双曲正弦函数的图像分别为关于x轴对称和关于原点对称的开口向上的曲线。

4. 双曲余弦函数的导数为双曲正弦函数,即cosh'(x)=sinh(x),而双曲正弦函数的导数为双曲余弦函数,即sinh'(x)=cosh(x)。

三、图像1. y=cosh(x)的图像是一条开口向上的曲线,它在x=0处取最小值1,随着x的增大而不断逼近直线y=1,即y=cosh(0)=1。

2. y=sinh(x)的图像是一条对称的曲线,它在x=0处取最小值0,随着x的增大而不断逼近直线y=x。

四、常用求解方法1. 双曲正弦函数和双曲余弦函数的加减法公式:cosh(x+y)=cosh(x)cosh(y)+sinh(x)sinh(y)sinh(x+y)=sinh(x)cosh(y)+cosh(x)sinh(y)cosh(x-y)=cosh(x)cosh(y)-sinh(x)sinh(y)sinh(x-y)=sinh(x)cosh(y)-cosh(x)sinh(y)2. 双曲函数的导数和积分公式:(cosh(x))'=sinh(x)(sinh(x))'=cosh(x)∫cosh(x)dx=sinh(x)+C∫sinh(x)dx=cosh(x)+C综上所述,双曲线是一种重要的数学函数,在高中数学学习中有广泛的应用。

高中数学双曲线知识点

高中数学双曲线知识点

高中数学双曲线知识点双曲线知识点概述1. 双曲线的定义双曲线是二次曲线的一种,它的标准方程为 \(\frac{x^2}{a^2} -\frac{y^2}{b^2} = 1\)(其中a和b为实数,a > 0, b > 0)。

在直角坐标系中,双曲线是所有满足上述方程的点的集合。

双曲线有两个分支,分别位于两个不同的象限。

2. 双曲线的性质- 对称性:双曲线关于x轴和y轴对称。

- 焦点:双曲线有两个焦点,位于x轴上,其坐标为\((\pm c, 0)\),其中c是双曲线的焦距,满足\(c^2 = a^2 + b^2\)。

- 准线:每个双曲线的分支都有自己的准线,方程为 \(x = \pm\frac{a^2}{c}\)。

- 渐近线:双曲线有两条渐近线,其方程为 \(y = \pm\frac{b}{a}x\)。

3. 双曲线的方程- 标准方程:\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\)。

- 顶点:双曲线的顶点位于 \((\pm a, 0)\)。

- 焦点距离:双曲线的焦点距离为2c,其中c满足 \(c^2 = a^2 +b^2\)。

- 准线距离:点\(m\)到双曲线准线的距离为 \(\frac{|mc -a^2|}{\sqrt{m^2 + 1}}\)。

4. 双曲线的应用双曲线在许多领域都有应用,例如在天文学中描述行星轨道,在工程学中用于设计某些类型的天线和声纳系统,以及在物理学中描述某些场的分布。

5. 双曲线的图形绘制绘制双曲线时,通常需要确定其顶点、焦点、准线和渐近线的位置。

首先在坐标轴上标出顶点和焦点的位置,然后画出渐近线和准线,最后通过顶点和焦点的连线绘制出双曲线的两个分支。

6. 双曲线的变换双曲线可以通过平移和旋转进行几何变换。

平移可以通过改变方程中的常数项来实现,而旋转则需要通过更复杂的变换矩阵来完成。

7. 双曲线的方程推导双曲线的方程可以通过从圆锥曲线的一般方程 \(Ax^2 + Bxy + Cy^2+ Dx + Ey + F = 0\) 出发,通过特定的代换和简化得到。

高三双曲线知识点总结

高三双曲线知识点总结

高三双曲线知识点总结双曲线是高三数学中一个重要的概念,它在解析几何、微积分和物理等领域都有广泛的应用。

本文将对高三双曲线的知识点进行总结,以帮助同学们更好地掌握这一内容。

一、双曲线的定义和性质1. 定义:双曲线是平面上到两个给定点的距离之差等于常数的点的集合。

2. 式子:双曲线的标准方程可以表示为x²/a² - y²/b² = 1(a>0,b>0)。

3. 中心与焦点:双曲线的中心为原点O(0,0),焦点位于x轴上的点F1(a,0)和F2(-a,0)。

4. 焦距和离心率:焦距为F1F2 = 2a,离心率为e = c/a,其中c 为焦点到中心的距离。

二、双曲线的图像与性质1. 分类:根据离心率的不同取值,双曲线可分为椭圆、抛物线和双曲线三种情况。

a) 当离心率e<1时,双曲线为两支开口朝左右的曲线,称为实双曲线。

b) 当离心率e=1时,双曲线为无限远点的开口朝左右的曲线,称为渐近双曲线。

c) 当离心率e>1时,双曲线为一对开口朝左右的曲线,称为虚双曲线。

2. 图像:实双曲线的图像为对称于x轴和y轴的两支曲线,并且与渐近线相交于无穷远处。

3. 渐近线:实双曲线的渐近线可用直线y = ±b/a * x表示。

4. 对称性:实双曲线关于x轴、y轴和原点对称。

5. 参数方程:双曲线的参数方程可表示为x = a * secθ,y = b * tanθ。

三、双曲线的基本变形1. 平移:双曲线可以通过平移变形到不同的位置,平移后的双曲线的中心坐标发生相应改变,但离心率、焦点等性质保持不变。

2. 伸缩:双曲线可以通过伸缩变形到不同的大小,伸缩后的双曲线的离心率、焦点等性质发生相应改变,但中心坐标保持不变。

四、双曲线的应用1. 物理学:双曲线在物理学中广泛应用于描述光学、天体力学等问题,如光的反射和折射、行星的轨道等。

2. 工程学:双曲线在工程学中常用于设计桥梁、天线等结构,以满足特定的要求和条件。

高三双曲线的知识点

高三双曲线的知识点

高三双曲线的知识点双曲线是高中数学中的重要知识点之一,它在几何、代数等方面都有广泛的应用。

本文将详细介绍高三双曲线的基本定义、性质、方程以及常见的应用。

一、基本定义双曲线是平面上几何曲线的一种,由离心距与准线的差的绝对值等于常数的点的轨迹所组成。

双曲线可以分为两支,分别称为左支曲线和右支曲线。

二、性质1. 双曲线的离心率双曲线的离心率是指离心距与准线的差的绝对值的比值。

双曲线的离心率大于1,且离心率越大,曲线越扁。

2. 焦点和准线双曲线的两个焦点分别位于曲线的左右两端,而准线是通过离心距的中点且与曲线平行的一条直线。

3. 长轴和短轴双曲线的长轴是通过两个焦点的直线段,短轴是通过离心距的中点的直线段。

三、方程双曲线的标准方程有两种形式,分别为横轴双曲线和纵轴双曲线。

1. 横轴双曲线的方程以焦点为原点,准线为x轴,长轴与x轴平行的双曲线方程为:x^2/a^2 - y^2/b^2 = 1。

2. 纵轴双曲线的方程以焦点为原点,准线为y轴,长轴与y轴平行的双曲线方程为:y^2/a^2 - x^2/b^2 = 1。

四、应用1. 物理应用双曲线在物理学中有许多应用,比如光学中的折射和反射问题,以及力学中的悬链线等。

2. 经济学应用在经济学中,利润曲线常常呈现双曲线形状,双曲线还可以用来表示供需曲线、收入分配曲线等。

3. 电子学应用在电子学中,双曲线常常用来描述和分析交流电路的性质和行为。

总结:高三双曲线的知识点包括基本定义、性质、方程及应用。

了解双曲线的特点与性质,可以帮助我们在几何与代数问题中灵活运用,并且在实际应用中有重要的价值。

通过深入学习双曲线的知识,我们可以更好地理解和应用数学,为将来的学习与工作打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线:了解双曲线的定义、几何图形和标准方程;了解双曲线的简单几何性质。

重点:双曲线的定义、几何图形和标准方程,以及简单的几何性质. 难点:双曲线的标准方程,双曲线的渐进线.知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F1F2的垂直平分线。

知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意: 1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质双曲线(a>0,b>0)的简单几何性质(1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。

(2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。

因此双曲线上点的横坐标满足x≤-a 或x≥a。

(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。

②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。

③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,―b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。

实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。

a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。

注意:①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。

②双曲线的焦点总在实轴上。

③实轴和虚轴等长的双曲线称为等轴双曲线。

(4)离心率:①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。

②因为c>a>0,所以双曲线的离心率。

由c2=a2+b2,可得,所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。

所以离心率可以用来表示双曲线开口的大小程度。

③等轴双曲线,所以离心率。

(5)渐近线:经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是。

我们把直线叫做双曲线的渐近线。

注意:双曲线与它的渐近线无限接近,但永不相交。

知识点四:双曲线与的区别和联系标准方程图形性质焦点,,焦距范围,,对称性关于x轴、y轴和原点对称顶点轴实轴长=,虚轴长=离心率准线方程渐近线方程知识点五:双曲线的渐近线:(1)已知双曲线方程求渐近线方程:若双曲线方程为,则其渐近线方程为注意:(1)已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程。

(2)已知渐近线方程求双曲线方程:若双曲线渐近线方程为,则可设双曲线方程为,根据已知条件,求出即可。

(3)与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y轴上)(4)等轴双曲线的渐近线等轴双曲线的两条渐近线互相垂直,为,因此等轴双曲线可设为.知识点六:双曲线图像中线段的几何特征:双曲线,如图:(1)实轴长,虚轴长,焦距,(2)离心率:;(3)顶点到焦点的距离:,;(4)中结合定义与余弦定理,将有关线段、、和角结合起来.1.如何确定双曲线的标准方程?当且仅当双曲线的对称中心在坐标原点,对称轴是坐标轴,双曲线的方程才是标准方程形式。

此时,双曲线的焦点在坐标轴上。

2.双曲线标准方程中的三个量a、b、c的几何意义双曲线标准方程中,a、b、c三个量的大小与坐标系无关,是由双曲线本身所确定的,分别表示双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:c>a,c>b,且c2=b2+a2。

3.如何由双曲线标准方程判断焦点位置双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看x2、y2的系数,如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上。

注意:对于双曲线,a不一定大于b,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上。

4.方程Ax2+By2=C(A、B、C均不为零)表示双曲线的条件方程Ax2+By2=C可化为,即,所以只有A、B异号,方程表示双曲线。

当时,双曲线的焦点在x轴上;当时,双曲线的焦点在y轴上。

5.求双曲线标准方程的常用方法:①待定系数法:由题目条件确定焦点的位置,从而确定方程的类型,设出标准方程,再由条件确定方程中的参数、、的值。

其主要步骤是“先定型,再定量”;②定义法:由题目条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。

注意:若定义中“差的绝对值”中的绝对值去掉,点的集合成为双曲线的一支,先确定方程类型,再确定参数a、b,即先定型,再定量。

若两种类型都有可能,则需分类讨论。

6.如何解决与焦点三角形△PF1F2(P为双曲线上的点)有关的计算问题?与焦点三角形有关的计算问题时,常考虑到用双曲线的定义及余弦定理(或勾股定理)、三角形面积公式相结合的方法进行计算与解题,将有关线段、、,有关角结合起来,建立、之间的关系.7.如何确定离心率e的取值情况与双曲线形状的关系?:离心率,因为c2=a2+b2,用a、b表示为,当e越大时,越大,即渐近线夹角(含x轴)越大,故开口越大;反之,e越小,开口越小。

离心率反映了双曲线开口的大小,且e>1。

8.椭圆、双曲线的区别和联系:椭圆双曲线根据|MF1|+|MF2|=2a 根据|MF1|-|MF2|=±2aa>c>0,a2-c2=b2(b>0)0<a<c,c2-a2=b2(b>0),(a>b>0),(a>0,b>0,a不一定大于b)标准方程统一为:类型一:双曲线的定义1.已知⊙O1:(x+5)+y=4,⊙O2:(x-5)+y=9(1)若动圆P与⊙1,⊙2均内切,求动圆圆心P点的轨迹;(2)若动圆Q与⊙1,⊙2均外切,求动圆圆心Q点的轨迹。

解析:(1)设⊙P半径为R,∵⊙O1与⊙O2相离,∴|PO1|=R-2,|PO2|=R-3 ∴|PO1|-|PO2|=1,又|O1O2|=10∴由双曲线的定义,P点的轨迹是以O1,O2为焦点,2a=1,2c=10的双曲线的右支。

(2)设⊙Q半径为r,则|QO1|=r+2,|QO2|=r+3 ∴|QO2|-|QO1|=1,又|O1O2|=10∴由双曲线的定义,Q点的轨迹是以O1,O2为焦点,2a=1,2c=10的双曲线的左支。

举一反三:【变式1】已知定点F1(-2,0)、F2(2,0),平面内满足下列条件的动点P的轨迹为双曲线的是()A.|PF1|-|PF2|=±3B.|PF1|-|PF2|=±4C.|PF1|-|PF2|=±5 D.|PF1|2-|PF2|2=±4 【答案】A【变式2】已知点F1(0,-13)、F2(0,13),动点P到F1与F2的距离之差的绝对值为26,则动点P的轨迹方程为()A.y=0 B.y=0(x≤-13或x≥13)C.x=0(|y|≥13)D.以上都不对【答案】C【变式3】已知点P(x,y)的坐标满足,则动点P的轨迹是()A.椭圆 B.双曲线中的一支 C.两条射线 D.以上都不对答案:B类型二:双曲线的标准方程: 2.求与双曲线有公共焦点,且过点的双曲线的标准方程。

解法一:依题意设双曲线方程为-=1由已知得,又双曲线过点,∴∴:故所求双曲线的方程为.解法二:依题意设双曲线方程为,将点代入,解得,所以双曲线方程为.【变式1】求与椭圆有共同的焦点,且过点的双曲线的标准方程。

【答案】依题意设双曲线方程为由已知得,又双曲线过点,∴∴故所求双曲线的方程为.【变式2】求中心在原点,对称轴为坐标轴,且顶点在轴,焦距为10,的双曲线的标准方程.【答案】3.已知双曲线的两个焦点F1、F2之间的距离为26,双曲线上一点到两焦点的距离之差的绝对值为24,求双曲线的标准方程。

解析:由题意得2a=24,2c=26。

∴a=12,c=13,b2=132-122=25。

当双曲线的焦点在x轴上时,双曲线的方程为;当双曲线的焦点在y轴上时,双曲线的方程为。

总结升华:求双曲线的标准方程就是求a2、b2的值,同时还要确定焦点所在的坐标轴。

双曲线所在的坐标轴,不像椭圆那样看x2、y2的分母的大小,而是看x2、y2的系数的正负。

【变式】求中心在原点,对称轴为坐标轴,且虚轴长与实轴长的比为,焦距为10的双曲线的标准方程.【答案】由已知设, ,则()依题意,解得.∴当双曲线的焦点在x轴上时,双曲线的方程为当双曲线的焦点在y轴上时,双曲线的方程为. 类型三:双曲线的几何性质4.方程表示双曲线,求实数m的取值范围。

解析:由题意得或或。

∴实数m的取值范围为。

总结升华:方程Ax2+By2=1表示双曲线时,A、B异号。

【变式1】k>9是方程表示双曲线的()A.充分必要条件B.充分不必要条件 C.必要不充分条件 D.既不充分又不必要条件【答案】B 【变式2】求双曲线的焦距。

【答案】8【变式3】已知双曲线8kx2-ky2=2的一个焦点为,则k的值等于()A.-2 B.1 C.-1 D.【答案】C【变式4】(2011 湖南)设双曲线的渐近线方程为,则的值为A.4 B.3 C.2 D.1【答案】C5.已知双曲线方程,求渐近线方程。

(1);(2);(3);(4)解析:(1)双曲线的渐近线方程为:即(2)双曲线的渐近线方程为:即(3)双曲线的渐近线方程为:即(4)双曲线的渐近线方程为:即总结升华:双曲线的渐近线方程为,双曲线的渐近线方程为即;若双曲线的方程为(,焦点在轴上,,焦点在y轴上),则其渐近线方程为。

【变式1】求下列双曲线方程的渐近线方程。

相关文档
最新文档